【最新】2018-2019学年度高中数学北师大版必修2课下能力提升:(九)Word版含解析
- 格式:doc
- 大小:189.50 KB
- 文档页数:5
课下能力提升5一、选择题1.在某项体育比赛中,七位裁判为一选手打出的分数为:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.92,2 B.92,2.8 C.93,2 D.93,2.82.已知一组数据为-3,5,7,x,11,且这组数据的众数为5,那么数据的中位数是( ) A.7 B.5 C.6 D.113.如图所示,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B,则( )A.x A>x B,s A>s BB.x A<x B,s A>s BC.x A>x B,s A<s BD.x A<x B,s A<s B4.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e,众数为m0,平均数为x,则( )A.m e=m0=x B.m e=m0<x C.m e<m0<x D.m0<m e<x5.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A.57.2 3.6 B.57.2 56.4 C.62.8 63.6 D.62.8 3.6二、填空题6.一个样本按从小到大的顺序排列为10,12,13,x,17,19,21,24,其中位数为16,则x=________.7.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如表所示:则以上两组数据的方差中较小的一个为s2=________.8.(湖北高考)某学员在一次射击测试中射靶10次,命中环数如下:7, 8,7,9,5,4,9,10,7,4 则(1)平均命中环数为________;(2)命中环数的标准差为________.三、解答题9.为了了解市民的环保意识,某校高一(1)班50名学生在6月5日(世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况,有关数据如下表:(1)求这50户居民每天丢弃旧塑料袋的平均数、众数和中位数;(2)求这50户居民每天丢弃旧塑料袋的标准差.10.某校甲班、乙班各有49名学生,两班在一次数学测验中的成绩(满分100分)统计如下表:(1)请你对下面的一段话给予简要分析:甲了85分,在班里算是上游了!”(2)请你根据表中数据,对这两个班的测验情况进行简要分析,并提出教学建议.答 案1. 解析:选B 去掉最高分95和最低分89后,剩余数据的平均数为x =90+90+93+94+935=92,方差为s 2=15×[(92-90)2+(92-90)2+(93-92)2+(94-92)2+(93-92)2]=15×(4+4+1+4+1)=2.8.2. 解析:选B 这组数据的众数为5,则5出现的次数最多,∴x =5,那么这组数据按从小到大排列为-3,5,5,7,11,则中位数为5.3. 解析:选B A 中的数据都不大于B 中的数据,所以x A <x B ,但A 中的数据比B 中的数据波动幅度大,所以s A >s B .4. 解析:选D 易知中位数的值m e =5+62=5.5,众数m 0=5,平均数x =130×(3×2+4×3+5×10+6×6+7×3+8×2+9×2+10×2)≈6,所以m 0<m e <x .5. 解析:选D 设该组数据为x 1,x 2,…,x n ,则1n(x 1+x 2+…+x n )=2.8,1n[(x 1-2.8)2+(x 2-2.8)2+…+(x n -2.8)2]=3.6,所以,所得新数据的平均数为1n [(x 1+60)+(x 2+60)+…+(x n +60)]=1n(x 1+x 2+…+x n )+60=2.8+60=62.8.所得新数据的方差为1n[(x 1+60-62.8)2+(x 2+60-62.8)2+…+(x n +60-62.8)2]=1n[(x 1-2.8)2+(x 2-2.8)2+…+(x n -2.8)2]=3.6.6. 解析:由中位数的定义知x +172=16,∴x =15.答案:157. 解析:计算可得两组数据的平均数均为7, 甲班的方差s 2甲=-2+02+02+-2+025=25; 乙班的方差s 2乙=-2+02+-2+02+-25=65.则两组数据的方差中较小的一个为s 2甲=25.答案:258. 解析:(1)由公式知,平均数为110(7+8+7+9+5+4+9+10+7+4)=7;(2)由公式知,s 2=110(0+1+0+4+4+9+4+9+0+9)=4⇒s =2.答案:(1)7 (2)2 9. 解:(1)平均数x =150×(2×6+3×16+4×15+5×13)=18550=3.7. 众数是3,中位数是4.(2)这50户居民每天丢弃旧塑料袋的方差为s 2=150×[6×(2-3.7)2+16×(3-3.7)2+15×(4-3.7)2+13×(5-3.7)2]=150×48.5=0.97,所以标准差s ≈0.985.10. 解:(1)由中位数可知,85分排在第25名之后,从名次上讲,85分不算是上游.但也不能单以班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得名次来判断学习成绩的好坏,小刚得了85分,说明他对这阶段的学习内容掌握较好.(2)甲班学生成绩的中位数为87分,说明高于或等于87分的学生占一半以上,而平均分为79分,标准差很大,说明低分也多,两极分化严重,建议对学习有困难的同学多给一些帮助;乙班学生成绩的中位数和平均分均为79分,标准差小,说明学生成绩之间差别较小,成绩很差的学生少,但成绩优异的学生也很少,建议采取措施提高优秀率.。
课下能力提升(二十四)一、选择题1.有下列叙述:①在空间直角坐标系中,在x轴上的点的坐标一定可记为(0,b,0);②在空间直角坐标系中,在yOz平面上的点的坐标一定可记为(0,b,c);③在空间直角坐标系中,在z轴上的点的坐标一定可记为(0,0,c);④在空间直角坐标系中,在xOz平面上的点的坐标一定可记为(a,0,c).其中正确叙述的个数是()A.1B.2C.3 D.42.已知点A(-3,1,4),则点A关于原点的对称点的坐标为()A.(1,-3,-4) B.(-4,1,-3)C.(3,-1,-4) D.(4,-1,3)3.在空间直角坐标系中P(2,3,4),Q(-2,3,4)两点的位置关系是()A.关于x轴对称B.关于yOz平面对称C.关于坐标原点对称D.以上都不对4.设z为任一实数,则点(2,2,z)表示的图形是()A.z轴B.与平面xOy平行的一直线C.平面xOyD.与平面xOy垂直的一直线5.已知点A(2,3-μ,-1+v)关于x轴的对称点为A′(λ,7,-6),则λ,μ,v的值为()A.λ=-2,μ=-4,v=-5B.λ=2,μ=-4,v=-5C.λ=2,μ=10,v=8D.λ=2,μ=10,v=7二、填空题6.点A(-5,5,6)关于坐标平面yOz对称的点为A1,则点A1关于坐标平面xOy的对称点A2的坐标为________.7.点A(2,4,6)关于y轴对称的点的坐标为________.8.在空间直角坐标系中,点M(-2,4,-3)在xOz平面上的射影为M′点,则M′关于原点对称的点的坐标是________.三、解答题9.如图,棱长为a 的正方体OABC -D ′A ′B ′C ′中,对角线OB ′与BD ′相交于点Q ,顶点O 为坐标原点,OA 、OC 分别在x 轴、y 轴的正半轴上,试写出点Q 的坐标.10.如右图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是D 1D ,BD 的中点,G 在棱CD 上,且CG =14CD ,H 为C 1G 的中点,试建立适当的直角坐标系,写出点E ,F ,G ,H 的坐标.答案1.解析:选C ①错误,②③④正确.2.解析:选C 空间直角坐标系中一点关于原点对称点的坐标特点是:三个坐标都变为它的相反数.∴A (-3,1,4)关于原点对称点的坐标为(3,-1,-4).3.解析:选B ∵P ,Q 两点对应的三个坐标横坐标互为相反数,∴P ,Q 关于yOz 平面对称.4.解析:选D (2,2,z )表示过点(2,2,0)且与z 轴平行的直线,即与平面xOy 垂直的直线.5.解析:选D 两个点关于x 轴对称,那么这两个点的x 坐标不变,y 坐标与z 坐标均互为相反数,故有λ=2,7=-(3-μ),-6=-(-1+v ),∴λ=2,μ=10,v =7.6.解析:点A (-5,5,6)关于yOz 对称的点A 1坐标为(5,5,6),则点A 1关于坐标平面xOy 的对称点A 2的坐标为(5,5,-6).答案:(5,5,-6)7.解析:关于y 轴对称的点的纵坐标不变,横坐标和竖坐标变成相反数,故A (2,4,6)关于y 轴对称的点的坐标为(-2,4,-6).答案:(-2,4,-6)8.解析:点M 在xOz 上的射影为(-2,0,-3),其关于原点对称的坐标为(2,0,3). 答案:(2,0,3)9.解:因为OB ′与BD ′相交于点Q ,所以Q 点在xOy 平面内的投影应为OB 与AC的交点,所以Q 的坐标为⎝⎛⎭⎫12a ,12a ,z . 同理可知Q 点在xOz 平面内的投影也应为AD ′与OA ′的交点,所以Q 点的坐标为⎝⎛⎭⎫12a ,12a ,12a . 10.解:以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴建立如图所示的空间直角坐标系.∵点E 在z 轴上,且为D 1D 的中点,故点E 坐标为⎝⎛⎭⎫0,0,12. 过F 作FM ⊥AD ,FN ⊥DC ,则|FM |=|FN |=12, 故点F 坐标为⎝⎛⎭⎫12,12,0;点G 在y 轴上,又|GD |=34, 故点G 坐标为⎝⎛⎭⎫0,34,0; 过H 作HK ⊥CG 于点K ,由于H 为C 1G 的中点,故|HK |=12,|CK |=18. ∴|DK |=78.故点H 的坐标为⎝⎛⎭⎫0,78,12.。
