LM1875X2+NE5532X2制作的HIFI功放电路
- 格式:docx
- 大小:494.89 KB
- 文档页数:6
LM1875采用TO-220封装结构,形如一只中功率管,体积小巧,外围电路简单,且输出功率较大。
该集成电路内部设有过载过热及感性负载反向电势平安工作保护。
LM1875主要参数:电压范围:16~60V静态电流:50MmA输出功率:25W谐波失真:<0.02%,当f=1kHz,RL=8Ω,P0=20W时额定增益:26dB,当f=1kHz时工作电压:±25V转换速率:18V/μS电路原理:LM1875功放板由一个上下音分别控制的衰减式音调控制电路和LM1875放大电路以及电源供电电路三大局部组成,音调局部采用的是上下音分别控制的衰减式音调电路,其中的R02,R03,C02,C01,W02组成低音控制电路;C03,C04,W03组成高音控制电路;R04为隔离电阻,W01为音量控制器,调节放大器的音量大小,C05为隔直电容,防止后级的LM1875直流电位对前级音调电路的影响。
放大电路主要采用LM1875,由1875,R08,R09,C066等组成,电路的放大倍数由R08与R09的比值决定,C06用于稳定LM1875的第4脚直流零电位的漂移,但是对音质有一定的影响,C07,R10的作用是防止放大器产生低频自激。
本放大器的负载阻抗为4→16Ω。
为了保证功放板的音质,电源变压器的输出功率不得低于80W,输出电压为2*25V,滤波电容采用2个2200UF/25V电解电容并联,正负电源共用4个2200UF/25V的电容,两个104的独石电容是高频滤波电容,有利于放大器的音质。
装配与调试:工具准备:20W电烙铁一把,万用电表一个,尖嘴钳一把,螺丝刀一把,焊锡丝和松香水假设干。
准备焊接:焊接时先焊接跳线,再焊接电阻,再焊电容,再焊整流管,再焊电位器,最后焊LM1875,焊接LM1875前须先把LM1875用螺丝固定在散热片上,否那么在最后装散热片时螺丝很难打进去。
LM1875与散热片接触的局部必须涂少量的散热脂,以利散热。
基于NE5532和LM1875T音频功率放大器的设计与制作王刚;陈卓彦
【期刊名称】《中国西部科技》
【年(卷),期】2015(014)012
【摘要】本文全面介绍了以NE5532和LM1875T为核心元件,制作高保真双声道立体超低音功率放大器的方法和步骤,包括原理图设计,装配调试和音箱制作等,对初学者有很好的参考和实践价值.
【总页数】4页(P6-9)
【作者】王刚;陈卓彦
【作者单位】四川信息职业技术学院,四川广元 628040;四川信息职业技术学院,四川广元 628040
【正文语种】中文
【相关文献】
1.基于TPA3112D1的数字音频功率放大器设计 [J], 蒋雪琴
2.基于PWM的D类音频功率放大器的设计 [J], 陈俊宇;王洪辉;孟令宇
3.小型音频功率放大器的设计与制作 [J], 冯润根;杨清虎;李清栋
4.基于LM4766和NE5532的音频功率放大器 [J], 韦发清
5.基于NI Multisim 12.0的集成音频功率放大器的设计与仿真分析 [J], 马建如因版权原因,仅展示原文概要,查看原文内容请购买。
采用LM1875组成的各种功放电路目录LM1875是美国国半公司研发的一款功放集成块,它具有外围电路少、不失真功率大、单双电源均能工作,并且电路内自备过载、过热及抑制反向电势的安全工作区保护(感性负载),是高中档音响中理想的电路。
合应用在音频放大,伺服放大,桥路放大,测试系统中的功率放大。
本文将介绍LM1875组成的各种功放电路。
1.直流负反馈BTL功放电路LM1875功率放大器电路简单,音色优美,具有胆机音色。
用其制作的功率放大器,在正负25V电压下输出功率可达25W,为了输出更大的功率,可以接成BTL电路。
以下电路输出功率超过60W(8欧喇叭),是设计成的电流负反馈电路,音色更优美。
另外,本板主推荐将图1中的C11和C21取消,而在输入端加电容(将C11改在此处).将电路改成直流放大器,效果会更好。
图1 直流负反馈BTL功放电路原理图2.20W单电源功放电路电路如图2所示,LM1875单电源供电与双电源供电的基本工作原理相同,不同之处在于:单电源供电时,采用R1、R2分压,取1/2VCC作为偏置电压经过R3加到1脚,使输出电压以1/2VCC为基准上下变化,因此可以获得最大的动态范围。
图2 20W单电源功放电路原理图3.带高低音调节的LM1875功放电路图3 带高低音调节的LM1875功放电路原理图电路由一个高低音分别控制的衰减式音调控制电路和LM1875放大电路以及电源供电电路三大部分组成。
音调部分采用的是高低音分别控制的衰减式音调电路,其中的R02,R03,C02,C01,W02组成低音控制电路;C03,C04,W03组成高音控制电路;R04为隔离电阻,W01为音量控制器,调节放大器的音量大小,C05为隔直电容,防止后级的LM1875直流电位对前级音调电路的影响。
放大电路主要采用LM1875,由1875,R08,R09,C066等组成,电路的放大倍数由R08与R09的比值决定,C06用于稳定LM1875的第4脚直流零电位的漂移,但是对音质有一定的影响,C07,R10的作用是防止放大器产生低频自激。
自己动手用LM1875制作一款电路简洁的20W高保真功放创意电子DIY分享2018-07-03 17:12:18LM1875是美国国家半导体公司生产的一款高保真功放IC,其电路简单,体积小巧,工作电压范围宽,输出功率大,且失真小。
笔者用的是LM1875套件制作的20W功放,个人觉得音质优于使用TDA2030A的功放电路。
▲LM1875构成的20W高保真功放电路。
LM1875功放IC的工作电压范围为±8~±30V,静态电流为50mA,在电源电压为±25V,RL=4Ω时,输出功率可达20W。
在功率为20W,f=1KHz时,谐波失真度THD仅有0.015%。
图中的电阻R2、R3决定着电路的闭环增益,减小R2阻值或增大R3阻值皆可提高电路的闭环增益。
不过为了使电路能够稳定的工作,闭环增益不宜取得过大。
