1-4流体在管道中的流动
- 格式:ppt
- 大小:10.49 MB
- 文档页数:78
管道内流速常用值/(m/s)管道内流速常用值/(m/s)流体种类应用场合管道种类平均流速备注水一般给水主压力管道2~3低压管道0.5~1泵进口0.5~2.0泵出口1.0~3.0工业用水离心泵压力管3~4离心泵吸水管DN2501~2DN2501.5~2.5往复泵压力管1.5~2往复泵吸水管1给水管道流速选择原则一、液体工艺介质类别最大允许压降流速0~60m3/h1.381.8~2.460~160m3/h0.922.4~3.0>160m3/h0.463.0~4.6(4)容器、塔器底部排出管线0.141.2~1.8(5)再沸器入口0.030.3~1.2(6)冷凝器出口0.110.9~1.8(7)冷却管线0.090.6~1.2(8)塔器供液管线0.141.2~1.8二、气体工艺介质类别最大允许压降流速kg/cm2/100mm/s(1)一般压力等级>35.0kg/cm2G0.467.0~20.014.0~35.0kg/cm2G0.357.0~20.010.5~14.0kg/cm2G0.147.0~20.03.5~10.5kg/cm2G0.0710.0~30.00.0~3.5kg/cm2G0.0310.0~30.0真空0.0210.0~30.0换气用风道横置4.0~7.0竖置2.0~5.0(3)泵排出口0.401.0~3.0离心泵2.0~3.0往复泵1.0~2.0(4)锅炉给水0.401.5~3.0(5)冷却水0.401.0~2.5四、蒸汽类别最大允许压降流速kg/cm2/100mm/s(1)一般(2)压力等级(3)0.0~3.5kg/cm2G0.0610.0~35.0(4)3.5~10.5kg/cm2G0.1210.0~35.0(5)10.5~21.0kg/cm2G0.2310.0~35.0(6)>21.0kg/cm2G0.3510.0~35.0(7)(2)过热蒸汽(8)口径(mm)(9)>2000.3540.0~60.0(10)100~2000.3530.0~50.0(11)<1000.3530.0~40.0(12)(3)饱和蒸汽(13)口径(mm)(14)>2000.2030.0~40.0(15)100~2000.2025.0~35.0饱和水蒸气(表压0.8MPA以下)????40-60?往复泵吸入管(水类液体)????0.7-1饱和水蒸气(表压3MPA以上)????80往复泵排出管(水类液体)????1-2蛇管入口饱和水蒸气????30-40??离心泵吸入管(水类液体)????1.5-2化工设备的排气管????20-25?离心泵排出管(水类液体)????2.5-3 一般气(体常压)????10-20??真空管道????<10表二某些流体在管道中的常用流速范围。
知识点1-4 流体在直管内的流动阻力目的是解决流体在管截面上的速度分布及柏努利方程式中流动阻力Σh f的计算问题。
2.本知识点的重点(1)流体在管路中的流动阻力的计算问题。
管路阻力又包括包括直管阻力h f和局部阻力h f’本质不同的两大类。
前者主要是表面摩擦,后者以形体阻力为主。
同时,解决了管截面上的速度分布问题。
(2)流体在直管中的流动阻力因流型不同而采用不同的工程处理方法。
对于层流,通过过程本征方程(牛顿粘性定律)可用解析方法求解管截面上的速度分布及流动阻力;而对于湍流,需借助因次分析方法来规划试验,采用实验研究方法。
因次分析的基础是因次一致的原则和∏定理。
局部阻力也只能依靠实验方法测定有关参数(z或l e)。
(3)建立“当量”的概念(包括当量直径和当量长度)。
“当量”要具有和原物量在某方面的等效性,并依赖于经验。
3.本知识点的难点本知识点无难点,但对于因次分析方法的理解和应用尚需通过实践来加深。
4.应完成的习题1-12.在本题附图所示的实验装置中,于异径水平管段两截面间连一倒置U管压差计,以测量两截面之间的压强差。
当水的流量为10800kg/h时,U管压差计读数R为100mm。
粗、细管的直径分别为60×3.5mm与φ42×3mm。
计算:(1)1kg水流经两截面间的能量损失;(2)与该能量损失相当的压强降为若干Pa?[答:(1)4.41J/kg;(2)4.41×103Pa]1-13.密度为850kg/m3、粘度为8×10-3Pa·s的液体在内径为14mm的钢管内流动,溶液的流速为1m/s。
