第三章 聚类分析
- 格式:ppt
- 大小:1.16 MB
- 文档页数:144
1聚类分析内涵1.1聚类分析定义聚类分析(Cluste.Analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术.也叫分类分析(classificatio.analysis)或数值分类(numerica.taxonomy), 它是研究(样品或指标)分类问题的一种多元统计方法, 所谓类, 通俗地说, 就是指相似元素的集合。
聚类分析有关变量类型:定类变量,定量(离散和连续)变量聚类分析的原则是同一类中的个体有较大的相似性, 不同类中的个体差异很大。
1.2聚类分析分类聚类分析的功能是建立一种分类方法, 它将一批样品或变量, 按照它们在性质上的亲疏、相似程度进行分类.聚类分析的内容十分丰富, 按其聚类的方法可分为以下几种:(1)系统聚类法: 开始每个对象自成一类, 然后每次将最相似的两类合并, 合并后重新计算新类与其他类的距离或相近性测度. 这一过程一直继续直到所有对象归为一类为止. 并类的过程可用一张谱系聚类图描述.(2)调优法(动态聚类法): 首先对n个对象初步分类, 然后根据分类的损失函数尽可能小的原则对其进行调整, 直到分类合理为止.(3)最优分割法(有序样品聚类法): 开始将所有样品看成一类, 然后根据某种最优准则将它们分割为二类、三类, 一直分割到所需的K类为止. 这种方法适用于有序样品的分类问题, 也称为有序样品的聚类法.(4)模糊聚类法: 利用模糊集理论来处理分类问题, 它对经济领域中具有模糊特征的两态数据或多态数据具有明显的分类效果.(5)图论聚类法: 利用图论中最小支撑树的概念来处理分类问题, 创造了独具风格的方法.(6)聚类预报法:利用聚类方法处理预报问题, 在多元统计分析中, 可用来作预报的方法很多, 如回归分析和判别分析. 但对一些异常数据, 如气象中的灾害性天气的预报, 使用回归分析或判别分析处理的效果都不好, 而聚类预报弥补了这一不足, 这是一个值得重视的方法。
聚类分析原理及步骤
一,聚类分析概述
聚类分析是一种常用的数据挖掘方法,它将具有相似特征的样本归为
一类,根据彼此间的相似性(相似度)将样本准确地分组为多个类簇,其中
每个类簇都具有一定的相似性。
聚类分析是半监督学习(semi-supervised learning)的一种,半监督学习的核心思想是使用未标记的数据,即在训
练样本中搜集的数据,以及有限的标记数据,来学习模型。
聚类分析是实际应用中最为常用的数据挖掘算法之一,因为它可以根
据历史或当前的数据状况,帮助组织做出决策,如商业分析,市场分析,
决策支持,客户分类,医学诊断,质量控制等等,都可以使用它。
二,聚类分析原理
聚类分析的本质是用其中一种相似性度量方法将客户的属性连接起来,从而将客户分组,划分出几个客户类型,这样就可以进行客户分类、客户
细分、客户关系管理等,更好地实现客户管理。
聚类分析的原理是建立在相似性和距离等度量概念之上:通过对比一
组数据中不同对象之间的距离或相似性,从而将它们分成不同的类簇,类
簇之间的距离越近,则它们之间的相似性越大;类簇之间的距离越远,则
它们之间的相似性越小。
聚类分析的原理分为两类,一类是基于距离的聚类。
第三章聚类分析一、填空题1. 在进行聚类分析时,根据变量取值的不同,变量特性的测量尺度有以下三种类型:间隔尺度________ 、顺序尺度和名义尺度。
2. Q型聚类法是按—样品—进行聚类,R型聚类法是按—变量—进行聚类。
3. ___________________ Q型聚类统计量是_____________________________ 距离而R型聚类统计量通常采用_相似系数 __________________________________ 。
4•在聚类分析中,为了使不同量纲、不同取值范围的数据能够放在一起进行比较,通常需要对原始数据进行变换处理。
常用的变换方法有以下几种:—中心化变换_____ 、—标准化变换____ 、 ____ 规格化变换_、—对数变换_。
5•距离d j—般应满足以下四个条件:对于一切的i,j ,有d j _0、i二j时,有d jj =0、对于一切的i,j ,有d jj =d jj、对于一切的i,j,k ,有d ij< d ik d kj。
6. 相似系数一般应满足的条件为:若变量x i与X j成比例,则C ij 1、对一切的i,j ,有C j <1和对一切的i,j ,有C j =67. 常用的相似系数有夹角余弦和____________ 两种。
