地震勘探基本知识
- 格式:doc
- 大小:34.50 KB
- 文档页数:5
1有效波与干扰波的区别?分别用什么方法压制?答:A有效波与干扰波在传播方向上有可能不同,可以用组合检波来压制。
B 频道上有差别,可以采用频率滤波来压制,即带通滤波。
C在动校正后剩余时差可能有差别,可以用多次叠加。
D在他们出现的规律上可能有差别,可以用组合方法压制。
2.礁在地震剖面上的基本特征:(1)外形呈丘状或透镜状。
(2)礁体内部反射紊乱,连续性差,或呈无反射的空白。
(3)礁与相邻地层间存在速度差异,礁速度低时,下伏层反射略下凹;礁速度高时,下伏层反射略上凸。
(4)礁体上覆地层形成批覆构造(5)礁与周围沉积间有岩性差异,形成较强波阻抗差,礁面能产生较强反射。
3.火成岩在地震剖面上的特征:(1)外形多不规则状,有筒,丘,蘑菇,线状。
(2)顶为强反射,但连续性差。
(3)有时可见底,有时见不到底。
(4)内部波形杂乱,或无反射,但更多为断续强短。
(5)有时可见火山口反射(6)在水平切片上,火成岩与沉积岩的反射不同,沉积岩反射波形稳定,排列有序;而火成岩体内的波形呈揉皱状或絮状。
(7)火成岩体周边的反射大多没有明显上翘现象4.由炮集地震记录获得偏移剖面的基本步骤(1)对CSP记录进行去噪处理。
(2)抽道集(从CSP中抽出CMP道集)。
(3)静校正。
(4)分析速度。
(5)动校正。
(6)水平叠加。
(7)剩余静校正。
(8)重复4-7。
5.干扰波调查的几种方法:(1)小排列土坑炸药。
(2)直角排列(3)方位观测(4)三分量观测6.地震勘探测线布置基本要求:(1)根据地质任务,整体规则(2)测线要尽量为直线(3)测线足够长能控制构造形态和地质目标(4)测线应沿构造的倾向走(5)测线要通过主要深井。
(6)注意和邻区及早年测线的连接。
7.时间剖面与地质剖面存在哪些差异:(1)由钻井资料获得的地质剖面上的地层分界面与时间剖面上反射波同相轴,在数量上和出现位置常常不是一一对应的;(2)时间剖面纵轴是双程旅行时,地质剖面纵轴是深度,需要用速度将其转换,但速度精度会对其有影响。
第三章地震资料采集方法与技术一.野外工作概述1.陆地石工基本情况介绍试验工作内容:①干扰波调查,了解工区内干扰波类型与特性。
②地震地质条件调查,了解低速带的特点、潜水面的位置、地震界面的存在与否、地震界面的质量如何(是否存在地震标志层)、速度剖面特点等。
③选择激发地震波的最佳条件,如激发岩性、激发药量、激发方式等。
④选择接收和记录地震波的最佳条件,包括最合适的观测系统、组合形式和仪器因素的选择等。
生产工作过程:地震队的组成(1)地震测量:把设计中的测线布置到工作地区,在地面上定出各激发点和接收排列上各检波点的位置(2)地震波的激发陆上地震勘探的震源类型:炸药震源和可控震源。
激发方式:炸药震源的井中激发、土坑等。
激发井深:潜水面以下1-3m,(6-7m)。
(3)地震波的接收实现方式:检波器、排列和地震仪器2.调查干扰波的方法(1)小排列(最常用)3-5m道距、连续观测目的:连续记录、追踪各种规则干扰波,分析研究干扰波的类型和分布规律。
从地震记录中可以得到干扰波的视周期和视速度等基本特征参数(2)直角排列适用于不知道干扰波传播方向的情况Δt1和Δt2的合矢量的方向近似于干扰波的传播方向(3)三分量检波器观测法(4)环境噪声调查信噪比:有效波的振幅/干扰波的振幅(规则)信号的能量/噪声的能量3.各种干扰波的类型和特点(1)规则干扰指具有一定主频和一定视速度的干扰波,如面波、声波、浅层折射波、侧面波等。
面波(地滚波):在地震勘探中也称为地滚波,存在于地表附近,振幅随深度增加呈指数衰减。
其主要特点:①低频:几Hz~20Hz;②频散(Dispersion):速度随频率而变化;③低速:100m/s ~1000m/s,通常为200m/s~500m/s;④质点的振动轨迹为逆时针方向的椭圆。