北京师大附中2018~2019学年度下学期高中二年级年级期末考试 数学试题AP一、选择题。
1.已知条件p:x >2,条件q:x >0,则p 是q 的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【试题参考答案】A将两个条件相互推导,根据能否推导的情况确定正确选项.【试题解答】由于p q ⇒,q p ¿所以p 是q 的充分不必要条件,故选A. 本小题主要考查充分、必要条件的判断,属于基础题.2.“a b =是“直线y x =与圆22()()1x a y b -+-=相切的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 即不充分也不必要条件【试题参考答案】A根据直线和圆相切的等价条件求出a ,b 的关系,结合充分条件和必要条件的定义进行判断即可.【试题解答】若直线y x =+22()()1x a y b -+-=, 则圆心(),a b到直线0x y -+=得距离1d ==,即a b -+=即a b -+=a b -+=即0a b -=或a b -=-即a b =是“直线y x =与圆22()()1x a y b -+-=相切的充分不必要条件, 故选:A .本题主要考查充分条件和必要条件的判断,结合直线和圆相切的等价条件是解决本题的关键.3.设(),1,a b ∈+∞,则“a b > ”是“log 1a b <”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【试题参考答案】C根据充分条件和必要条件的定义结合对数的运算进行判断即可. 【试题解答】∵a ,b ∈(1,+∞), ∴a >b ⇒log a b <1, log a b <1⇒a >b ,∴a >b 是log a b <1的充分必要条件, 故选:C .本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键.4.设m R ∈且0m ≠,“不等式4+4m m>”成立的一个充分不必要条件是 A. 0m >B. 1m >C. 2m >D. 2m ≥【试题参考答案】C根据基本不等式的性质,结合充分不必要条件的定义进行判断即可. 【试题解答】当m <0时,不等式m +4m>4不成立,当m >0时,m +4m 当且仅当m=4m ,即m=2时,取等号,A.当m=2时,满足m >0,但不等式m +4m >4不成立,不是充分条件, B.当m=2时,满足m >1,但不等式m +4m>4不成立,不是充分条件,C.当m >2时,不等式m +4m>4成立,反之不一定成立,是充分不必要条件,满足条件.D.当m=2时,满足m ≥2,但不等式m +4m>4不成立,不是充分条件,故选:C.本题主要考查充分条件和必要条件的判断,根据基本不等式的性质是解决本题的关键.5.若集合{}{}20,,1,2A m B ==则“1m =”是“{0,1,2}A B =U ”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【试题参考答案】A由题得{0,1,2A B ⋃=}所以1m =±,所以“1m =”是“{}0,1,2A B ⋃=”的 充分不必要条件,选A.6.设m α⊂,α,β是两个不同的平面,则“αβ∥”是“m βP ”的( ). A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分又不必要条件【试题参考答案】A若m α⊂,αβ∥,则m βP ;反之,若m α⊂,m βP ,则αβ∥或α与β相交. 所以“αβ∥”是“m βP ”的充分不必要条件.选A .7.已知(1,1)a x =-,(1,3)b x =+,则2x =是//a b 的 A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件D. 既不充分也不必要条件【试题参考答案】A已知()1,1a x =-,()1,3b x =+。
课下能力提升9一、选择题1.想泡茶喝,当时的情况是:火已经生起了,凉水和茶叶也有了,开水没有,开水壶要洗,茶壶和茶杯要洗,下面给出了四种不同形式的算法过程,你认为最好的一种算法是( )A .洗开水壶,灌水,烧水,在等待水开时,洗茶壶、茶杯、拿茶叶,等水开了后泡茶喝B .洗开水壶,洗茶壶和茶杯,拿茶叶,一切就绪后,灌水,烧水,坐等水开后泡茶喝C .洗开水壶,灌水,烧水,坐等水开,等水开后,再拿茶叶,洗茶壶、茶杯,泡茶喝D .洗开水壶,灌水,烧水,再拿茶叶,坐等水开,洗茶壶、茶杯,泡茶喝3.下列叙述能称为算法的个数为( )①植树需要运苗、挖坑、栽苗、浇水这些步骤.②顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100.③从枣庄乘火车到徐州,从徐州乘飞机到广州.④3x >x +1.⑤求所有能被3整除的正数,即3,6,9,12,….A .2B .3C .4D .54.下列所给问题中:①二分法解方程x 2-3=0(精确到0.01);②解方程⎩⎪⎨⎪⎧ x +y +5=0,x -y +3=0;③求半径为2的球的体积;④判断y =x 2在R 上的单调性.其中可以设计一个算法求解的个数是( )A .1B .2C .3D .45.已知算法:1.输入n ;2.判断n 是否是2,若n =2,则n 满足条件;若n >2,则执行第3步;3.依次检验从2到n -1的整数能不能整除n ,若不能整除n ,满足条件.上述满足条件的数是( )A .质数B .奇数C .偶数D .4的倍数二、填空题6.下列关于算法的说法,正确的个数有________.①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.7.给出下列算法:1.输入x 的值.2.当x >4时,计算y =x +2;否则执行下一步.3.计算y =4-x . 4.输出y . 当输入x =10时,输出y =__________.8.已知直角三角形的两条直角边长分别为a ,b ,写出求斜边c 的算法步骤.1.________________________________________________________________________;2.________________________________________________________________________;3.________________________________________________________________________.三、解答题9.请设计求18的所有正约数的算法.10.已知函数y =⎩⎪⎨⎪⎧ 2x -1 x ≤-1,log 2x +1 -1<x <2,x 2 x ≥2,试设计一个算法,输入x 的值,求对应的函数值.答案1. 解析:选A 解决一个问题可以有多种算法,可以选择其中最优、最简单、步骤尽可能少的算法.选项中的四种算法中都符合题意,但算法A运用了统筹法原理,因此这个算法要比其余的三种算法科学.2. 解析:选C 算法指的是解决一类问题的方法或步骤,选项C只是一个纯数学问题,没有解问题的步骤,不属于算法.3. 解析:选 B 根据算法的含义和特征:①②③都是算法.④⑤不是算法.其中④,3x>x +1不是一个明确的逻辑步骤,不符合逻辑性;⑤的步骤是无穷的,与算法的有穷性矛盾.4. 解析:选C 由算法的特征可知①②③都能设计算法.对于④,当x>0或x<0时,函数y=x2是单调递增或单调递减函数,但当x∈R时,由函数的图像可知在整个定义域R上不是单调函数,因此不能设计算法求解.5. 解析:选A 由质数的定义知,满足条件的是质数.6. 解析:由算法的特征(有限性、确定性、有序性等)可知②③④正确,但解决某一类问题的算法不一定是唯一的,故①错.答案:37. 解析:∵x=10>4,∴计算y=x+2=12.答案:128. 解析:先输入a、b的值,再根据勾股定理算出斜边c的长,最后输出c的结果.答案:输入两直角边长a、b的值计算c=a2+b2输出斜边长c的值9. 解:1.18=2×9;2.18=2×32;3.列出18的所有正约数:1,2,3,32,2×3,2×32.10. 解:算法如下:1.输入x的值.2.当x≤-1时,计算y=2x-1;否则执行第三步.3.当x<2时,计算y=log2(x+1),否则执行第四步.4.计算y=x2.5.输入y.。