制作时,电阻R1~R4皆选用金属膜电阻,C1最好选用无极性的独石电容,C2选用钽电容。
▲TO-220封装的LM1875。
上图为TO-220锯齿形封装的LM1875。
由于LM1875有些是打磨的劣质货,购买时建议选用型号为激光蚀刻的,这种相对好一些。
▲ LM1875套件。
▲焊好的LM1875功放板。
本功放电路的±25V电源可以使用功率足够大的双电源变压器经桥式整流、电容滤波获得。
▲自制的纯铜散热片。
由于LM1875套件的散热片为面积较小的铝散热片,散热效果不太好。
于是笔者用公司里的铜板边角料制作了几个纯铜散热片(笔者制作的稳压电源用的散热片也是这种自制的纯铜散热片),经试验散热效果显著优于铝散热片。
若想了解更多的电子电路及元器件知识,请关注本头条号,谢谢。
LM1875采与TO220启拆结构,形如一只中功率管,体积小巧,中围电路简朴,且输出功率较大.该集成电路里面设有过载过热及感性背载反背电势仄安处事呵护. 之阳早格格创做LM1875主要参数:电压范畴:16~60V固态电流:50MmA输出功率:25W谐波得真:<0.02%,当f=1kHz,RL=8Ω,P0=20W 时额定删益:26dB,当f=1kHz时处事电压:±25V变换速率:18V/μS电路本理:LM1875功搁板由一个下矮音分别统造的衰减式音调统造电路战LM1875搁大电路以及电源供电电路三大部分组成,音调部分采与的是下矮音分别统造的衰减式音调电路,其中的R02,R03,C02,C01,W02组成矮音统造电路;C03,C04,W03组成下音统造电路;R04为断绝电阻,W01为音量统造器,安排搁大器的音量大小,C05为隔曲电容,预防后级的LM1875曲流电位对付前级音调电路的效率.搁大电路主要采与LM1875,由1875,R08,R09,C066等组成,电路的搁大倍数由R08与R09的比值决断,C06用于宁静LM1875的第4足曲流整电位的漂移,然而是对付音量有一定的效率,C07,R10的效率是预防搁大器爆收矮频自激.本搁大器的背载阻抗为4→16Ω.为了包管功搁板的音量,电源变压器的输出功率不得矮于80W,输出电压为2*25V,滤波电容采与2个2200UF/25V 电解电容并联,正背电源共用4个2200UF/25V的电容,二个104的独石电容是下频滤波电容,有好处搁大器的音量.拆置与调试:工具准备:20W电烙铁一把,万用电表一个,尖嘴钳一把,螺丝刀一把,焊锡丝战紧香火若搞.准备焊接:焊接时先焊接跳线,再焊接电阻,再焊电容,再焊整流管,再焊电位器,末尾焊LM1875,焊接LM1875前须先把LM1875用螺丝牢固正在集热片上,可则正在末尾拆集热片时螺丝很易挨进去.LM1875与集热片交战的部分必须涂少量的集热脂,以利集热.焊接时必须注意焊接品量,对付于初教者,可先正在兴旧的电路板上多训练频频,而后再正式焊接.调试:本功搁板调试特天简朴,电路板焊佳电子元件后,要小心查看电路板有无焊错的场合,特天要注意有极性的电子整件,如电解电容,桥式整流堆,一朝焊反即有兴弃元器件之险,请特天注意.接上变压器,搁大器的输出端先不接扬声器,而是接万用电表,最佳是数隐的,万用表置于DC*2V档.功搁板上电注意瞅察万用电表的读数,正在仄常情况下,读数应正在30mV以内,可则应坐时断电查看电路板.若电表的读数正在仄常的范畴内,则标明该功搁板功能基础仄常,末尾接上音箱,输进音乐旗号,上电试机,转动音量电位器,音量大小该当有变更,转动下矮音旋钮,音箱的音调有变更.值得一试的真验:将C6短路,用万用表测LM1875输出端的曲流电位,瞅是可是正在30MV以内,而后接上音箱试二小时,用万用表测LM1875输出端LM1875是好国国家半导体公司(NS)推出的下保真集成电路.其劣良的本能战诱人的音色已被稠密收烧友所担当,正在九十年代曾风靡一时.LM1875采与TO220启拆结构,形如一只中功率管,体积小巧,中围电路简朴,且输出功率较大.该集成电路里面设有过载过热及感性背载反背电势仄安处事呵护,是中下等声响的理念采用之一.LM1875主要参数:电压范畴:16~60V固态电流:50MmA输出功率:25W谐波得真:〈0.02%,当f=1kHz,RL=8Ω,P0=20W时额定删益:26dB,当f=1kHz时处事电压:±25V变换速率:18V/μS电路本理:XDA02功搁板由一个下矮音分别统造的衰减式音调统造电路战LM1875搁大电路以及电源供电电路三大部分组成,音调部分采与的是下矮音分别统造的衰减式音调电路,其中的R02,R03,C02,C01,W02组成矮音统造电路;C03,C04,W03组成下音统造电路;R04为断绝电阻,W01为音量统造器,安排搁大器的音量大小,C05为隔曲电容,预防后级的LM1875曲流电位对付前级音调电路的效率.搁大电路主要采与LM187 5,由1875,R08,R09,C066等组成,电路的搁大倍数由R08与R 09的比值决断,C06用于宁静LM1875的第4足曲流整电位的漂移,然而是对付音量有一定的效率,C07,R10的效率是预防搁大器爆收矮频自激.本搁大器的背载阻抗为4→16Ω.XDA02功搁板的电源电路如下图所示,为了包管功搁板的音量,电源变压器的输出功率不得矮于80W,输出电压为2*25V,滤波电容采与2个4700UF/25V电解电容并联,正背电源共用4个4700UF/25V的电容,二个104的独石电容是下频滤波电容,有好处搁大器的音量.拆置与调试:工具准备:20W电烙铁一把,最佳是可调温的,若需要的话可与站少通联;万用电表一个,尖嘴钳一把,螺丝刀一把,焊锡丝战紧香火若搞.准备焊接:焊接时先焊接跳线,再焊接电阻,再焊电容,再焊整流管,再焊电位器,末尾焊LM1875,焊接LM1875前须先把LM1875用螺丝牢固正在集热片上,可则正在末尾拆集热片时螺丝很易挨进去.LM1875与集热片交战的部分必须涂少量的集热脂,以利集热.焊接时必须注意焊接品量,对付于初教者,可先正在兴旧的电路板上多训练频频,而后再正式焊接.调试:本功搁板调试特天简朴,电路板焊佳电子元件后,要小心查看电路板有无焊错的场合,特天要注意有极性的电子整件,如电解电容,桥式整流堆,一朝焊反即有兴弃元器件之险,请特天注意.