面波时距曲线是直线,记录呈现“扫帚状”,面波能量的强弱与激发岩性、激发深度以及表层地震地质条件有关。
(能量较强)声波:速度为340m/s左右,比较稳定,频率较高,延续时间较短,呈窄带出现。
地震勘探基本知识一、基本概念1、地震:地壳的震动2、地震波:地壳质点震动向周围传播的形式。
3、地震勘探:用人工的方法(炸药爆炸、可控震源、电火花、空气枪等)使地壳产生震动,利用不同岩石中地震波传播规律不同的特性,探查构造寻找有用矿产的方法。
4、波阻抗:介质传播地震波的能力。
波阻抗等于波速与介质密度的乘积(Z=Vρ)。
5、反射波:地震波在传播过程中遇到不同介质的分界面时,一部分按照光学原理发生反射,即反射波。
6、透射波:地震波在传播过程中遇到不同介质的分界面时,一部分按照光学原理发生透射,继续传播,即透射波。
7、折射波:地震波以邻界角入射到介质分界面时,透射角等于90°,透射波沿界面滑行,引起上层介质震动而传到地表,这种波叫做折射波。
8、观测系统:检波点与激发点之间的位置关系。
9、排列长度:激发点与最远一道检波点之间的距离。
10、偏移距:激发点与最近一道检波点之间的距离。
二维观测系统(六次叠加)三维观测系统11、信噪比:有效波振幅与干扰波振幅的比值。
12、分辨率:两个波可以分辨开的最小距离叫做分辨率。
13、屏蔽:地震波传播到介质分界面后,一部分能量返回形成反射波,一部分能量透过界面继续往下传播,当遇到另一分界面时,一部分返回,另一部分透过界面继续传播。
第二个界面往回返的能量遇到第一个界面时,一部分能量返回下部,另一部分能量透过界面回到地表,地面接收到的第二个界面反射的能量大大降低,我们称这种现象叫作屏蔽。
上部界面的反射系数越大,则接收到的下部界面的能量越小,称屏蔽作用越厉害。
二、地震勘探的阶段划分(一)设计1、收集测区有关的地质、物探及测绘资料。
2、实地踏勘,了解地震地质条件(包括地形、地貌、植被、河流、道路、潜水位、新生界盖层厚度、岩性及结构、勘探目的层的埋藏深度、构造形态和断裂发育程度等等)。
3、对前人的地质工作成果作出客观的评价。
4、针对地质任务确定工作方法及观测系统。
5、在平面图上布置测网,统计工作量。
接收条件received condition:指地震勘探中接收地震波的仪器的工作状态和条件。
广义地说,接收条件包括地震检波器的安置情况、组合个数与方式,以及地震仪的各种因素等。
但通常将接收条件狭义地指地震检波器的安置情况。
地震资料的质量与接收条件有密切关系。
陆地工作中埋置检波器,海洋工作中使检波器处于水面下一定深度,都是为了避免风、浪等影响而改善接收条件。
界面速度interface velocity:指折射波沿折射界面滑行的速度。
界面速度主要反映折射界面以下地层中岩石的物理性质。
由于组成地层的岩石颗粒排列有方向性,通常界面速度大于层速度。
界面速度可通过折射波测得。
加速度检波器accelerometer:即“压电地震检波器”。
激发条件excited condition:地震勘探中将震源种类、能量、周围介质的情况总称为激发条件。
对于炸药震源来说,激发条件一般包括炸药量大小、药包形状,个数,分布方式及埋置岩性和沉放深度等。
对于非炸药震源,激发条件则包括装置的种类、能量、参数选择及安置情况等。
激发条件的选择是否适当,对地震勘探原始资料质量的影响很大。
一般认为,陆地工作中,风化层下的含水可塑性岩层是有利的激发条件,因此往往采用井中爆炸,在海洋工作小,主要是以减小气泡影响作为合适的激发条件。
海洋地震勘探marine seismic survey:是利用勘探船在海洋上进行地震勘探的方法。
其特点是在水中激发,水中接收,激发,接收条件均一;可进行不停船的连续观测。