一、选择题1.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是()A.平行B.垂直C.相交不垂直D.不确定2.在三棱锥A-BCD中,若AD⊥BC,BD⊥AD,那么必有()A.平面ABD⊥平面ADCB.平面ABD⊥平面ABCC.平面ADC⊥平面BCDD.平面ABC⊥平面BCD3.在正方体ABCD-A1B1C1D1中,与AD1垂直的平面是()A.平面DD1C1CB.平面A1DCB1C.平面A1B1C1D1D.平面A1DB4.设l、m为不同的直线,α为平面,且l⊥α,下列为假命题的是()A.若m⊥α,则m∥lB.若m⊥l,则m∥αC.若m∥α,则m⊥lD.若m∥l,则m⊥α5.如图,在正方形ABCD中,E、F分别为边BC,CD的中点,H是EF的中点,现沿AE、AF,EF把这个正方形折成一个几何体,使B、C、D三点重合于点G,则下列结论中成立的是()A.AG⊥平面EFG B.AH⊥平面EFGC.GF⊥平面AEF D.GH⊥平面AEF二、填空题6.如图,在正方体ABCD-A1B1C1D1中,平面ACD1与平面BB1D1D的位置关系是________.7.如图所示,底面ABCD是矩形.P A⊥平面ABCD,则图中互相垂直的平面共有________对.8.已知点O为三棱锥P-ABC的顶点P在平面ABC内的射影,若P A=PB=PC,则O 为△ABC的________心;若P A⊥BC,PB⊥AC,则O为△ABC的________心;若P到三边AB,BC,CA的距离都相等且点O在△ABC的内部,则O为△ABC的__________心.三、解答题9.如图,四边形ABCD是边长为a的菱形,PC⊥平面ABCD,E是P A的中点,求证:平面BDE⊥平面ABCD.10.(北京高考)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.答案1. 解析:选B由线面垂直的判定定理知直线垂直于三角形所在的平面.2. 解析:选C由AD⊥BC,BD⊥AD,BC∩BD=B⇒AD⊥平面BCD,AD 平面ADC,∴平面ADC⊥平面BCD.3. 解析:选B如图,连接A1D、B1C,由ABCD-A1B1C1D1为正方体可知,AD1⊥A1B1,AD1⊥A1D.故AD1⊥平面A1DCB1.4. 解析:选B A中,若l⊥α,m⊥α,则m∥l,所以A正确;B中,若l⊥α,m⊥l,则m∥α或mα,所以B错误;C中,若l⊥α,m∥α,则m⊥l,所以C正确;若l⊥α,m ∥l,则m⊥α,所以D正确.5. 解析:选A∵AG⊥GF,AG⊥GE,GF∩GE=G,∴AG⊥平面EFG.6. 解析:∵ABCD是正方形,∴AC⊥BD.又∵D1D⊥平面ABCD,AC 平面ABCD,∴D1D⊥AC.∵D1D∩DB=D,∴AC⊥平面BB1D1D.∵AC 平面ACD1,∴平面ACD1⊥平面BB1D1D.答案:垂直7. 解析:图中互相垂直的面共有6对,即平面P AB⊥平面ABCD,平面P AC⊥平面ABCD,平面P AD⊥平面ABCD,平面P AB⊥平面P AD,平面P AB⊥平面PBC,平面PCD⊥平面P AD.答案:68. 解析:如图,由P A=PB=PC,∴OA=OB=OC,O是△ABC的外心;若P A⊥BC,又PO⊥面ABC,∴BC⊥PO.∴BC⊥面P AO.∴BC⊥AO.同理AC⊥OB.∴O是△ABC的垂心;若P到AB,BC边的距离相等,则易知O到AB,BC边的距离也相等,从而可判定O 是△ABC的内心.答案:外垂内9. 证明:设AC∩BD=O,连接OE.如图.因为O为AC中点,E为P A的中点,所以EO是△P AC的中位线,EO∥PC.因为PC⊥平面ABCD,所以EO⊥平面ABCD.又因为EO 平面BDE,所以平面BDE⊥平面ABCD.10. 解:(1)证明:因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,所以DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD.所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,所以A1F⊥平面BCDE.所以A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A1C⊥DP.所以A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.。
一、选择题1.如果直线l ,m 与平面α,β,γ满足:l =β∩γ,l ∥α,mα和m ⊥γ,那么必有( )A .α⊥γ且l ⊥mB .α⊥γ且m ∥βC .m ∥β且l ⊥mD .α∥β且α⊥γ2.(浙江高考)设m ,n 是两条不同的直线,α,β是两个不同的平面( )A .若m ∥α,n ∥α,则m ∥nB .若m ∥α,m ∥β,则α∥βC .若m ∥n ,m ⊥α,则n ⊥αD .若m ∥α,α⊥β,则m ⊥β3.在矩形ABCD 中,AB =3,BC =4,PA ⊥平面ABCD ,且PA =1,PE ⊥DE ,则PE 的长为( ) A.292 B.135 C.175 D.11954.设平面α⊥平面β,且α∩β=l ,直线a α,直线b β,且a 不与l 垂直,b 不与l 垂直,那么a 与b ( )A .可能垂直,不可能平行B .可能平行,不可能垂直C .可能垂直,也可能平行D .不可能垂直,也不可能平行5.如图所示,四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,构成四面体ABCD ,则在四面体ABCD 中,下列命题正确的是( )A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDCC .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC二、填空题6.α,β是两个不同的平面,m ,n 是平面α及β之外的两条不同直线,给出四个论断:①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:________.。
一、选择题1.用一个平面去截一个三棱锥,截面形状是()A.四边形B.三角形C.三角形或四边形D.不可能为四边形2.若正棱锥的底面边长和侧棱长相等,则该棱锥一定不是()A.三棱锥B.四棱锥C.五棱锥D.六棱锥3.在四棱锥的四个侧面中,直角三角形最多可有()A.1个B.2个C.3个D.4个4.观察图中四个几何体,其中判断正确的是()A.(1)是棱台B.(2)是圆台C.(3)是棱锥D.(4)不是棱柱5.有一个正三棱锥和一个正四棱锥,它们所有的棱长都相等,把这个正三棱锥的一个侧面重合在正四棱锥的一个侧面上,则所得到的这个组合体是()A.底面为平行四边形的四棱柱B.五棱锥C.无平行平面的六面体D.斜三棱柱二、填空题6.在正方体上任意选择四个顶点,它们可能是如下各种几何形体的四个顶点,这些几何形体是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面是等腰直角三角形,有一个面是等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.7.下列四个命题:(1)棱柱的两底面是全等的正多边形;(2)有一个侧面是矩形的棱柱是直棱柱;(3)有两个侧面是矩形的棱柱是直棱柱;(4)四棱柱的四条体对角线两两相等,则该四棱柱为直四棱柱.其中正确的序号是________.8.用铁丝作一个三角形,在三个顶点分别固定一根筷子,把三根筷子的另一端也可用铁丝连成一个三角形,从而获得一个几何模型,如果筷子长度相等,那么这个几何体可能是____________.三、解答题9.指出如图所示图形是由哪些简单几何体构成.10.画一个三棱台,再把它分成:(1)一个三棱柱和另一个多面体;(2)三个三棱锥,并用字母表示.答案1. 解析:选C如果截面截三棱锥的三条棱,则截面形状为三角形(如图①),如果截面截三棱锥的四条棱则截面为四边形(如图②).2. 解析:选D解答本题要看所给的四种棱锥中能否使所有的棱长都相等.3. 解析:选D如图所示,在长方体ABCD-A1B1C1D1中,取四棱锥A1-ABCD,则此四棱锥的四个侧面都是直角三角形.4. 解析:选C图(1)不是由棱锥截来的,所以(1)不是棱台;图(2)上下两个面不平行,所以(2)不是圆台;图(4)前后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以(4)是棱柱;很明显(3)是棱锥.5. 解析:选D如图,正三棱锥A-BEF和正四棱锥B-CDEF的一个侧面重合后,面BCD和面AEF平行,其余各面都是四边形,故该组合体是斜三棱柱.6. 解析:如图所示,①显然可能;②不可能;③如四面体A′AB′D′满足条件;④如四面体A′BC′D满足条件;⑤如四面体A′ABC满足条件.答案:①③④⑤7. 解析:(1)棱柱的两底面全等,但不一定是正多边形;(2),(3)都不能保证侧棱与底面垂直;(4)易知对角面是长方形,侧棱与底面垂直,正确.答案:(4)8. 解析:在该模型中已知一面为三角形,则根据筷子的位置情况,判断即可.答案:三棱柱或三棱台9. 解:分割原图,使它们每一部分都是简单几何体.(1)是一个三棱柱和一个四棱柱组成的几何体.(2)是一个圆锥和一个四棱柱组合而成的几何体.10. 解:画三棱台一定要利用三棱锥.(1)如图①所示,三棱柱是棱柱A′B′C′-AB″C″.(2)如图②所示,三个三棱锥分别是A′-ABC,B′-A′BC,C′-A′B′C.。