接上变压器,搁大器的输出端先不接扬声器,而是接万用电表,最佳是数隐的,万用表置于DC*2V档.功搁板上电注意瞅察万用电表的读数,正在仄常情况下,读数应正在30 mV以内,可则应坐时断电查看电路板.若电表的读数正在仄常的范畴内,则标明该功搁板功能基础仄常,末尾接上音箱,输进音乐旗号,上电试机,转动音量电位器,音量大小该当有变更,转动下矮音旋钮,音箱的音调有变更.值得一试的真验:将C6短路,用万用表测LM1875输出端的曲流电位,瞅是可是正在30MV以内,而后接上音箱试二小时,用万用表测LM1875输出端的曲流电位,瞅曲流电位是可正在30MV以内,如果是的话,则C6那个电容不妨省掉,那样的话,此搁大板便成一个杂曲流功搁了电路曲流化并改为电流反馈后,频响拓宽,矮音力度明隐巩固,下频剖析力减少,中音量感巩固,音量较尺度电路普及很多,使进暂听不厌、用此功搁与新德克6800杂甲类功搁对付比试听,推惠威天鹅 M1.2音箱,15仄圆米房间,约有10W安排输出,音色极为靠近新德克机,声音力空、剖析力与之八二半斤.LMl875下音细致一面,新德克6800人声薄度强——面,二者不共之小,出乎意料.然而LMl875曲流化电流背反馈电路的缺累也使人感触若有所得:功率偏偏小,固态时有可闻的接流声,真测LMl8 75固态时输出端有几到十几mV的电压.曲流化电流背反馈BTL电路睹图2,与消尺度BTL电路中的C12、C22,使电路曲流化;电阻R16与R26是与样电阻,电流反馈旗号经R15、 R16、R25、R26分别加进搁大器A1、A2的反相输进端,R13、R14、R15、R16的阻值决断搁大器删益的大小.用图2电路真验,不管何如通断电源与输进旗号,输出端末究不曲流输出,而且不固态输出噪音,启机时喇叭中惟有沉微“叭”音,闭机时扬声器中绝无噪音可闻.通过真验可知,此种输进电路处事格中宁静,纵然正在启大音量或者固态时将输进端子拔掉再插上,电路也不会自激.电容C11对付音量效率很大,去掉此电容后,少远赶快一明,中下音变得浑澈细致,矮音富裕弹性战力度.曲流化电流背反馈BTL电路继启了曲流化电流背反馈O CL电路音量的便宜,得真进一步减小,输出功率删大到本去的3倍,达到了60瓦以上,克服了其启闭机扬声器中有冲打声战固态时有接流声的缺面,是LM1875的理念劣化电路.。
LM1875功放电路介绍
LM1875功率较TDA2030及TDA2009都为大,电压范围为16~60V。
不失真功率为20W (THD=0.08%),THD=1%时,功率可达40W(人耳对THD<10%一下的失真没什么明显的感觉),保护功能完善。
笔者是一个不错的选择。
其接法同TDA2030相似,也有单双电源两种接法。
LM1875是美国国家半导体器件公司生产的音频功放电路,采用V型5 脚单列直插式塑料封装结构。
如图1所示,该集成电路在±25V电源电压RL=4Ω时可获得20W的输出功率,在±30V电源8Ω负载获得30W的功率,内置有多种保护电路。
广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功率大、失真小等特点。
电路特点:
[1].单列5脚直插塑料封装,仅5只引脚。
[2].开环增益可达90dB。
[3].极低的失真,1kHz,20W时失真仅为0.015%。
[4].AC和DC短路保护电路。
[5].超温保护电路。
[6].峰值电流高达4A。
[7].极宽的工作电压范围(16-60V)。
[8].内置输出保护二极管。
[9].外接元件非常少,TO-220封装。
[10].输出功率大,Po=20W(RL=4Ω)。
LM1875极限参数:
LM1875极限参数参数名称极限值单位电源电压(Vs) 60 V 输入电压(V in) -VEE-Vcc V 工作结温(Tj) +150 ℃存储结温(Tstg) -65-+150 ℃
典型应用电路:
1.单电源接法图:
2.双电源的接法如图:。
NE5532功放说到小功率的耳放,不得不提到20世纪的运放之王NE5532,曾经出现在无数的优秀前级放大、调音电路之中,中频温暖细腻厚实,胆味十足,性价比很高!直到今天我们还能很容易地在一些中低档的音响产品中找到它。
由于其体积小、电路简单,所以是讲究实用性、低投入的动手派的首选。
因为NE5532从面世到如今已历经数载,大家对其电路也非常熟悉,有着多种多样的玩法。
在此介绍的耳放的特点是简单、功率小,侧重的是制作的过程。
一、原理分析NE5532是典型的双极型输入运算放大器,用单个NE5532组成的小功率电路有很多版本,本人通过不断地对比和思考,对那些五花八门的电路图作了修改,最终确定了原理图(图1)。
放大倍数是由R3(R4)和R5(R6)来控制的,理论上说如果R3(R4)为1kΩ,R5(R6)为100kΩ,则其放大倍数为100倍,但对于耳放来说,这会引起自激,再说就算真的能达到100倍,效果也不可能好,所以这个电路用于前级时也最好别调成100倍。
当然,对于耳放定2~3倍可以让负反馈适量、音质柔和、清晰更通透,但放大倍数也不能太小,否则也会影响音质,大家可以反复调试,达到自己满意的效果。
笔者是将R3(R4)定为1kΩ,R5(R6)定为20 kΩ,即2倍。
C5(C6)是输入回路的对地通路,在用于耳放电路时应该加大,原理图中的值为22 uF,但用于此耳放应该加大到100 uF。
在这里值得一提的是电源问题,如果你是使用的稳压电源,要注意稳压电源的滤波要给足,因为本电路本身就非常简单,那么对元器件的选取就比较挑剔,建议在选材时尽量选择质量好一点的元器件。
二、PCB绘制笔者使用Protel 99 SE进行布线设计,大家看到的这个PCB图(图2)是我画的第三版,也是我最满意的一版,前几版都存在着飞线,而这一版是没有的,网上的很多版本都存在着飞线的问题,这对挑剔的动手派是不能容忍的。
由于面积小,所以在接地方面要尽量争取一点接地,输入和输出端也可以根据实际情况进行改动。
NE5532 电子分频电路重低音高音1.我们去音响市场时总能听到一些很强的低音很锐耳的高音,他那音箱也不见得很夸张,老板说那是什么什么功放块的音响,可是当我们好奇DIY的板子时,就算接的喇叭再好也没他那效果,那就困惑了。
