精编新版2019概率论与数理统计期末测试版题库200题(含参考答案)
- 格式:doc
- 大小:2.32 MB
- 文档页数:43
2019年概率论与数理统计期末测试复习题200题[含答案]一、选择题1.设)(x Φ为标准正态分布函数,100, ,2, 1, 0A ,1 =⎩⎨⎧=i X i 否则,发生事件且()0.6P A =,10021X X X ,,, 相互独立。
令∑==1001i iX Y ,则由中心极限定理知Y 的分布函数)(y F 近似于(B )。
A. )(y ΦB.Φ C.(60)y Φ- D.60()24y -Φ2.设随机变量X ~N(μ,9),Y ~N(μ,25),记}5{},3{21+≥=-≤=μμY p X P p ,则( B )。
A. p1<p2B. p1=p2C. p1>p2D. p1与p2的关系无法确定3.设随机变量X, Y 相互独立,且均服从[0,1]上的均匀分布,则服从均匀分布的是( B )。
A. X YB. (X, Y )C. X — YD. X + Y4.连续型随机变量X 的密度函数f (x)必满足条件( C )。
A. 0() 1B.C. () 1D. lim ()1x f x f x dx f x +∞-∞→+∞≤≤==⎰在定义域内单调不减5.某切割机在正常工作时,切割得每段金属棒长服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm 。
今从一批产品中随机抽取16段进行测量,计算平均长度为x =10.48cm 。
假设方差不变,问在0.05α=显著性水平下,该切割机工作是否正常? 0.050.050.025((16)=2.12, (15)=2.131, 1.960 )t t U =已知:解: 待检验的假设为 0:H 10.5μ=选择统计量x U =当0H 成立时, U ~ ()0,1N 0.025{||}0.05P U u >= 取拒绝域w={|| 1.960U >}。
2019年概率论与数理统计期末测试复习题200题[含答案]一、选择题1.已知连续型随机变量X 的密度函数为⎪⎩⎪⎨⎧∈=其它 ,0),0(,2)(2a x xx f π求(1)a ; (2)分布函数F (x);(3)P (-0.5 < X < 0.5 )。
解:202(1)axf x dx dx a ππ+∞-∞===⎰⎰222020 ()()0 2 0 ()()()() 1 x xxxx F x f t dt t x x F x f t dt dt x F x f t dt ππππ-∞-∞-∞<==≤<===≥==⎰⎰⎰⎰()当时,当时,当时,220, 0(), 01, x xF x x x πππ<⎧⎪⎪=≤<⎨⎪≥⎪⎩故(3) P (-0.5<X<0.5)=F(0.5)—F(-0.5)=241π2.两个独立随机变量Y X ,,则下列不成立的是( C )。
A.EXEY EXY = B. EY EX Y X E +=+)(C.DXDY DXY = D.DY DX Y X D +=+)(3.设总体X 的数学期望EX =μ,方差DX =σ2,X1,X2,X3是来自总体X 的简单随机样本,则下列μ的估计量中最有效的是( B )123123123123111111A.B. 424333342121C.D. 555662X X X X X X X X X X X X +++++-++4.若事件321,,A A A 两两独立,则下列结论成立的是( B )。
A. 321,,A A A 相互独立B.321,,A A A 两两独立C.)()()()(321321A P A P A P A A A P =D.321,,A A A 相互独立5.设21,X X 是任意两个互相独立的连续型随机变量,它们的概率密度分别为)(1x f 和)(2x f ,分布函数分别为)(1x F 和)(2x F ,则( B )。
2019年概率论与数理统计期末测试复习题200题[含答案]一、选择题1.设某校女生的身高服从正态分布,今从该校某班中随机抽取9名女生,测得数据经计算如下:162.67, 4.20x cm s cm ==。
求该校女生身高方差2σ的置信度为0.95的置信区间。
22220.0250.9750.0250.975((8)17.535, (8) 2.18(9)19.02, (9) 2.7)χχχχ====已知:;解:因为学生身高服从正态分布,所以 222(1)~(1)n S W n χσ-=- 220.0250.975{(8)(8)}0.95P W χχ≤≤=2σ的置信区间为:()()22220.0250.975(1)(1),11n S n S n n χχ⎛⎫-- ⎪ ⎪--⎝⎭ 2σ的置信度0.95的置信区间为 228 4.28 4.2,17.535 2.180⎛⎫⨯⨯ ⎪⎝⎭ 即()8.048,64.7342.若事件321,,A A A 两两独立,则下列结论成立的是( B )。