一、选择题1.已知b是平面α外的一条直线,下列条件中,可得出b∥α的是()A.b与α内的一条直线不相交B.b与α内的两条直线不相交C.b与α内的无数条直线不相交D.b与α内的所有直线不相交2.空间四边形ABCD中,E,F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶3,则对角线AC和平面DEF的关系是()A.平行B.相交C.在平面内D.平行或相交3.如图是正方体的平面展开图,则在这个正方体中,下列判断正确的是()A.平面BME∥平面ACNB.AF∥CNC.BM∥平面EFDD.BE与AN相交4.已知m,n表示两条直线,α,β,γ表示平面,下列结论中正确的个数是()①若α∩γ=m,β∩γ=n,m∥n,则α∥β;②若m,n相交且都在α,β外,且m∥α,m∥β,n∥α,n∥β,则α∥β;③若m∥α,m∥β,则α∥β;④若m∥α,n∥β,且m∥n,则α∥βA.1 B.2C.3 D.45.在正方体ABCD-A1B1C1D1中,M是棱A1D1上的动点,则直线MD与平面A1ACC1的位置关系是()A.平行B.相交C.在平面内D.相交或平行二、填空题6.点E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点,则空间四边形的六条棱中与平面EFGH平行的条数是________.7.三棱锥S-ABC中,G为△ABC的重心,E在棱SA上,且AE=2ES,则EG与平面SBC的关系为________.8.如图,在正方体ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面B1BDD1.三、解答题9.已知:△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,沿DE将△ADE 折起,使A到A′的位置,M是A′B的中点,求证:ME∥平面A′CD.10.如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,DC 和SC的中点.求证:(1)EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.答案1. 解析:选D若b与α内的所有直线不相交,即b与α无公共点,故b∥α.2. 解析:选A如图所示,在平面ABC内,因为AE∶EB=CF∶FB=1∶3,所以AC∥EF.又因为AC 平面DEF,EF 平面DEF,所以AC∥平面DEF.3. 解析:选A作出如图所示的正方体.易知AN∥BM,AC∥EM,且AN∩AC=A,所以平面ACN∥平面BEM.4. 解析:选A①仅满足mα,nβ,m∥n,不能得出α∥β,不正确;②设m,n 确定平面为γ,则有α∥γ,β∥γ,从而α∥β,正确;③④均不满足两个平面平行的条件,故③④均不正确.5. 解析:选D当M与D 1重合时,∵DD1∥A1A,DD1面AA1C1C,AA1面AA1C1C,∴MD∥面AA1C1C.当M不与D1重合时,DM与AA1相交,也即DM与面AA1C1C相交.6. 解析:由线面平行的判定定理知:BD∥平面EFGH,AC∥平面EFGH.答案:27. 解析:如图,取BC中点F,连SF.∵G为△ABC的重心,∴A,G,F共线且AG=2GF.又∵AE=2ES,∴EG∥SF.又SF 平面SBC,EG平面SBC,∴EG∥平面SBC.答案:EG∥平面SBC8. 解析:∵HN∥BD,HF∥DD1,HN∩HF=H,BD∩DD1=D,∴平面NHF∥平面B1BDD1,故线段FH上任意点M与N连接,有MN∥平面B1BDD1.答案:M∈线段FH。
北师大版高中数学必修二全册同步习题含解析目录第1章立体几何初步 1.1.1习题第1章立体几何初步 1.1.2习题第1章立体几何初步 1.2习题第1章立体几何初步 1.3.1习题第1章立体几何初步 1.3.2习题第1章立体几何初步 1.4.1习题第1章立体几何初步 1.4.2习题第1章立体几何初步 1.5.1.1习题第1章立体几何初步 1.5.1.2习题第1章立体几何初步 1.5.2习题第1章立体几何初步 1.6.1.1习题第1章立体几何初步 1.6.1.2习题第1章立体几何初步 1.6.2习题第1章立体几何初步 1.7.1习题第1章立体几何初步 1.7.2习题第1章立体几何初步 1.7.3习题第1章立体几何初步习题课习题第1章立体几何初步检测习题第2章解析几何初步 2.1.1习题第2章解析几何初步 2.1.2.1习题第2章解析几何初步 2.1.2.2习题第2章解析几何初步 2.1.3习题第2章解析几何初步 2.1.4习题第2章解析几何初步 2.1.5.1习题第2章解析几何初步 2.1.5.2习题第2章解析几何初步 2.2.1习题第2章解析几何初步 2.2.2习题第2章解析几何初步 2.2.3.1习题第2章解析几何初步 2.2.3.2习题第2章解析几何初步 2.3.1-2.3.2习题第2章解析几何初步 2.3.3习题第2章解析几何初步检测习题模块综合检测习题北师大版2018-2019学年高中数学必修2习题01第一章立体几何初步§1简单几何体1.1简单旋转体1.下列说法正确的是()A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心答案:D2.下面左边的几何体是由选项中的哪个图形旋转得到的()解析:选项B中的图形旋转后为两个共底面的圆锥;选项C中的图形旋转后为一个圆柱与一个圆锥的组合体;选项D中的图形旋转后为两个圆锥与一个圆柱的组合体.答案:A3.用一个平面去截一个几何体,得到的截面一定是圆面,则这个几何体是()A.圆锥B.圆柱C.球D.圆台答案:C4.AB为圆柱下底面内任一不过圆心的弦,过AB和上底面圆心作圆柱的一截面,则这个截面是()A.三角形B.矩形C.梯形D.以上都不对解析:如图所示,由于圆柱的上下底面相互平行,故过AB和上底面圆心作圆柱的一截面与上底面的交线CD 必过上底面圆心,且CD∥AB,在圆柱的侧面上,连接A,C(或B,D)两点的线是曲线,不可能是直线.故这个截面是有两条边平行、另两边是曲线的曲边四边形.故选D.答案:D5.以钝角三角形的较短边所在的直线为轴,其他两边旋转一周所得的几何体是()A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥解析:如图所示.旋转一周后其他两边形成的几何体为在圆锥AO的底部挖去一个同底的圆锥BO.答案:D6.点O1为圆锥高上靠近顶点的一个三等分点,过O1与底面平行的截面面积是底面面积的()A.13B.23C.14D.19解析:如图所示,由题意知SO1∶SO=1∶3,∴O1B∶OA=1∶3,∴S☉O1∶S☉O=1∶9,故选D.答案:D7.下列说法中错误的是.①过圆锥顶点的截面是等腰三角形;②过圆台上底面中心的截面是等腰梯形;③圆柱的轴截面是过母线的截面中面积最大的一个.答案:②8.若过轴的截面是直角三角形的圆锥的底面半径为r,则其轴截面的面积为.解析:由圆锥的结构特征,可知若过轴的截面为直角三角形,则为等腰直角三角形,其斜边上的高为r,所以S=12×2r2=r2.答案:r29.已知圆锥的母线与旋转轴所成的角为30°,母线的长为2,则其底面面积为.解析:如图所示,过圆锥的旋转轴作截面ABC,设圆锥的底面半径为r,底面圆心为O.∵△ABC为等腰三角形,∴△ABO为直角三角形.又∠BAO=30°,∴BO=r=1AB=2.∴底面圆O的面积为S=πr2=π2.答案:π10.把一个圆锥截成圆台,已知圆台的上、下底面的半径比是1∶4,母线长是10 cm,求这个圆锥的母线长.分析:处理有关旋转体的问题时,一般要作出其过轴的截面,在这个截面图形中去寻找各元素之间的关系.解:设圆锥的母线长为y cm,圆台上、下底面的半径分别为x cm,4x cm.作圆锥过轴的截面如图所示.在Rt△SOA中,O'A'∥OA,则SA'SA =O'A'OA,即y-10y =x4x,解得y=403.故圆锥的母线长为40cm.11.圆锥的底面半径为r,母线长是底面半径的3倍,在底面圆周上有一点A,求一个动点P自点A出发在侧面上绕一周回到点A的最短路程.解:沿圆锥的母线SA将侧面展开,如图所示.则线段AA1就是所求的最短路程.∵弧A1A的长为2πr,SA=3r,设弧A1A所对的圆心角为α,∴απ·3r=2πr,∴α=120°.∴AA1=SA·cos30°×2=3r×3×2=33r,即所求最短路程是33r.1.2简单多面体1.关于棱柱,下列说法正确的是()A.只有两个面平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,侧棱也互相平行解析:正方体可以有六个面平行,故选项A错误;长方体并不是所有的棱都相等,故选项B错误;三棱柱的底面是三角形,故选项C错误;由棱柱的概念知,两底面平行,侧棱也互相平行,故选项D正确.答案:D2.一个正棱锥的底面边长与侧棱长相等,则该棱锥一定不是()A.正三棱锥B.正四棱锥C.正五棱锥D.正六棱锥解析:由于正六边形的中心到顶点的距离与边长都相等,故正六棱锥的侧棱长必大于底面边长.答案:D3.棱台不一定具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点解析:由棱台的定义可知,棱台是用平行于棱锥底面的平面去截棱锥而得到的,所以A,B,D选项都成立,只有选项C不一定成立.答案:C4.下列图形中,不是三棱柱的展开图的是()解析:根据三棱柱的结构特征知,A,B,D中的展开图都可还原为三棱柱,但是C中展开图还原后的几何体没有下底面,故不是三棱柱的展开图.答案:C5.下列说法正确的个数为()①存在斜四棱柱,其底面为正方形;②存在棱锥,其所有面均为直角三角形;③任意的圆锥都存在两条母线互相垂直;④矩形绕任意一条直线旋转都可以形成圆柱.A.1B.2C.3D.4解析:①存在斜四棱柱,其底面为正方形,正确.②正确.如图所示.