我们也挺喜欢买2.1音响,这2。
1又是个啥意思?其实一切源于前级分频(后及分频也行,只是可能分频不是很突出)。
你说这前级分频那个复杂?可不是,只要你会做板子,这个同样可以轻松搞定。
NE5532做的就是不错的分频器了上图为NE5532做成的二阶高通和低通波器,也就我们要的高音和低音前级分频器,对于低音有C6=1.41 4/(2π f R),R=R1=R6=10K,可见改变公式里的参数就可以得到不同的分频点。
就是说低于f(上图大约为250Hz)的波形顺利通过,大于f频率的波形会大大衰减,就是低通。
至于高通,不用说了吧。
那47K 的电阻可以不要,其上的电容电阻可以根据听觉来选取大小,输入端可以加入缓冲级,输出端最好加个后级运放,不然不好去推功放块。
还有中频是不能少的,要是少了中频声音就没那么好听了,这中频怎么做看了上面应该懂了吧。
当然,NE5532换成其他也可以,只要引脚对的上。
2. 如图为三分频电路图,是一个比较经典的三分频电路。
电路元件较为简单。
图2是3分频电路,用JK-FF实现3分频很方便,不需要附加任何逻辑电路就能实现同步计数分频。
但用D-FF实现3分频时,必须附加译码反馈电路,如图2所示的译码复位电路,强制计数状态返回到初始全零状态,就是用NOR门电路把Q2,Q1=“11B”的状态译码产生“H”电平复位脉冲,强迫FF1和FF2同时瞬间(在下一时钟输入Fi的脉冲到来之前)复零,于是Q2,Q1=“11B”状态仅瞬间作为“毛刺”存在而不影响分频的周期,这种“毛刺”仅在Q1中存在,实用中可能会造成错误,应当附加时钟同步电路或阻容低通滤波电路来滤除,或者仅使用Q2作为输出。
D-FF 的3分频,还可以用AND门对Q2,Q1译码来实现返回复零。
25W×2 LM1875功放制作时间:2007-09-14 来源: 作者:陆金根点击:19468 字体大小:【大中小】许多音响音乐爱好者往往对IC功放不屑一顾。
他们认为Hi-Fi功放非分立元件设计制作不可。
其实,这种看法有失偏颇。
诚然,分立元件功放的性能和音质确实非IC功放可比。
但这是从终极的性能和音质以及不计成本为前提的说法。
事实上,现行业余设计制作的不少分立元件功放的性能和音质,由于没有测试仪器,其性能究竟达到什么水平很难说。
由于没有测试仪器参与调试,同样的一个放大电路,其性能因制作水平而异,有时更不可同日而语。
再说,在成本相当的条件下,要设计出一款性能和音质优于IC功放的分立元件功放,对专业设计师来说决非易事,对业余爱好者来说更是难上加难。
而采用IC制作功放,其基本性能是易于保证的,可收事半功倍之效。
因此我们认为,若以学习设计和钻研放大器技术为主要目的,制作分立功放是必由之路。
如果以欣赏音乐为主要目的而又不想购买商品功放者,显然以制作IC功放是首选。
长期以来,有不少IC功放就是为Hi-Fi而设计的,它们失真低,工作稳定可靠,元件少,成本低,容易制作。
其音质完全能够满足Hi-Fi欣赏要求,配合电脑欣赏音乐,无论性能还是音质更是绰绰有余。
本文向读者介绍采用LM1875制作25W ×2功放的应用设计考虑及制作技巧和主要测试性能,帮助大家用好LM1875。
LM1875是美国国家半导体公司(NS)在十多年前推出的性能优异的单片集成功率放大器件。
它的主要参数见附表。
附表LM1875主要参数NS公司推荐的典型应用电路如图1所示。
图1 LM1875应用电路用±30V供电时,8 Ω负载上最大输出功率可达30W。
用±25V供电时,在4 Ω或8 Ω负载上,20W输出时总谐波失真为0.015%。
IC 芯片内具有短路保护、过热保护、限流保护等功能,工作安全可靠。
例如,芯片温度达到170℃,过热保护即开始工作,当温度降至145℃则重新进入正常工作。
NE5532构成的电子二分频前级电路
大家都知道,对于多单元音箱,需要在扬声器前面添加LC分频器,使高音进高音喇叭,低音进低音喇叭。
但是LC分频器处理的是功放输出的大功率信号,体积大,成本高,调试困难,还会带来接入功率损耗,引起功放的阻尼特性变化。
使用NE5532构成的电子二分频前级电路,可以把高音信号,用小功率功放放大,而低音用较大功率的功放放大,各司其职互不干扰。
体积小成本低,分频点准确,分频曲线理想,制作和调试容易。
如下图所示,是具体电路图。
每个声道用一块NE5532。
其中IC1-1是低通滤波器(LPF)对应输出低音喇叭的信号。
其中IC1-2是高通滤波器(HPF)对应输出高音喇叭的信号。
分频点是3.7KHz,电压增益1.6倍(3.9dB),品质因素0.7,电路输入阻抗10KΩ,输出阻抗小于1KΩ。
电位器RP1、RP2分别用于调节送往后级功放的输入电平,便于根据音箱的等响度曲线来适当配比高低音的输出比例。
制作LM1875应用功放电路图纸原理图时间:2009-02-06 11:58:45 来源:资料室作者:LM1875是美国国家半导体公司(NS)推出的高保真集成电路电路。
其优越的性能和诱人的音色已被众多发烧友所接受,在九十年代曾风靡一时。
采用TO-220封装结构,形如一只中功率管,体积小巧,周边电路简单,且输出功率较大。
该集成电路内部设有超载过热及感性负载反向电势安全工作保护,是中高档音响的理想选择之一。
主要参数:电压范围:16~60V静态电流:50MmA输出功率:25W谐波失真:〈0.02%,当f=1kHz,RL=8Ω,P0=20W时额定增益:26dB,当f=1kHz时工作电压:±25V转换速率:18V/μS放大电路主要采用LM1875,由1875,R5,R6,C3等组成,电路的放大倍数由R5与R6的比值决定,C3用于稳定LM1875的第4脚直流零电位的漂移,但是对音质有一定的影响,C5,R7的作用是防止放大器产生低频自激。
本放大器的负载阻抗为4→16Ω。
调试:本功放板调试特别简单,电路板焊好电子元件后,要仔细检查电路板有无焊错的地方,特别要注意有极性的电子零件,如电解电容,桥式整流堆,一旦焊反即有烧毁元器件之险,请特别注意。
接上变压器,放大器的输出端先不接扬声器,而是接万用电表,最好是数显的,万用表置于DC*2V档。