试计算:(1)雷诺准数,并指出属于何种流型;(2)局部速度等于平均速度处与管轴的距离;(3)该管路为水平管,若上游压强为147×103Pa,液体流经多长的管子其压强才下降到127.5×103Pa?[答:(1)1.49×103;(2)4.95mm;(3)14.93m]1-14.每小时将2×104kg的溶液用泵从反应器输送到高位槽(见本题附图)。
分析流体在管道中的流速问题在物理学中,流体力学是研究流体运动的学科。
当流体通过管道时,我们常常关注其中的流速问题。
本文将深入分析流体在管道中的流速问题,探讨其原因和应用。
在管道中,流体的流速受到多种因素的影响,包括管道的直径、管道的材质、管道内壁的光滑程度、所施加的压力以及管道上存在的阻力等。
这些因素相互作用,决定了流体在管道中的流速。
下面我们将逐一讨论这些因素的影响。
首先,管道的直径是影响流速的一个重要因素。
根据流体力学的基本原理,当管道直径变小时,流体的流速会增大。
这是由于管道直径减小会使得单位截面上的流体流量相同,从而导致流动速度增加。
而当管道直径增大时,流速则相应减小。
这一现象在实际应用中被广泛应用,例如在给水系统中,通过调整管道的直径可以控制供水的流速,以及水龙头的出水量。
其次,管道的材质和内壁的光滑程度也对流速产生影响。
光滑的管道内壁可以减小阻力,从而提高流体的流速。
而粗糙的管道内壁则会增大阻力,限制流体的流动。
因此,在设计和选择管道材料时,需要考虑其内壁的光滑程度,以提高流速并降低能量损失。
另外,施加在流体上的压力也是影响流速的重要因素之一。
根据伯努利方程,当流体受到较大的压力时,其流速会相应增加。
这是因为较大的压力会使流体分子之间的碰撞更加频繁,从而增加了流体分子的动能,提高了流速。
而当流体受到较小的压力时,流速则相应减小。
这一现象在涡轮引擎等设备中得到了广泛应用。
最后,管道上存在的阻力也会对流速产生影响。
阻力通常由管道的摩擦力和局部收缩、扩张等形状变化引起。
例如,在水管弯道处,由于流体流经弯道时会受到较大的摩擦力,从而导致流速降低。
类似地,在管道收缩和扩张处也会形成阻力,影响流速。
因此,在设计管道系统时,需要合理安排管道的形状和布局,以减小阻力,提高流速。
综上所述,流体在管道中的流速问题受到多种因素的影响,包括管道的直径、材质、内壁的光滑程度、所施加的压力以及管道上存在的阻力等。
第一章 流体流动§4 流体在管内流动时的摩擦阻力损失本节重点:直管阻力与局部阻力的计算,摩擦系数的影响因素。
难点:用量纲分析法解决工程实际问题。
流动阻力的大小与流体本身的物理性质、流动状况及壁面的形状等因素有关。
化工管路系统主要由两部分组成,一部分是直管,另一部分是管件、阀门等。
相应流体流动阻力也分为两种:直管阻力:流体流经一定直径的直管时由于内摩擦而产生的阻力; 局部阻力:流体流经管件、阀门等局部地方由于流速大小及方向的改变而引起的阻力。
一 范宁公式(Fanning )1、范宁公式 :范宁经过理论推导,得到了以下公式: 22l u h f d λ= (1-53) 式(1-53)为计算流体在直管内流动阻力的通式,称为范宁(Fanning )公式。
式中λ为无量纲系数,称为摩擦系数或摩擦因数,与流体流动的Re 及管壁状况有关。
式(1-53)也可以写成:22u d l h p f f ρλρ==∆ (1-54) 应当指出,范宁公式对层流与湍流均适用,只是两种情况下摩擦系数λ不同。
2、管壁粗糙度对摩擦系数λ的影响光滑管:玻璃管、铜管、铅管及塑料管等称为光滑管;粗糙管:钢管、铸铁管等。
管道壁面凸出部分的平均高度,称为绝对粗糙度,以ε表示。
绝对粗糙度与管径的比值即dε,称为相对粗糙度。
工业管道的绝对粗糙度数值见教材(P27表1-1)。
管壁粗糙度对流动阻力或摩擦系数的影响,主要是由于流体在管道中流动时,流体质点与管壁凸出部分相碰撞而增加了流体的能量损失,其影响程度与管径的大小有关,因此在摩擦系数图中用相对粗糙度dε,而不是绝对粗糙度ε。
流体作层流流动时,流体层平行于管轴流动,层流层掩盖了管壁的粗糙面,同时流体的流动速度也比较缓慢,对管壁凸出部分没有什么碰撞作用,所以层流时的流动阻力或摩擦系数与管壁粗糙度无关,只与Re有关。
流体作湍流流动时,靠近壁面处总是存在着层流内层。
如果层流内层的厚度δL大于管壁的绝对粗糙度ε,即δL>ε时,如图1-28(a)所示,此时管壁粗糙度对流动阻力的影响与层流时相近,此为水力光滑管。