③不正确,圆锥轴截面的顶角小于90°时就不存在.④不正确,矩形绕其对角线所在直线旋转,不能围成圆柱.故答案为B.答案:B6.用一个平行于棱锥底面的平面截这个棱锥,截得的棱台上、下底面的面积之比为1∶4,截去的棱锥的高是3 cm,则棱台的高是()A.12 cmB.9 cmC.6 cmD.3 cm解析:棱台的上、下底面的面积之比为1∶4,则截去的棱锥的高与原棱锥的高的比为1∶2,棱台的高是3cm.答案:D7.有下列四个结论:①各侧面是全等的等腰三角形的四棱锥是正四棱锥;②底面是正多边形的棱锥是正棱锥;③三棱锥的所有面可能都是直角三角形;④四棱锥中侧面最多有四个直角三角形.其中正确的有(填正确结论的序号).答案:③④8.如图所示,将装有水的长方体水槽固定底面一边后将水槽倾斜一个小角度,则倾斜后水槽中的水形成的几何体的形状是.解析:如图所示,假设以AB边固定进行倾斜,则几何体BB2C2C-AA2D2D一定为棱柱.答案:棱柱9.在侧棱长为23的正三棱锥P−ABC中,∠APB=40°,E,F分别是PB,PC上的点,过点A,E,F作截面AEF,则△AEF周长的最小值是.解析:将正三棱锥的三个侧面展开,如图所示.则当E,F为AA1与PB,PC的交点时,△AEF的周长最小,最小值为2AP·cos30°=2×23×3=6.答案:610.把右图中的三棱台ABC-A1B1C1分成三个三棱锥.解:如图所示,分别连接A1B,A1C,BC1,则将三棱台分成了三个三棱锥,即三棱锥A-A1BC,B1-A1BC1,C-A1BC1.(本题答案不唯一)11.试从正方体ABCD-A1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥.(2)四个面都是等边三角形的三棱锥.(3)三棱柱.解:(1)如图所示,三棱锥A1-AB1D1(答案不唯一).(2)如图所示,三棱锥B1-ACD1(答案不唯一).(3)如图所示,三棱柱A1B1D1-ABD(答案不唯一).★12.如图所示,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上的一点,且由点P沿棱柱侧面经过棱CC1到M的最短路线的长为设这条最短路线与CC1的交点为N.求:(1)该三棱柱的侧面展开图的对角线的长;(2)求PC和NC的长.解:(1)正三棱柱ABC-A1B1C1的侧面展开图是一个长为9,宽为4的矩形,其对角线长为92+42=97.(2)如图所示,将侧面BB1C1C绕棱CC1旋转120°使其与侧面AA1C1C在同一平面上,则点P旋转到点P1的位置,连接MP1交CC1于点N,则MP1的长等于由点P沿棱柱侧面经过棱CC1到点M的最短路线的长.设PC=x,则P1C=x.在Rt△MAP1中,由勾股定理,得(3+x)2+22=29,解得x=2,所以PC=P1C=2,又NCMA =P1CP1A=25,所以NC=45.§2直观图1.关于用斜二测画法所得的直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形解析:根据斜二测画法的规则知,正方形的直观图为平行四边形.答案:B2.水平放置的△ABC,有一条边在水平线上,它的斜二测直观图是正三角形A'B'C',则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形解析:根据斜二测画法的规则,可知△ABC中有一个角是钝角,所以△ABC是钝角三角形.答案:C3.如图所示为一平面图形的直观图,则此平面图形可能是()答案:C4.对于一条边在x轴上的三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的()A.2倍B.2C.2D.1解析:由于平行于y轴的线段其平行性不变,长度变为原来的一半,又直观图中∠x'O'y'=45°,设原三角形的面积为S,其直观图的面积为S',则S'=1×2S=2S.答案:B5.一个水平放置的三角形的直观图是等腰直角三角形A'B'O',如图所示,若O'B'=1,那么原△ABO的面积是()A.12B.22C.2D.22解析:由斜二测画法,可知原三角形为直角三角形,且∠AOB=90°,OB=1,OA=2O'A'=22,∴S△AOB=12×1×22= 2.故选C.答案:C6.已知△A'B'C'为水平放置的△ABC的直观图,如图所示,则在△ABC的三边及中线AD中,最长的线段是()A.ABB.ADC.BCD.AC解析:由斜二测画法,可知原图形为直角三角形.AC为斜边,D为BC的中点,故AC>AD,故最长线段为AC.答案:D7.一个平面图形的斜二测直观图是腰长为2的等腰直角三角形,如图,则其平面图形的面积为.答案:48.已知正三角形ABC的边长为a,则水平放置的△ABC的直观图△A'B'C'的面积为.解析:图①、图②分别为实际图形和直观图.由图可知A'B'=AB=a,O'C'=1OC=3a,在图②中作C'D'⊥A'B'于点D',则C'D'=2O′C′=6a.所以S△A'B'C'=12A′B′·C'D'=12×a×68a=616a2.答案:616a29.在等腰梯形ABCD中,上底边CD=1,AD=CB=2,下底边AB=3,按平行于上、下底边取x轴,则直观图A′B′C′D′的面积为.解析:等腰梯形ABCD的高为1,且直观图A'B'C'D'仍为梯形,其高为1sin45°=2,故面积为1×(1+3)×2= 2.答案:2210.画出如图所示放置的直角三角形的直观图.解:画法:(1)画x'轴和y'轴,使∠x'O'y'=45°(如图②所示);(2)在原图中作BD⊥x轴,垂足为D(如图①所示);(3)在x'轴上截取O'A'=OA,O'D'=OD,在y'轴上截取O'C'=12OC,过D'作B'D'∥y'轴,使D'B'=1BD;(4)连线成图(擦去辅助线)(如图③所示).11.用斜二测画法得到一水平放置的Rt△ABC,AC=1,∠ABC=30°,如图所示,试求原三角形的面积.解:如图所示,作AD⊥BC于点D,令x'轴与y'轴的交点为E,则DE=AD,在Rt△ABC中,由∠ABC=30°,AC=1,可知BC=2,AB= 3.由AD⊥BC,AD=DE,可知AD=32,AE=62,由斜二测画法可知,原三角形A'B'C'中,B'C'=BC=2,A'E'=2AE=6,且A'E'⊥B'C',所以S△A'B'C'=1B′C′·A'E'=1×2×6= 6.★12.画水平放置的圆锥的直观图.分析用斜二测画法画水平放置的圆锥的直观图,由于圆锥底面可以看作是水平放置的,因此,只需先画轴,再画底面和高即可.解:(1)画轴,如图所示,画x轴、y轴、z轴,使∠xOy=45°,∠xOz=90°;(2)画圆锥的底面,画出底面圆的直观图,与x轴交于A,B两点;(3)画圆锥的顶点,在Oz上截取点P,使得PO等于圆锥的高;(4)连线成图,连接P A,PB,并加以整理(擦去辅助线,将被遮挡的部分改为虚线),得圆锥的直观图.§3三视图3.1简单组合体的三视图1.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()解析:截去的平面在俯视图中看不到,故用虚线,因此选B.答案:B2.下列各几何体的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④解析:①中正方体的三视图均相同;②中圆锥的主视图和左视图相同;③中三棱台的三视图各不相同;④中正四棱锥的主视图和左视图相同.答案:D3.某几何体的主视图和左视图均如图所示,则该几何体的俯视图不可能是()解析:D选项的主视图为,故不可能是D选项.答案:D4.如图所示,若△A'B'C'为正三角形,与底面不平行,且CC'>BB'>AA',则多面体的主视图为()解析:因为△A'B'C'为正三角形,面A'B'BA向前,所以主视图不可能是A,B,C三个选项,只能是D.答案:D5.“牟台方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图所示,图中四边形是为体现其直观性所作的辅助线.当其主视图和左视图完全相同时,它的俯视图可能是()答案:B6.如图所示,画出四面体AB1CD1三视图中的主视图,若以面AA1D1D为投影面,则得到的主视图为()解析:显然AB1,AC,B1D1,CD1分别投影得到主视图的外轮廓,B1C为可见实线,AD1为不可见虚线.故A正确.答案:A★7.如图所示,在正方体ABCD-A1B1C1D1中,E为棱BB1的中点,若用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()设过点A,E,C1的截面与棱DD1相交于点F,且F是棱DD1的中点,该正方体截去上半部分后,剩余几何体如图所示,则它的左视图应选C.答案:C8.如图所示,图①②③是图④表示的几何体的三视图,其中图①是,图②是,图③是(填写视图名称).解析:由三视图可知,①为主视图,②为左视图,③为俯视图.答案:主视图左视图俯视图9.如图(a)所示,在正方体ABCD-A1B1C1D1中,P为正方体的中心,则△P AC在该正方体各个面上的射影可能是图(b)中的(把可能的序号都填上).图(a)图(b)解析:要考虑△P AC在该正方体各个面上的射影,在上、下两个面上的射影是①,在前后左右四个面上的射影是④.答案:①④10.(1)画出如图①所示组合体的三视图;(2)图②所示的是一个零件的直观图,试画出这个几何体的三视图.图①图②解(1)该组合体是由一个四棱柱和一个圆锥拼接而成,其三视图如图所示.(2)作出三视图如图所示.★11.