A.321,,A A A 相互独立 B. 321,,A A A 两两独立 C. )()()()(321321A P A P A P A A A P = D. 321,,A A A 相互独立3.设)(x Φ为标准正态分布函数,, ,2, 1, 0A ,1n i X i =⎩⎨⎧=否则,发生事件且()P A p =,12n X X X ,,,相互独立。
令1n ii Y X ==∑,则由中心极限定理知Y 的分布函数)(y F 近似于( B )。
A. )(y ΦB.Φ C.()y np Φ- D.()(1)y np np p -Φ-4.设随机变量X 的密度函数为f (x),则Y = 7 — 5X 的密度函数为( B )。
2019年概率论与数理统计期末测试复习题200题[含答案]一、选择题1.设随机变量X, Y 相互独立,且均服从[0,1]上的均匀分布,则服从均匀分布的是( B )。
A. X YB. (X, Y )C. X — YD. X + Y2.连续型随机变量X 的密度函数f (x)必满足条件( C )。
A. 0() 1B.C. () 1D. lim ()1x f x f x dx f x +∞-∞→+∞≤≤==⎰在定义域内单调不减3.设系统L 由两个相互独立的子系统L1.L2串联而成,且L1.L2的寿命分别服从参数为)(,βαβα≠的指数分布。
求系统L 的寿命Z 的密度函数。
解:令X.Y 分别为子系统L1.L2的寿命,则系统L 的寿命Z =min (X, Y)。
显然,当z ≤0时,F Z (z)=P (Z ≤z)=P (min (X, Y)≤z)=0; 当z>0时,F Z (z)=P (Z ≤z)=P (min (X, Y)≤z)=1-P (min (X, Y)>z) =1-P (X>z, Y>z)=1-P (X>z)P (Y>z)=dye dx e zy zx ⎰⎰+∞-+∞--βαβα1=ze)(1βα+--。
因此,系统L 的寿命Z 的密度函数为f Z (z)=⎩⎨⎧≤>+-=+-00,0 ,)()()(z z e z F dz dz Z βαβα4.设系统L 由两个相互独立的子系统L1,L2并联而成,且L1.L2的寿命分别服从参数为)(,βαβα≠的指数分布。
求系统L 的寿命Z 的密度函数。
解:令X.Y 分别为子系统L1.L2的寿命,则系统L 的寿命Z =max (X, Y)。
显然,当z ≤0时,F Z (z)=P (Z ≤z)=P (max (X, Y)≤z)=0; 当z>0时,F Z (z)=P (Z ≤z)=P (max (X, Y)≤z) =P (X ≤z, Y ≤z)=P (X ≤z)P (Y ≤z)=dye dx e zy z x ⎰⎰--0βαβα=)1)(1(zz e e βα----。
2019年概率论与数理统计期末测试复习题200题[含答案]一、选择题1.设某校女生的身高服从正态分布,今从该校某班中随机抽取9名女生,测得数据经计算如下:162.67, 4.20x cm s cm ==。
求该校女生身高方差2σ的置信度为0.95的置信区间。
22220.0250.9750.0250.975((8)17.535, (8) 2.18(9)19.02, (9) 2.7)χχχχ====已知:;解:因为学生身高服从正态分布,所以222(1)~(1)n S W n χσ-=-220.0250.975{(8)(8)}0.95P W χχ≤≤=2σ的置信区间为:()()22220.0250.975(1)(1),11n S n S n n χχ⎛⎫-- ⎪ ⎪--⎝⎭ 2σ的置信度0.95的置信区间为 228 4.28 4.2,17.535 2.180⎛⎫⨯⨯ ⎪⎝⎭ 即()8.048,64.7342.设)(x Φ为标准正态分布函数,100,,2, 1, 0A,1 =⎩⎨⎧=i X i 否则,发生事件且()0.9P A =,10021X X X ,,, 相互独立。
令∑==1001i iX Y ,则由中心极限定理知Y 的分布函数)(y F 近似于( B )。
A. )(y Φ B.90()3y -Φ C.(90)y Φ- D.90()9y -Φ3.设21,X X 是任意两个互相独立的连续型随机变量,它们的概率密度分别为)(1x f 和)(2x f ,分布函数分别为)(1x F 和)(2x F ,则( B )。
A. )()(21x f x f +必为密度函数B. )()(21x F x F ⋅必为分布函数C. )()(21x F x F +必为分布函数D. )()(21x f x f ⋅必为密度函数4.已知随机向量(X,Y )的协差矩阵V 为⎪⎪⎭⎫⎝⎛=9664V计算随机向量(X +Y , X -Y )的协差矩阵(课本116页26题) 解:DX=4, DY=9, COV(X,Y)=6 D(X +Y)= DX + DY +2 COV(X,Y)=25 D(X-Y) = DX + DY -2 COV(X,Y)=1 COV (X +Y, X -Y )=DX-DY=-5故(X +Y, X -Y )的协差矩阵⎪⎪⎭⎫ ⎝⎛--155255.设21,A A 两个随机事件相互独立,当21,A A 同时发生时,必有A 发生,则( A )。