震源多使用非炸药震源,接收常用压电地震检波器,工作时,将检波器及电缆拖曳于船后一定深度的海水中由于上述特点,使海洋地震勘探具有比陆地地震勘探高得多的生产效率,更需要用数字电子计算机处理资料。
海洋地震勘探中常遇到一些特殊的干扰波,如鸣震和交混回响,以及与海底有关的底波干扰。
海洋地震勘探的原理,使用的仪器,以及处理资料的方法都和陆地地震勘探基本相同。
由于在大陆架地区发现大量的石油和天然气,因此.海洋地震勘探有极为广阔的前景。
绪 论一、石油勘探的主要方法 地质法—岩石露头 物探法—面积覆盖、连续测量、间接 钻井法—一点、直接勘探二、地球物理勘探方法 重力法—岩石密度差异 磁法—岩石磁性差异电法—岩石电性差异 地震勘探—岩石弹性差异(3) 地震勘探: 通过人工方法激发地震波, 研究地震波在地层中传播的情况, 以查明地下的地质构造、地层岩性等, 为寻找油气田或其它勘探目的服务的一种物探方法。
地震勘探具有精度高、作业范围大、布局灵活、成本低等特点, 是最有效的物探方法。
地震波的传播路径: 透射波路径 反射波路径 滑行波路径 (4)地震勘探的几种方法 折射波法 反射波法—主要的地震勘探方法 (基本原理: 回声测距原理)h=1/2vt 透射波法地震勘探的三大环节 野外采集 室内处理 资料解释 (1) 野外采集 按照预先设计的观测系统, 炮点激发、检波器接收、仪器记录, 得到原始地震资料(按时分道)。
数据通常记成SEGB 或SEGD 格式, 班报有电子格式的和手写格式的。
这一部分工作由物探地震小队完成 (2)室内处理 将野外采集的原始地震资料转化为可用于地质解释的地震剖面 包括: 预处理、常规处理和特殊处理三块内容。
这部分工作由资料处理中心完成 (3)资料解释 结合地质、测井、录井、油藏工程等, 进行综合解释。
多由物探研究院、物探公司、地质研究院、采油厂地质所等完成。
井间地震技术可以提供高精度地下成像资料, 能分辨2-5米薄层和小断层, 为描述井间精细构造、薄层砂体分布, 确定储层连通性、剩余油分布等复杂地质问题, 指导调整井的布署和采收率的提高, 提供非常可靠的技术手段 地震勘探期望解决的问题⏹ 1. h=1/2vt, 时间t 不仅包含有地下界面的深度信息, 而且还有炮检距(x )的信息。
如何消除? -----动校正⏹ 2、地表的起伏变化、表层低速带厚度变化等如何消除? ------静校正。
⏹ 3.地下地层的成层性导致地震波传播速度的差异, 如何认识和利用速度及其差异。
地震勘探基本知识
一、基本概念
1、地震:地壳的震动
2、地震波:地壳质点震动向周围传播的形式。
3、地震勘探:用人工的方法(炸药爆炸、可控震源、电火花、空气枪等)使地壳产生震动,利用不同岩石中地震波传播规律不同的特性,探查构造寻找有用矿产的方法。
4、波阻抗:介质传播地震波的能力。
波阻抗等于波速与介质密度的乘积(Z=Vρ)。
5、反射波:地震波在传播过程中遇到不同介质的分界面时,一部分按照光学原理发生反射,即反射波。
6、透射波:地震波在传播过程中遇到不同介质的分界面时,一部分按照光学原理发生透射,继续传播,即透射波。
7、折射波:地震波以邻界角入射到介质分界面时,透射角等于90°,透射波沿界面滑行,引起上层介质震动而传到地表,这种波叫做折射波。
8、观测系统:检波点与激发点之间的位置关系。
9、排列长度:激发点与最远一道检波点之间的距离。
10、偏移距:激发点与最近一道检波点之间的距离。
二维观测系统(六次叠加)
三维观测系统
11、信噪比:有效波振幅与干扰波振幅的比值。
12、分辨率:两个波可以分辨开的最小距离叫做分辨率。
13、屏蔽:地震波传播到介质分界面后,一部分能量返回形成反射波,一部分能量透过界面继续往下传播,当遇到另一分界面时,一部分返回,另一部分透过界面继续传播。