8. 常用的系统聚类方法主要有以下八种:最短距离法、最长距离法、中间距离法、重心法、类平均法、可变类平均法、可变法、离差平方和法9 •快速聚类在SPSS中由__K-mean __________ 程实现-P q f q_dj(q)= |E Xik -Xjk ,当q=1 时,它表示 __绝10.常用的明氏距离公式为:对距离___________ ;当q=2时,它表示____________ ;当q趋于无穷时,它表示切比雪夫距离______________ 。
11. 聚类分析是将一批样品____ 或,按照它们在性质上的亲疏、相似程度____________ 进行分类。
计量地理学第三章统计分析方法4聚类分析聚类分析是一种常用的统计分析方法,主要用于将对象或观测值按照相似性分组。
在计量地理学中,聚类分析被广泛应用于地理现象的空间分布模式识别、分类和区域划分等领域。
本文将介绍聚类分析的基本原理、常用的聚类算法和在计量地理学中的应用。
聚类分析的基本原理是通过度量对象或观测值之间的相似性,将它们分组成若干个类别。
相似性度量可以基于不同的变量类型,可以是欧氏距离、皮尔逊相关系数、曼哈顿距离等。
聚类分析的目标是使得每个类别内部的对象或观测值尽可能的相似,而不同类别之间的对象或观测值尽可能的不同。
常用的聚类算法包括层次聚类和K-means聚类。
层次聚类是一种基于分级的聚类方法,它通过计算不同层次之间的距离或相似性来构建聚类树状结构。
层次聚类可以分为自上而下的划分法和自下而上的凝聚法。
K-means聚类是一种基于距离的迭代聚类方法,它首先随机选择K个聚类中心,然后根据每个对象到聚类中心的距离将对象分配到最近的类别,再重新计算每个类别的聚类中心,然后重复这个过程直到达到收敛条件。
在计量地理学中,聚类分析常常应用于地理现象的空间分布模式识别。
例如,可以利用聚类分析来识别城市的空间分布模式,将城市按照相似的特征分组。
聚类分析还可以应用于地理数据的分类和区域划分。
例如,可以利用聚类分析将地理数据划分为若干个类别,以便对不同类型的地理现象进行分析和研究。
聚类分析的应用还包括地理景观分类、土地利用研究和地理风险评估等。
例如,可以利用聚类分析将地理景观按照植被类型、土地利用类型等特征进行分类,并对不同类型的地理景观进行评估和管理。
聚类分析还可以应用于土地利用研究,根据地理空间上不同点的土地利用特征,将地域划分为不同的区块,以便对土地利用进行规划和管理。
聚类分析还可以应用于地理风险评估,利用相似的地理要素特征,将地理空间上的风险区域进行划分,并对风险区域进行预警和管理。
综上所述,聚类分析是一种常用的统计分析方法,它可以通过度量对象或观测值之间的相似性,将它们分组成若干个类别。
聚类分析—搜狗百科依据研究对象(样品或指标)的特征,对其进行分类的方法,减少研究对象的数目。
各类事物缺乏可靠的历史资料,无法确定共有多少类别,目的是将性质相近事物归入一类。
各指标之间具有一定的相关关系。
聚类分析(cluster analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术。
聚类分析区别于分类分析(classification analysis) ,后者是有监督的学习。
变量类型:定类变量、定量(离散和连续)变量聚类方法1,层次聚类(Hierarchical Clustering)合并法、分解法、树状图2. 非层次聚类划分聚类、谱聚类聚类方法特征:聚类分析简单、直观。
聚类分析主要应用于探索性的研究,其分析的结果可以提供多个可能的解,选择最终的解需要研究者的主观判断和后续的分析;不管实际数据中是否真正存在不同的类别,利用聚类分析都能得到分成若干类别的解;聚类分析的解完全依赖于研究者所选择的聚类变量,增加或删除一些变量对最终的解都可能产生实质性的影响。
研究者在使用聚类分析时应特别注意可能影响结果的各个因素。
异常值和特殊的变量对聚类有较大影响当分类变量的测量尺度不一致时,需要事先做标准化处理。
当然,聚类分析不能做的事情是:自动发现和告诉你应该分成多少个类——属于非监督类分析方法期望能很清楚的找到大致相等的类或细分市场是不现实的;样本聚类,变量之间的关系需要研究者决定;不会自动给出一个最佳聚类结果;我这里提到的聚类分析主要是谱系聚类(hierarchical clustering)和快速聚类(K-means)、两阶段聚类(Two-Step);根据聚类变量得到的描述两个个体间(或变量间)的对应程度或联系紧密程度的度量。
可以用两种方式来测量:1、采用描述个体对(变量对)之间的接近程度的指标,例如“距离”,“距离”越小的个体(变量)越具有相似性。
2、采用表示相似程度的指标,例如“相关系数”,“相关系数”越大的个体(变量)越具有相似性。