功放板上电注意观察万用电表的读数,在正常情况下,读数应在30mV以内,否则应立即断电检查电路板。
若电表的读数在正常的范围内,则表明该功放板功能基本正常,最后接上音箱,输入音乐信号,上电试机,旋转音量电位器,音量大小应该有变化,旋转高低音旋钮,音箱的音调有变化。
值得一试的实验:将C3短路,用万用表测LM1875输出端的直流电位,看是否是在30MV以内,然后接上音箱试两小时,用万用表测LM1875输出端的直流电位,看直流电位是否在30MV以内,如果是的话,则C3这个电容可以省掉,这样的话,此放大板就成一个纯直流功放了。
基于NE5532的音响电路设计音响电路设计是指设计一个能够放大声音信号并产生高质量音频输出的电路。
NE5532是一种低噪声双运放芯片,被广泛应用于音响设备中。
以下是基于NE5532的音响电路设计方案。
1.电源电路设计:音响电路的电源电路应该稳定且提供足够的电流。
可以选择双电源设计,即正负电源供电,这样可以减小地线干扰。
使用整流器将交流电转化为直流电,并添加滤波电容以平滑输出电压。
为了提供稳定的电源电压,可以使用稳压电路或线性稳压器。
2.输入电路设计:输入电路用于接收音频信号,并将其转化为电压信号。
可以使用声音传感器或扬声器作为输入设备。
为了保护音频设备免受干扰和静电放电的影响,可以添加输入滤波电容和静电保护电路。
3.放大电路设计:NE5532芯片具有高增益和低失真的特性,非常适合作为放大器芯片。
可以使用NE5532的两个运放作为前置放大器和功率放大器。
前置放大器用于放大输入信号,而功率放大器用于放大前置放大器输出的信号。
4.控制电路设计:音响系统通常需要控制音量和音调等参数。
可以使用电位器控制音量,通过调整电位器的阻值来改变放大器的增益。
音调控制可以通过连接电容和电阻来实现,调整电容和电阻的值可以改变低音和高音的增益。
5.输出电路设计:输出电路用于连接扬声器或耳机,以产生高质量的音频输出。
可以使用功率放大器将放大的音频信号驱动扬声器。
为了保护音响设备和扬声器,可以添加保险丝和输出保护电路。
6.地线设计:良好的地线设计可以减小电路中的噪音和干扰。
可以使用星型结构进行地线连接,将所有地点连至同一个地点。
此外,还可以使用电源滤波器和电路间的隔离来减小地线干扰。
7.PCB设计:为了使电路稳定可靠地工作,PCB设计非常重要。
应该将输入、放大、控制和输出电路模块布局合理,减少干扰和回路间的相互影响。
尽量使用短而粗的导线连接,以减小电阻和电感。
此外,选择高质量的电子元件并进行良好的焊接也是重要的。
总结:。
記得有幾次跟站友們聊天時被問到,站上的的幾個DIY後級, 功率對有些人可能有點大,跟本用不著,裝了100W的TDA7294,然後在小小的宿舍裡只能音量只能開得小小的,@@...........站長不弄個小瓦數的後級來玩玩嗎?其實早就想過,但好聲還是前提,不要說功率小一點就犧牲了音質!考量小功率、電路簡單、最好含音控(有些人好喜歡有音控的後級)、成本低、DIY容易(最好能給一些高職或專科電子科的新手實習,打完分數後還會想把它帶回家)…. 想了好久,我看定位在20W~30W之間好了,也到網路上比較了好多電路,最後選擇了LM1875這個功放IC的電路,巧的是,看了看還是對岸松勝的電路看來最好,評語也不錯,但我個人想比較一下不經音控的真實音效效果如何,所以為它加上了音控Bypass的選擇。
關於LM1875的詳細內容我就不在文中特別說明了,相信大家可以找到它的DATA SHEET。
網路上也多人把它拿來比較低價位的TDA2030,且在市面上好像也留傳不少是由TDA2030把字磨去,重新Remark成LM1875來賣,由於差價很大,自己買時小心一點,太低價的大概就有問題了,在規格上來說TDA2030是差一點,但如果要試試也未嘗不可,腳位完全相容,可直接替換,但要小心, 它的工作電壓較低,在使用TDA2030時用電壓較低的變壓器,比如輸出為AC 12-0-12 V的變壓器。
修正後的電路圖如下:#要觀看原圖請對圖按右鍵另存新檔電路板的LAYOUT,由於面積不大,這次採用雙面板相信也成本也不會高太多,且在上層全面鋪地,訊號處理會更為乾淨。
當然要一次LAYOUT成功好像也不容易,做完的板子,一開始焊就發現,上層貫孔的焊點在鎖散熱片時會短路到,結果先把上層的跳線挖去,先從下面焊;做好之後,一上電,量輸出直流0V,已放了半個心了,通常我會由訊號產生器上送個訊號,到放大器的輸入,輸出先接示波器來看波形,一方面可以看有沒正常的放大,另一方面也可以看看有沒雜訊,好像都不錯;再來試試Tone Control Bypass看看,結果沒聲!用示波器一追,哇!Jumper那裡的Layout錯了,只好先以手工切銅箔、加跳線修正電路,全部OK了,大家也可放心,POST上來的電路板LAYOUT圖檔都已改正過了,是正確的,完整修正了。
采用LM1875的电流反馈型功放电路电流型功放听感较好,采用功放集成电路LM1875的电流型功放电路如图5-20所示。
图中,与扬声器BL串接的电阻R3阻值很小,流过扬声器的电流流过R 3,在其两端产生的取样反馈电压与输出电流成正比。
将R3上形成的电压经R 2送到放大器的反馈输入端,组成电流负反馈,使放大器的输出阻抗升高,同时降低阻尼系数。
电路中取消了所谓的茹贝尔网络,仅用C4作超前补偿。
R2的设置虽然使输出反馈电流不能百分之百的反馈到负向输入端,但确防止了大反馈量对输入端产生的有害影响;同时,也使正负输入端的偏置得到平衡,消除输出端的直流偏移。
先在③和⑤脚焊上两只小型0.22µF电容,把它们的另一端焊在一起作为接地端。
有关接地的电阻,均弯折后焊在这一点上。
±24V电源线和输出线焊在有关脚上。
将输入端对地交流短路,在BL扬声器位置上焊一只10Ω电阻,通电测试输出端对地电压。
如小于100mV且半小时后基本无偏移,即可断开输入短路线,接上扬声器即可。
让LM1875声音更靓LM1785是美国NSC公司生产的一块高保真薄膜功放IC。
它的适应性很强,可以按OTL﹑OCL及BTL的不同接法,制作成不同形式的功率放大器。
本文根据NSC手册推荐的OCL电路改装了一台放大器。