第二个界面往回返的能量遇到第一个界面时,一部分能量返回下部,另一部分能量透过界面回到地表,地面接收到的第二个界面反射的能量大大降低,我们称这种现象叫作屏蔽。
上部界面的反射系数越大,则接收到的下部界面的能量越小,称屏蔽作用越厉害。
二、地震勘探的阶段划分
(一)设计
1、收集测区有关的地质、物探及测绘资料。
2、实地踏勘,了解地震地质条件(包括地形、地貌、植被、河流、道路、潜水位、新生界盖层厚度、岩性及结构、勘探目的层的埋藏深度、构造形态和断裂发育程度等等)。
3、对前人的地质工作成果作出客观的评价。
4、针对地质任务确定工作方法及观测系统。
5、在平面图上布置测网,统计工作量。
6、编写设计文字说明。
7、测线的布置原则:主测线尽量垂直地层走向或主构造走向,并尽量与以往地质或物探勘探线重合。
联络测线原则上与主测线垂直。
(二)资料采集
资料采集是地震勘探的基础工作。
其质量的好坏直接关系到资料处理的顺利与否及完成地质任务的精度。
1、按设计要求安置检波器,铺放电缆。
2、通过试验确定激发因素(爆炸井深、炸药量或可控震源的振动次数、扫描频率、扫描时间、扫描电平等)和接收因素(道距、偏移距、组合个数、组合形式、排列长度、迭加次数等)。
3、采用最佳因素沿测线施工,进行资料采集。
施工中要尽量使测线附近保持安静,减少人为干扰。
4、一条线(或一束线)施工完后,用现场处理系统及时进行处理,以确定采用的技术参数是否合理,成果是否可信,能否完成预定的地质任务。
(三)资料处理
资料处理是将来自地下同一反射点的多个信号进行动、静校正后,迭加在一起,并进行滤波、反褶积、偏移、振幅恢复和提高信噪比,以提供供解释的时间剖面(或数据体)的工作。
资料处理也是地震勘探的关键环节。
其质量好坏将直接关系到提交成果的优劣。
资料处理一般进行预处理、速度分析、静校正、动校正、迭加、DMO 速度分析、DMO迭加、反褶积、滤波、振幅恢复、去噪、偏移等工作。
二维勘探处理成果为单条线的时间剖面,三维勘探处理成果为勘探区的数据体。
不同显示方式的时间剖面
三维数据体
(四)资料解释
地震资料的解释工作是将物探资料变为地质成果的研究过程,集物探知识、地质知识和解释经验于一体,由浅入深、由表及里地不断深入,以使成果更符合于实际。
1、根据测井曲线制作人工合成记录,确定反射波的地质属性。
2、对比:依据反射波的运动学特征和动力学特征,对反射波进行追踪。
3、对主测线、联络测线进行闭合检查。
4、制作等时线图。
5、制作速度分布平面图。
6、进行时深转换和偏移归位,制作勘探目的层的等高线图。
7、制作地震地质剖面图。
8、编写报告文字说明。
三、影响地震勘探精度的因素
(一)目前地震勘探能完成的地质任务
1、二维(为开采方法打基础)
①勘探目的层的埋藏深度和构造形态。
②落差大于10m的断层性质及产状。
条件好的地区,反射波多,产状准确;差的地区,反射波少,品质差,确定的产状不准。
③主采煤层的煤厚变化趋势。
2、三维(为采区布置提供资料)
①同二维,断层可达5m。
②由于三维的偏移归位是计算机实现的全三维归位,故资料较准确。
3、多波勘探再配合磁法、电法等其它方法,可以查明地应力分布情况、富水情况、断层导水情况、采空区及富水情况、火成岩侵入体的空间形态等地质问题(条件具备时)。
(二)影响地震勘探精度的因素
1、地质条件:包括地形、地物、潜水位深浅、第四系厚度及结构、目的层(主采煤层)的厚度和深度、倾角大小、构造复杂程度等。
2、观测系统的合适与否。
3、野外采集
①检波器安置情况
②人为干扰源的警戒情况
③炮井深度(激发层位)
④仪器状况
⑤炸药、雷管的质量或可控震源的振动情况(多台时同步与否)
4、资料处理
①流程和参数正确与否
②滤波挡合适与否
③振幅标定合理与否
原则:处理结果要有较高的信噪比和分辨率
5、资料解释
①解释层位与地质异常对否
②时深转换速度的准确性
③做图方法(归位)合理与否。