如图是根据某一种型号的滚筒洗衣机抽象出来的几何体,数据如图所示(单位:cm).试画出它的三视图.解这个几何体是由一个长方体挖去一个圆柱体构成的,三视图如图所示.3.2由三视图还原成实物图1.若一个几何体的主视图和左视图都是等腰梯形,俯视图是两个同心圆,则这个几何体可能是()A.圆柱B.圆台C.圆锥D.棱台答案:B2.某几何体的三视图如图所示,则该几何体是()A.棱台B.棱柱C.棱锥D.以上均不对解析:由相似比,可知几何体的侧棱相交于一点.答案:A3.如图所示是底面为正方形、一条侧棱垂直于底面的四棱锥的三视图,则该四棱锥的直观图是下列各图中的()解析:由俯视图排除B,C选项;由主视图、左视图可排除A选项,故选D.答案:D4.某几何体的三视图如图所示,则这个几何体是()A.三棱锥B.四棱锥C.四棱台D.三棱台解析:因为主视图和左视图为三角形,可知几何体为锥体.又俯视图为四边形,所以该几何体为四棱锥,故选B.答案:B5.如图所示,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析:由题知,该几何体的三视图为一个三角形,两个四边形,经分析可知该几何体为三棱柱,故选B.答案:B6.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4解析:由三视图画出直观图如图所示,判断这个几何体是底面边长为6,8,10的直角三角形,高为12的躺下的直=2,这就是做成的最大球的半径.三棱柱,直角三角形的内切圆的半径为r=6+8-102答案:B7.把边长为2的正方形ABCD沿对角线BD折起,连接AC,得到三棱锥C-ABD,其主视图、俯视图均为全等的等腰直角三角形(如图所示),其左视图的面积为.解析:如图所示,根据两个视图可以推知折起后∠CEA=90°,其侧视图是一个两直角边长为1的等腰直角三.角形,所以左视图的面积为12答案:18.用n个体积为1的正方体搭成一个几何体,其主视图、左视图都是如图所示的图形,则n的最大值与最小值之差是.解析:由主视图、左视图可知,正方体个数最少时,底层有3个小正方体,上面有2个,共5个;个数最多时,底层有9个小正方体,上面有2个,共11个.故n的最大值与最小值之差是6.答案:69.下图是一个几何体的三视图,想象该几何体的几何结构特征,画出该几何体的形状.解由于俯视图中有一个圆和一个四边形,则该几何体是由旋转体和多面体构成的组合体,结合左视图和主视图,可知该几何体是由上面一个圆柱、下面一个四棱柱拼接成的组合体.该几何体的形状如图所示.★10.已知几何体的三视图如图所示,用斜二测画法画出它的直观图.解由三视图可知其几何体是底面边长为2,高为3的正六棱锥,其直观图如图所示.§4空间图形的基本关系与公理第1课时平面性质1.两个平面重合的条件是()A.有四个公共点B.有无数个公共点C.有一条公共直线D.有两条相交公共直线解析:由两条相交直线确定一个平面知D选项正确.答案:D2.与“直线l上两点A,B在平面α内”含义不同的是()A.l⫋αB.直线l在平面α内C.直线l上只有这两个点在平面α内D.直线l上所有的点都在平面α内答案:C3.有下列说法:①梯形的四个顶点在同一平面内;②三条平行直线必共面;③有三个公共点的两个平面必重合.其中正确的个数是()A.0B.1C.2D.3解析:梯形是一个平面图形,所以其四个顶点在同一个平面内,故①正确;两条平行直线确定1个平面,三条平行直线确定1个或3个平面,故②错误;三个公共点可以同在两个相交平面的交线上,故③错误.答案:B4.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是()①P∈a,P∈α⇒a⫋α;②a∩b=P,b⫋β⇒a⫋β;③a∥b,a⫋α,P∈b,P∈α⇒b⫋α;④α∩β=b,P∈α,P∈β⇒P∈b.A.①②B.②③C.①④D.③④答案:D5.三棱台ABC-A'B'C'的一条侧棱AA'所在直线与平面BCC'B'之间的关系是()A.相交B.平行C.直线在平面内D.平行或直线在平面内解析:棱台就是棱锥被一个平行于底面的平面截去一个棱锥得到的,所以延长棱台各侧棱可以恢复成棱锥的形状,由此可知三棱台的一条侧棱所在直线与其对面所在的平面相交.答案:A6.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,且C∉l,则平面ABC与平面β的交线是()A.直线ACB.直线BCC.直线ABD.直线CD解析:由题意知,平面ABC与平面β有公共点C,根据公理3,这两平面必定相交,有且只有一条经过C的交线,由于两点确定一条直线,所以只要再找到两平面的另一个公共点即可.显然点D在直线AB上,从而它在平面ABC内,而点D又在直线l上,所以它又在平面β内,所以点D也是平面ABC与平面β的公共点.因此平面ABC 与平面β的交线是直线CD.答案:D7.已知点P在平面α外,点A,B,C在平面α内且不共线,A',B',C'分别在P A,PB,PC上,若A'B',B'C',A'C'与平面α分别交于D,E,F三点,则D,E,F三点()A.成钝角三角形B.成锐角三角形C.成直角三角形D.在一条直线上解析:本题考查三点关系,根据两平面公共点在其交线上,知D,E,F三点共线,故选D.答案:D8.在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么,正方体的过P,Q,R的截面图形是()A.三角形B.四边形C.五边形D.六边形解析:如图所示,作GR∥PQ交C1D1于G,延长QP与CB延长线交于M,连接MR交BB1于E,连接PE.同理延长PQ交CD延长线于点N,连接NG交DD1于F,连接QF.所以截面PQFGRE为六边形.故选D.答案:D9.四条线段首尾相接得到一个四边形,当且仅当它的两条对角线时,能得到一个平面图形.解析:由公理1,2知当两条对角线相交时为平面图形,当两条对角线不共面时为空间四边形.答案:相交10.一个平面内不共线的三点到另一个平面的距离相等且不为零,则这两个平面的位置关系是.解析:当三点在另一个平面同侧时,这两个平面平行,当三点不在另一个平面同侧时,这两个平面相交.答案:平行或相交11.过已知直线a外的一点P,与直线a上的四个点A,B,C,D分别画四条直线,求证:这四条直线在同一平面内.证明:如图所示,因为点P在直线a外,所以过直线a及点P可作一平面α,因为A,B,C,D均在a上,所以A,B,C,D均在α内,所以直线P A,PB,PC,PD上各有两个点在α内,由公理2可知,直线P A,PB,PC,PD均在平面α内,故这四条直线在同一平面内.12.如图所示,正方体ABCD-A1B1C1D1的棱长为a,M,N分别是AA1,D1C1的中点,过D,M,N三点的平面与正方体下底面相交于直线l.试画出直线l的位置,并说明理由.解:如图所示,连接DM并延长,交D1A1的延长线于点P',连接NP',则直线NP'即为所求直线l.理由如下: 如图所示,连接DN,∵P'=DM∩D1A1,且DM⫋平面DMN,D1A1⫋平面A1B1C1D1,∴P'∈平面DMN∩平面A1B1C1D1.又N∈平面DMN∩平面A1B1C1D1,∴由公理3知,直线NP'为平面DMN与平面A1B1C1D1的交线.第2课时 异面直线所成的角1.若直线a ∥b ,b ∩c=A ,则直线a 与c 的位置关系是( ) A.异面 B.相交 C.平行 D.异面或相交答案:D2.在三棱锥A-BCD 中,E ,F ,G 分别是AB ,AC ,BD 的中点,如果AD 与BC 所成的角是60°,那么∠FEG 为( ) A .60° B .30°C .120°D .60°或120° 解析:异面直线AD 与BC 所成的角可能等于∠FEG ,也可能等于∠FEG 的补角.答案:D3.若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( ) A .l 1⊥l 4 B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定解析:因为l 2∥l 3,所以l 1⊥l 3,l 3⊥l 4.实质上就是l 1与l 4同垂直于一条直线,所以l 1⊥l 4,l 1∥l 4,l 1与l 4既不垂直也不平行都有可能成立,故l 1与l 4的位置关系不确定. 答案:D4.如图,在某个正方体的表面展开图中,l 1,l 2是两条面对角线,则在正方体中,l 1与l 2( ) A.互相平行 B.异面且互相垂直 C.异面且夹角为60° D.相交且夹角为60°解析:将表面展开图还原成正方体如图所示,则B ,C 两点重合.故l 1与l 2相交,连接AD ,△ABD 为正三角形,所以l 1与l 2的夹角为60°. 答案:D5.在三棱柱ABC-A 1B 1C 1中,若点E ,F 分别在AB ,AC 上,且AE=13AB ,AF=13AC ,则下列说法正确的是( ) A.EF ⊥BB 1 B.EF ∥A 1B 1 C.EF ∥B 1C 1D.EF ∥AA 1解析:∵AE=1AB ,AF=1AC ,∴EF ∥BC.又ABC-A1B1C1为棱柱,∴BC∥B1C1.∴EF∥B1C1.答案:C6.下列说法正确的是()A.空间中没有交点的两条直线是平行直线B.一条直线和两条平行直线中的一条相交,则它和另一条也相交C.空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥cD.分别在两个平面内的直线是平行直线解析:A,B选项中,两直线可能异面,D选项中两直线可能相交,也可能异面.答案:C7.