经试听,觉得音域宽广﹑音色迷人。
为了进一步发挥LM1875的潜在功能,使该功率放大器声音更靓,特在制作过程中反复试验,得到两点体会:其一,对外围元器件的选择非常重要。
因为功放电路简单,外围元件少,故选用比较高档的元器件,甚至优质元件。
虽然价格较贵,但总花费不会太高,音色却有很大提高。
其二,在电路的设计及制作方面,进行一些小的改进,也能取得十分理想的效果。
LM1875的最大不失真功率可达30W,最大输出电流4A。
因此,力求左﹑右声道的电源各自独立。
每声道电源变压器功率在100VA左右,尽量选用优质品,整流桥电流﹥5A,电解电容宜选用进口优质品或国产正品。
NE5532音响电路电路结构上分为3大部分电源前级负反馈音调电源部分电路如下前面用4个整流二极管1N4007(其他整流管通用)整流然后用2个电解电容滤波并且分别并联两个0.1U的小电容作用是吸收高频杂波减少电容升温这个地方只要简单整流滤波对原件要求不高.后面用两个三端稳压 7815 7915 做稳压并用高速运放伺服纠正误差实际上就是区输出纹波经过运放反向放大之后改变稳压管基准点用来修正误差R1 R3(R2 R4)是运放的反馈网络比例越大灵敏度越高也就是说越大越灵敏越小越稳定 C3 C4 为反馈补偿电容这里用33P,当然22p 47p都可以。
C5 C6 的作用是隔离直流信号在稳定的时候两端电压等数输出电压在输出不稳定的时候电压信号会直接影响运放从而纠正输出。
稳压管输出并联电解电容滤除残存干扰波这个电容建议不要用得太大否则影响音色一般100uF~470uF就可以推荐使用100uF或者220uF。
前极部分电路如下音频输入部分用了一个电位器平衡左右声场电位器中间脚对输入并联了一个2.2K电阻这个电阻的作用是改变声音变化的曲线使音量变化在中间区域更加平稳有利于左右平衡控制IC信号输入部分用各一个1U电容串联2.2K电阻对地用了一个47K电阻和一个100P电店容低频下由于C19 C20 的存在对低频进行衰减有高通的作用高频下由于C21 C22 的存在这两个电容可以在频率高到一定程度的时候视为通路所以频率越高电路对信号的衰减就越大有低通的作用纵观这4个元件可以视为一个高通率波+一个低通滤波把信号限制在一个特定区域下粗略的计算一下用上面的图可以把信号频率限制在3.3HZ~700KHZ之间(为了满足听觉略大于人耳听觉范围即可)放大电路采用标准的正向比例放大电路 R13 R15 以及另一个声道的R14 R16 为负反馈提供反馈信号得分压电组控制 R13 R15 (或者R14 R16)的比例可以控制放大倍数 C25 C26为反馈网络的高频超前补偿电容适当的补偿高频可以修正波形比如方波冲过的情况一般取值比较小甚至不用装机的时候可以看一下各频率方波波型如果有问题就调整这个电容没问题就留空实际使用接不接看实际情况C23 C24 反馈网络对地电容高频下这个电容可以视为通路电路按照电阻的比例进行放大低频下信号频率低或者没有信号的情况下这个电容视为断路电路变为典雅跟随结构增益为0 有这个电容可以把直流反馈变成交流反馈可以调节输出0点但是这个电容取值不当会出现严重的问题比如没有低频原因是直流反馈交流反馈的界限指定错误具体怎么定义可以通过公式计算F=1/(2*pai*R*C) pai是圆周率不用解释了 F为频率 RC为图中的R13 C23 (另一声道R14 C24) 理论上让F小于20HZ即可实际上可以差的多一点比如图中的参数计算出来是0.7Hz注意计算中电容单位用法电阻单位用欧算出来的频率用Hz这个电容最好选用高频的无级的电容不过这个电容一般值都比较大所以很多电路也会使用电解电容正因为这个电容在反馈中起重要作用这个电容的质量也是直接影响音质的这里使用发烧电容也不过分不过如果输出点没有直流的话可以直接用一根导线直通也免去不少麻烦输出串联了一个3.9K 的电阻和一个4.7U的电容 4.7U电容为了输出隔离直流也是为了隔离后面负反馈的反馈网络如果不用音调只用前级可以直通如果想用音调部分就必须接着个电容电阻的作用是信号分压前级作用是线性放大运放输出串联的电阻与后面放大器内阻进行分压有助于电路稳定另一方面也可以防止输出直接短路IC 导致IC烧坏负反馈调音部分电路如下标准的负反馈音调调节运放为反向输入电路电位器向上调节反馈深度增加对信号有衰减作用向下调节反馈深度减小信号增强参数按照图纸不需要调整C39 C40两个电容起消镇作用可以不接输出1K电阻跟后面放大器分压也可以防止输出短路保护IC关于布线电源稳压块前后分别用了“一点接地”可以减少干扰前级放大整体集中在右侧通过信号的电容封装用的比较大的封装而且孔是长条形的适合多种电容使用信号电路地线由外绕过于电源电路都用各自的低最后汇聚一点可以尽量减少干扰板子上面消镇的电容位置比较多实际上可以不接元件参数也可以根据自己的需要进行调整通用性比较强装机制作先上板子1.6玻璃纤维材料附录: NE5532 管脚图。
前段时间突然想做一个音响,所以就从网上找电路资料,找到了这篇功放电路,觉得很不错,拿出来分析,我按照这个电路用面包板焊了一块,试听了一下效果不错,可惜LM1875太贵,所以就用TDA2030替代的。
LM1875T是美国国家半导体公司九十年代初推出的一款音频功放电集成电路,采用TO-220封装,外围元件少,但是性能优异,具有频率响应宽和速度快等特点,从九十年代初一直到现在还被广大音响爱好者推荐。
最可贵的是其价格已从当初的十几元降至现在的八九元,最适合于不想花太多的钱又想过过发烧隐的爱好者业余制作。
该IC最的优点是在小功率输出时的音质能直逼中高档音响的听音效果,在标准工作电压下能获得30W的平均功率,这在一般家用情况下已经足够,笔者曾用NE5532前级音调电路推动该集成功放,正如各类电子报刊评价那样获得极佳的效果,遗憾的是这样性格高的集成电路却很少见于市售的功放和多媒体有源音箱中,虽然其外表是如何的赏心悦目和精致漂亮,但是打开外壳,却很难发现它的芳影,而是生产厂家为了节省那几元钱的成本,大都采用诸如2030或其它名不见经传的廉价电路,由于和TDA2030的封装完全一样,可以直接的代替它,可以获得立竿见影的效果,但是必须是正品。
以下是应用电原理图:JP1为音频输入端,在这里省去耦合电容,因为考虑到现在的音源CD ,VCD ,DVD,TURN,电脑声卡等,基本上输出级都有隔直电容,U2 和前面的阻容元件组成反馈式音调电路,,U1为前级线性放大部分,设为2倍的放大倍数。
可根据实际情况来改变它的增益大小,DW1,DW2为稳压管,如果电源变器为双12V ,则可以省去它。
后级功放部分:在以往电子报刊中常介绍给功放集成电路取消负反馈电容,再加上一个由运算放大器构成的直流伺服电路,使其变成一个纯直流功放电路,事实对LM1875,根本不需多此一举,直接取消该电容即可,用数字万用表实际测量输出端,发现它的零点偏移很少,只有几毫伏左右,本人用这样的电路多年还没有烧坏集成块和扬声器的事件发生,况且该集成电路具有过热过流短路保护功能,该电路中取消了负反馈电路中下面的负反馈电容,变成了纯直流放大电路,大大地拓宽了频率响应,事实证明,只要前级音频输入电容选好,一般用CBB1U,或者用别的发烧品牌如WIMA,等,后级电位就很稳定,不能用一般的电解电容,因为那样有可能有小电流通过,通过放大后造成后级的不稳定,你可以通过对比试听出取消前后的音质绝然不同的效果,特别是高频和低音的拓宽,该电路取消了一般采用运放做伺服电路,使制作变得容易。
LM1875含音質調整22W功率放大器LM1875是美國國家半導體公司(NS)推出的高傳真積體電路。
其優越的性能和誘人的音色已被眾多發燒友所接受,在九十年代曾風靡一時。
LM1875採用TO-220封裝結構,形如一只中功率管,體積小巧,週邊電路簡單,且輸出功率較大。
該積體電路內部設有超載過熱及感性負載反向電勢安全工作保護,是中高檔音響的理想選擇之一。
LM1875主要參數:電壓範圍:16~60V靜態電流:50MmA輸出功率:25W諧波失真:〈0.02%,當f=1kHz,RL=8Ω,P0=20W時額定增益:26dB,當f=1kHz時工作電壓:±25V轉換速率:18V/μS電路原理:此電路由一個高低音分別控制的衰減式音調控制電路和LM1875放大電路以及電源供電電路三大部分組成,音質控制部分採用的是高低音分別控制的衰減式音調電路,其中的R02,R03,C02,C01,W02組成低音控制電路;C03,C04,W03組成高音控制電路;R04為隔離電阻,W01為音量控制器,調節放大器的音量大小,C05為隔離電容,防止後級的LM1875直流電位元對前級音調電路的影響。
放大電路主要採用LM1875,由1875,R08,R09,C066等組成,電路的放大倍數由R08與R09的比值決定,C06用於穩定LM1875的第4腳直流零電位的漂移,但是對音質有一定的影響,C07,R10的作用是防止放大器產生低頻自激。
本放大器的負載阻抗為4→16Ω。
功率放大器的電源供應電路如下圖所示,為了保證功放板的音質,電源變壓器的輸出功率不得低於80W,輸出電壓為2*25V,濾波電容採用2個4700UF/25V電解電容並聯,正負電源共用4個4700UF/25V 的電容,兩個104的基層電容是高頻濾波電容,有利於放大器的音質。
裝配與調試:工具準備:20W電烙鐵一把,最好是可調溫的,若需要的話可與站長聯繫;萬用電錶一個,尖嘴鉗一把,螺絲刀一把,焊錫絲和松香水若干。
用LM1875+NE5532制作的功放电路(适合于多媒体有源音箱升级)LM1875T是美国国家半导体公司九十年代初推出的一款音频功放电集成电路,采用TO-220封装,外围元件少,但是性能优异,具有频率响应宽和速度快等特点,从九十年代初一直到现在还被广大音响爱好者推荐。
最可贵的是其价格已从当初的十几元降至现在的八九元,最适合于不想花太多的钱又想过过发烧隐的爱好者业余制作。
该IC最的优点是在小功率输出时的音质能直逼中高档音响的听音效果,在标准工作电压下能获得30W的平均功率,这在一般家用情况下已经足够,笔者曾用NE5532前级音调电路推动该集成功放,正如各类电子报刊评价那样获得极佳的效果,遗憾的是这样性格高的集成电路却很少见于市售的功放和多媒体有源音箱中,虽然其外表是如何的赏心悦目和精致漂亮,但是打开外壳,却很难发现它的芳影,而是生产厂家为了节省那几元钱的成本,大都采用诸如2030或其它名不见经传的廉价电路,由于和TDA2030的封装完全一样,可以直接的代替它,可以获得立竿见影的效果,但是必须是正品。
以下是应用电原理图,只画出一个声道,电路原理:以上均只画出一个声道,另一声道原理相同。
JP1为音频输入端,在这里省去耦合电容,因为考虑到现在的音源CD ,VCD ,DVD,TURN,电脑声卡等,基本上输出级都有隔直电容,U2 和前面的阻容元件组成反馈式音调电路,,U1为前级线性放大部分,设为2倍的放大倍数。
可根据实际情况来改变它的增益大小,R18、C13、C14为电源隔离滤波部分,以减少两级的相互串绕,DW1,DW2为稳压管,如果电源变器为双12V ,则可以省去它,后级功放部分:在以往电子报刊中常介绍给功放集成电路取消负反馈电容,再加上一个由运算放大器构成的直流伺服电路,使其变成一个纯直流功放电路,事实对LM1875,还有LM3886等,根本不需多此一举,直接取消该电容即可,用数字万用表实际测量输出端,发现它的零点偏移很少,只有几毫伏左右,本人用这样的电路多年还没有烧坏集成块和扬声器的事件发生,况且该集成电路具有过热过流短路保护功能, 该电路中取消了负反馈电路中下面的负反馈电容,变成了纯直流放大电路,大大地拓宽了频率响应,事实证明,只要前级音频输入电容选好,一般用CBB1U,或者用别的发烧品牌如WIMA,等,后级电位就很稳定,不能用一般的电解电容,因为那样有可能有小电流通过,通过放大后造成后级的不稳定,你可以通过对比试听出取消前后的音质绝然不同的效果,特别是高频和低音的拓宽,该电路取消了一般采用运放做伺服电路,使制作变得容易。
1875 功放制作人:闫伟2010年10月1875功放摘要:功率放大器简称功放,俗称“扩音机”,是音响系统中最基本的设备,它的任务是把来自信号源(专业音响系统中则是来自调音台)的微弱电信号进行放大以驱动扬声器发出声音。