如图是一个正方体的表面展开图,如果将它还原为正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有对.解析:将图形还原成正方体,观察有AB与CD,AB与GH,EF与GH共3对异面直线.答案:38.如图,已知长方体ABCD-A1B1C1D1中,A1A=AB,E,F分别是BD1和AD中点,则异面直线CD1,EF所成的角的大小为.答案:90°9.如图所示,在四棱锥C-ABED中,底面ABED是梯形.若AB∥DE,DE=2AB,且F是CD的中点,P是CE的中点,则AF与BP的位置关系是.解析:连接PF,∵P,F分别是CE,CD的中点,∴PF∥ED,且PF=1ED.2又AB∥ED,且DE=2AB,∴AB∥PF,且AB=PF,即四边形ABPF是平行四边形,∴BP∥AF.答案:平行10.如图所示,在三棱锥P-ABC中,D,E是PC上不重合的两点,F,H分别是P A,PB上的点,且与点P不重合.求证:EF和DH是异面直线.证明∵P A∩PC=P,∴P A,PC确定一个平面α.∵E∈PC,F∈P A,∴E∈α,F∈α,∴EF⫋α.∵D∈PC,∴D∈α,且D∉EF.又PB∩α=P,H∈PB,且点H与点P不重合,∴H∉α,DH∩α=D,且DH与EF不相交,于是直线EF和DH是异面直线.★11.如图所示,在空间四边形ABCD中,两条对边AB=CD=3,E,F分别是另外两条对边AD,BC上的点,且AE=BF=1,EF=5,求AB和CD所成的角的大小.解如图所示,过点E作EO∥AB,交BD于点O,连接OF,所以AEED =BOOD,所以BOOD=BFFC,所以OF∥CD.所以∠EOF或其补角是AB和CD所成的角.在△EOF中,OE=2AB=2,OF=1CD=1,又EF=5,所以EF2=OE2+OF2,所以∠EOF=90°.即异面直线AB和CD所成的角为90°.★12.在梯形ABCD中(如图①所示),AB∥CD,E,F分别为BC和AD的中点,将平面CDFE沿EF翻折起来,使CD到C'D'的位置,G,H分别为AD'和BC'的中点,得到如图②所示的立体图形.求证:四边形EFGH为平行四边形.。
课下能力提升(二) 弧 度 制一、选择题1.下列命题中,真命题是( ) A .1弧度是1度的圆心角所对的弧 B .1弧度是长度为半径的弧 C .1弧度是1度的弧与1度的角之和D .1弧度的角是长度等于半径长的弧所对的圆心角 2.α=-2 rad ,则α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.时钟的分针在1时到3时20分这段时间里转过的弧度数为( ) A.14π3 B .-14π3 C.7π18 D .-7π184.设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π+(-1)k×π2,k ∈Z ,B ={x |x =2k π+π2,k ∈Z },则集合A 与B 之间的关系为( )A .AB B .A BC .A =BD .A ∩B =∅ 二、填空题5.在半径为2的圆内,弧长为2π3的圆心角的度数为________.6.终边落在直线y =x 上的角的集合用弧度表示为S =________.7.已知θ∈⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k π+(-1)k×π4,k ∈Z ,则角θ的终边所在的象限是________.8.已知扇形的面积为25,圆心角为2 rad ,则它的周长为________. 三、解答题9.用弧度表示顶点在原点,始边重合于x 轴的非负半轴,终边落在图中的阴影部分内的角的集合(不包括边界).10. 如图,动点P ,Q 从点A (4,0)出发,沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求P ,Q 第一次相遇时所用的时间、相遇点的坐标及P ,Q 点各自走过的弧长.答案1.解析:选D 由弧度制定义知D 正确.2.解析:选C ∵-π<-2<-π2,∴α的终边落在第三象限,故选C.3.解析:选B 显然分针在1时到3时20分这段时间里,顺时针转过了213周,其弧度数为-(2π×73)=-14π3rad.4.解析:选C 对于集合A ,当k =2n (n ∈Z )时,x =2n π+π2,当k =2n +1(n ∈Z )时,x =2n π+π-π2=2n π+π2∴A =B ,故选C.5.解析:设所求的角为α,角α=2π32=π3=60°.答案:60°6.解析:S =⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=π4+2k π,k ∈Z ∪⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=5π4+2k π,k ∈Z=⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=π4+2k π,k ∈Z ∪{α|α=π4+(2k +1)π,k ∈Z }=⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=π4+n π,n ∈Z .答案:{α|α=π4+n π,n ∈Z }7.解析:当k 为偶数时,α=2n π+π4,终边在第一象限;当k 为奇数时,α=(2n +1)π-π4=2n π+34π,终边在第二象限. 答案:第一、二象限8.解析:设扇形的弧长为l ,半径为r , 则由S =12αr 2=25,得r =5,l =αr =10,故扇形的周长为20. 答案:209.解:(1)图①中,以OA 为终边的角为π6+2k π(k ∈Z );以OB 为终边的角为-2π3+2k π(k ∈Z ).∴阴影部分内的角的集合为{α|-2π3+2k π<α<π6+2k π,k ∈Z }.(2)图②中,以OA 为终边的角为π3+2k π,k ∈Z ;以OB 为终边的角为2π3+2k π,k ∈Z .不妨设右边阴影部分所表示集合为M 1,左边阴影部分所表示集合为M 2, 则M 1={α|2k π<α<π3+2k π,k ∈Z },M 2={α|2π3+2k π<α<π+2k π,k ∈Z }. ∴阴影部分所表示的集合为:M 1∪M 2={α|2k π<α<π3+2k π,k ∈Z }∪{α|2π3+2k π<α<π+2k π,k ∈Z }={α|2k π<α<π3+2k π或2π3+2k π<α<π+2k π,k ∈Z }.10.解:设P ,Q 第一次相遇时所用的时间是t s , 则t ×π3+t ×|-π6|=2π,所以t =4(s),即P ,Q 第一次相遇时所用的时间为4 s .如图,设第一次相遇点为C ,第一次相遇时已运动到终边在π3×4=4π3的位置,则x c =-⎝ ⎛⎭⎪⎫4×12=-2,y c =-42-22=-23,所以C 点的坐标为(-2,-23).P 点走过的弧长为4π3×4=16π3, Q 点走过的弧长为2π3×4=8π3.。
课下能力提升18一、选择题1.抽查10件产品,记事件A 为“至少有2件次品”,则A 的对立事件为( ) A .至多有2件次品 B .至多有1件次品 C .至多有2件正品 D .至少有2件正品2.同时掷三枚硬币,那么互为对立事件的是( ) A .至少有1枚正面向上和最多有1枚正面向上 B .最多1枚正面向上和恰有2枚正面向上 C .不多于1枚正面向上和至少有2枚正面向上 D .至少有2枚正面向上和恰有1枚正面向上3.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03、丙级品的概率为0.01,则对成品抽查一件,抽得正品的概率为( )A .0.09B .0.98C .0.97D .0.964.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为( )A .60%B .30%C .10%D .50%5.如果事件A 与B 是互斥事件,则( ) A .A ∪B 是必然事件 B.A -与B -一定是互斥事件 C.A -与B -一定不是互斥事件 D.A -∪B -是必然事件 二、填空题6.某战士射击一次中靶的概率为0.95,中靶环数大于5的概率为0.75,则中靶环数大于0且小于6的概率为________.(只考虑整数环数)7.盒中有大小、形状相同的黑球、白球和黄球,从中摸出一个球,摸出黑球的概率为0.42,摸出黄球的概率为0.18,则摸出白球的概率为________,摸出的球不是黄球的概率为________,摸出的球是黄球或黑球的概率为________.8.事件A ,B 互斥,它们都不发生的概率为25,且P (A )=2P (B ),则P (A -)=________.三、解答题9.某医院一天内派出医生下乡医疗,派出医生的人数及其概率如下:(1)求派出至多2名医生的概率; (2)求派出至少3名医生的概率.10.在数学考试中(满分100分),小明的成绩在90分以上(包括90分)的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09.(1)求小明在数学考试中成绩在80分以上(包括80分)的概率; (2)求小明考试不及格(低于60分)的概率.答 案1. 解析:选B 至少有2件次品包含2,3,4,5,6,7,8,9,10件.共9种结果,故它的对立事件为含有1或0件次品,即至多有1件次品.2. 答案:C3. 