如今在体育馆场、影剧场、歌舞厅、会议厅、公共场所扩声,以及录音监听等处所使用的功放,一般说在其技术参数上往往会有一些独特的要求,这类功放通常称之为专用功放或是专业功放。
采用lm1875功放块,用双电源供电。
主要功能:1.对声音信号放大,尽量不失真,音质较好;2.无线遥控开机关机;3.箱内闪烁灯,可以自由打开和关闭;4.箱外加设音量闪烁灯。
主要电路图:1.电源电路本电路采用多种保护电路,以使系统工作更稳定。
其中有压敏电阻过压保护;整流桥并联电容保护整流桥;当电流过大时,保险丝会自动断开,保证后级电路不被烧坏;R2、R3放电电阻,当关闭以后把电容C5~C8放电,使用更安全。
原理图如图1所示:图12.功放板电路图lm1875是一款功率放大集成块,是美国国半公司研发的一款功放集成块,它在使用中外围电路少,而且有完善的过载保护功能,它为五针脚形状,一针脚为信号正极输入,二针脚为信号负极输入,三针脚接地,四针脚信号输出,五针脚为电源正极输入。
其内部设有过载过热及感性负载反向电势安全工作保护,输出功率较大。
LM1875制作功放电路如图2图23.功放板电路图无线控制电路,采用继电器控制,直接连通或者断开电源,使电的利用率更高,若有三极管则处于微导通状态,有时还有杂音。
(由于此电路用万用板搭接,故现在没有原理图)4.闪光灯电路图由于当音量小的时候前面板闪光灯闪烁不明显,故采用OTL电路对信号进行放大后输出送给LED。
经过这一次做东西,又一次感觉到自己知识的欠缺,知道以后要更加努力去学习。
虽然这次经过了很多失败,但从失败中也学到了许多知识。
这周继续研究“功放”。
必须把它吃透,增加更多的保护电路,而且把音质提高。
LM1875X2+NE5532X2制作的HIFI功放电路
LM1875T是美国国家半导体公司九十年代初推出的一款音频功放电集成电路,采用TO-220封装,外围元件少,但是性能优异,具有频率响应宽和速度快等特点,从九十年代初一直到现在还被广大音响爱好者推荐。
最可贵的是其价格已从当初的十几元降至现在的八九元,最适合于不想花太多的钱又想过过发烧隐的爱好者业余制作。
该IC最的优点是在小功率输出时的音质能直逼中高档音响的听音效果,
在标准工作电压下能获得30W的平均功率,这在一般家用情况下已经足够,笔者曾用NE5532前级音调电路推动该集成功放,正如各类电子报刊评价那样获得极佳的效果,遗憾的是这样性格高的集成电路却很少见于市售的功放和多媒体有源音箱中,虽然其外表是如何的赏心悦目和精致漂亮,但是打开外壳,却很难发现它的芳影,而是生产厂家为了节省那几元钱的成本,大都采用诸如2030或其它名不见经传的廉价电路,由于和TDA2030的封装完全一样,可以直接的代替它,可以获得立竿见影的效果,但是必须是正品。
以下是应用电原理图,只画出一个声道,
电路原理:
元器件清单表下载(EXCEL格式)
JP1为音频输入端,在这里省去耦合电容,因为考虑到现在的音源CD ,VCD ,DVD,TURN,电脑声卡等,基本上输出级都有隔直电容,U2 和前面的阻容元件组成反馈式音调电路,,U1为前级线性放大部分,设为2倍的放大倍数。
可根据实际情况来改变它的增益大小,DW1,DW2为稳压管,如果电源变器为双12V ,则可以省去它,
后级功放部分:
在以往电子报刊中常介绍给功放集成电路取消负反馈电容,再加上一个由运算放大器构成的直流伺服电路,使其变成一个纯直流功放电路,事实对LM1875,根本不需多此一举,直接取消该电容即可,用数字万用表实际测量输出端,发现它的零点偏移很少,只有几毫伏左右,本人用这样的电路多年还没有烧坏集成块和扬声器的事件发生,况且该集成电路具有过热过流短路保护功能, 该电路中取消了负反馈电路中下面的负反馈电容,变成了纯直流放大电路,大大地拓宽了频率响应,事实证明,只要前级音频输入电容选好,一般用CBB1U,或者用别的发烧品牌如WIMA,等,后级电位就很稳定,不能用一般的电解电容,因为那样有可能有小电流通过,通过放大后造成后级的不稳定,你可以通过对比试听出取消前后的音质绝然不同的效果,特别是高频和低音的拓宽,该电路取消了一般采用运放做伺服电路,使制作变得容易。
另外该电路还采用电流电压态反馈电路,将电流反馈的低频力度和电压反馈的细腻优点结合在一起,使得本电路音质相比一般标准电路有更好的音质表现。
下面是采用两个LM1875T和两个SIG公司的NE5532(大S)做前级音调的前后级功放板图片。
一个运放担任负反馈音调,另一个为线性缓冲放大,PCB设计时为前后级接地分开走线,严格的一点接地,使得影响音质的交流噪声彻底消除,以更好的发挥集成电路的优良性能,其中包括电源整流,连线接座,只要接入变压器电源线,即可通电工作。
以下为PCB图
成品板实物图片如下
PCB板实物图如下,尺寸为11CMx10CM, 板基厚2mm
元件的选取和试听:
电容部分为德国红WIMA电容,NE5532为正宗的SIG产,电源滤波电解为NICHICOM的
35V/4700UF,容量上对LM1875已经足够,电阻用金属膜,关于电容,这里提一下,有音频通道中有时是必不可少的但是对音质的影响也是很大的一个元器件,所以现在也就有很多的进口发烧电容如ELNA等可以用到电路中,在本电路中的C2,C5的选取尤其重要,(C5必不可少不能省本电路为WIMA 1UF的)本功放电路中的音频通道的电容只有C5一个了,可以说是纯粹的直流放大电路了.那么测一下U2的输出端直流电压为0.9V左右,没有关系,查一下NE5532的资料,这个值远小于它的的最大输出电压.关于LM1875和NE5532的听音评价在以前的报刊杂志上已有很多,不再多说了。
组装试听完上述的功放板后,个人认为LM1875和NE5532组合,以其温暖细腻的音色,还有成本不高的优点,非常适合于小房间或家庭用的(尤其是多媒体电脑)不需要太高的响度的场合下使用,用它来长时间欣赏高保真音乐不会感到浮噪刺耳朵。
本站将在继LM3886板推出后做出PCB 板和成品板,有关电路将稍做改进后,PCB板也将总结以前的经验重新设计全面改进,精心选取元器件,并已较小的利润以维持本站发展的目的向爱好者提供成品和PCB板。
请网友关注。
652914103
[资料]用TDA1521、LM1875T制作的电脑音响电路图。