解析:选D 设“抽得正品”为事件A ,“抽得乙级品”为事件B ,“抽得丙级品”为事件C ,由题意,事件B 与事件C 是互斥事件,而事件A 与并事件(B +C )是对立事件;所以P (A )=1-P (B +C )=1-[P (B )+P (C )]=1-0.03-0.01=0.96. 4. 解析:选D 甲不输,包含两个事件:甲获胜,甲、乙和棋. ∴甲、乙和棋概率P =90%-40%=50%.5. 解析:选D A 、B 可以都不发生,∴选项A 错,A -、B -可以同时发生,即A 、B 可以都不发生,∴选项B 错.当A 与B 是对立事件时A -与B -是互斥事件,∴选项C 错,因为A 、B 互斥,所以A -、B -中至少有一个发生,故选项D 正确.6. 解析:因为某战士射击一次“中靶的环数大于5”事件A 与“中靶的环数大于0且小于6”事件B 是互斥事件,故P (A +B )=0.95.∴P (A )+P (B )=0.95,∴P (B )=0.95-0.75=0.2. 答案:0.27. 解析:P {摸出白球}=1-0.42-0.18=0.4.P {摸出的球不是黄球}=1-0.18=0.82. P {摸出的球是黄球或黑球}=0.42+0.18=0.6.答案:0.4 0.82 0.68. 解析:由题意知P (A +B )=1-25,即P (A )+P (B )=35.又P (A )=2P (B ),联立方程组解得P (A )=25,P (B )=15,故P (A -)=1-P (A )=35.答案:359. 解:记派出医生的人数为0,1,2,3,4,5及其以上分别为事件A 0,A 1,A 2,A 3,A 4,A 5,显然它们彼此互斥.(1)至多2名医生的概率为P (A 0+A 1+A 2)=P (A 0)+P (A 1)+P (A 2)=0.18+0.25+0.36=0.79. (2)法一:至少3名医生的概率为P (C )=P (A 3+A 4+A 5)=P (A 3)+P (A 4)+P (A 5) =0.1+0.1+0.01=0.21.法二:“至少3名医生”的反面是“至多2名医生”,故派出至少3名医生的概率为 1-P (A 0+A 1+A 2)=1-0.79=0.21.10. 解:分别记小明的考试成绩“在90分以上(包括90分)”“在80~89分”“在70~79分”“在60~69分”为事件B ,C ,D ,E .由题意知,这4个事件彼此互斥.(1)小明的考试成绩在80分以上(包括80分)的概率为P (B +C )=P (B )+P (C )=0.18+0.51=0.69.(2)小明考试及格的概率,即成绩在60分以上(包括60分)的概率为P (B +C +D +E )=P (B )+P (C )+P (D )+P (E )=0.18+0.51+0.15+0.09=0.93.而小明考试不及格与小明考试及格为对立事件,所以小明考试不及格(低于60分)的概率为1-P (B +C +D +E )=1-0.93=0.07.。
课下能力提升19一、选择题1.在区间[0,3]上任取一点,则此点落在区间[2,3]上的概率是( ) A.13 B.12 C.23 D.342.如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为( )A.43B.83C.23D .无法计算 3.有四个游戏盘,如果撒一粒黄豆落在阴影部分,则可中奖.小明希望中奖,他应当选择的游戏盘为( )4.A 是圆上的一定点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,则它的长度大于等于半径长度的概率为( )A.12B.23C.32D.145.在区间[0,1]内任取两个数,则这两个数的平方和也在[0,1]内的概率是( ) A.π4 B.π10 C.π20 D.π40二、填空题6.函数f (x )=x -2,x ∈[-5,5],那么任取一点x 0∈[-5,5],使f (x 0)≤0的概率是________. 7.圆上的任意两点间的距离大于圆的内接正三角形边长的概率是________.8.已知点P 是边长为4的正方形内任一点,则P 到四个顶点的距离均大于2的概率是________.三、解答题9.在△ABC 内任取一点P ,求△ABP 与△ABC 的面积之比大于23的概率.10.甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若他早到则不需等待.求甲、乙两人能见面的概率.答 案1. 解析:选A 区间[2,3]长度为1,总区间[0,3]的长度为3,∴P =13.2. 解析:选B 由几何概型的公式知:S 阴影S 正方形=23,又:S 正方形=4,∴S 阴影=83. 3. 解析:选A A 游戏盘的中奖概率为38,B 游戏盘的中奖概率为13,C 游戏盘的中奖概率为r2-πr2r2=4-π4,D 游戏盘的中奖概率为r 2πr 2=1π,A 游戏盘的中奖概率最大.4. 解析:选B 如图,当取点落在B 、C 两点时,弦长等于半径;当取点落在劣弧上时,弦长小于半径;当取点落在优弧上时,弦长大于半径.所以弦长超过半径的概率P =360°-120°360°=23.5. 解析:选A 设在[0,1]内取出的数为a ,b ,若a 2+b 2也在[0,1]内,则有0≤a 2+b 2≤1.如图,试验的全部结果所构成的区域为边长为1的正方形,满足a 2+b 2在[0,1]内的点在14单位圆内(如阴影部分所示),故所求概率为14π1=π4.6. 解析:由f (x 0)≤0得x 0-2≤0,x 0≤2,又x 0∈[-5,5],∴x 0∈[-5,2].设使f (x 0)≤0为事件A ,则事件A 构成的区域长度是2-(-5)=7,全部结果构成的区域长度是5-(-5)=10,则P (A )=710.答案:7107. 解析:如图所示,从点A 出发的弦中,当弦的另一个端点落在劣弧B C 上的时候,满足已知条件,当弦的另一个端点在劣弧A B 或劣弧A C 上的时候不能满足已知条件.又因为△ABC 是正三角形,所以弦长大于正三角形边长的概率是13.答案:138. 解析:如图所示,边长为4的正方形ABCD ,分别以A 、B 、C 、D 为圆心,并以2为半径画圆截正方形ABCD 后剩余部分是阴影部分.则阴影部分的面积是42-4×14×π×22=16-4π,所以所求概率是16-4π16=1-π4.答案:1-π49. 解:设P 点、C 点到AB 的距离分别为d P 、d C , 则S △ABP =12AB ·d P ,S △ABC =12AB ·d C ,所以S △ABP S △ABC =d P d C ,要使d P d C >23, 只需使P 点落在某条与AB 平行的直线的上方,当然P 点应在△ABC 之内,而这条与AB 平行的直线EF 与AB 的距离要大于d C 的23.由几何概率公式,得P =S △CEF S △ABC =⎝ ⎛⎭⎪⎫3-232=19. 10. 解:用x 轴、y 轴分别表示甲、乙两人到达约定地点的时间.若甲早到,当y -x ≤30时,两人仍可见面;若乙早到,则两人不可能见面,因此,必须有x ≤y . 如图,事件A “两人可以见面”的可能结果是阴影部分的区域.故P (A )=12×602-12×302602=38.。
一、选择题1.下列说法中正确的个数是()①相等的角在直观图中对应的角仍然相等②相等的线段在直观图中对应的线段仍然相等③平行的线段在直观图中对应的线段仍然平行④线段的中点在直观图中仍然是线段的中点A.1B.2C.3 D.42.利用斜二测画法画边长为1 cm的正方形的直观图,正确的是如图所示中的()3.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积是()A.16B.64 C.16或64D.都不对4.如图,直观图所表示(A′C′∥O′y′,B′C′∥O′x′)的平面图形是()A.正三角形B.锐角三角形C.钝角三角形D.直角三角形5.一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于()A.24a2 B.433a2C.34a2D.22a2二、填空题5.如图所示,为一个水平放置的正方形ABCO,它在直角坐标系xOy中,点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为________.6.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为________.8.如图所示是水平放置的△ABC在直角坐标系中的直观图,其中D是AC的中点,原△ACB中,∠ACB≠30°,则原图形中与线段BD的长相等的线段有________条.三、解答题9.画出一个正三棱台的直观图(尺寸:上、下底面边长分别为1 cm、2 cm,高为2 cm).10.用斜二测画法得到一水平放置的三角形为直角三角形ABC,AC=1,∠ABC=30°,如图所示,试求原图的面积.答案1. 解析:选B只有③④正确.2. 解析:选D正方形的直观图应是平行四边形,且相邻两边的边长之比为2∶1.3. 解析:选C当其中在x′轴上的边长为4时,正方形面积为16;当其中在y′轴上的边长为4时,正方形面积为64.4. 解析:选D由A′C′∥O′y′,B′C′∥O′x′,∠A′C′B′=45°知对应的平面图形为直角三角形.5. 解析:选D由题意知,平行四边形的直观图为对应在直角坐标系下的图形为:∴平行四边形的面积为S′=2×12×a×22a=22a2.6. 解析:在直观图中,A′B′C′O′是有一个角为45°且长边为2,短边为1的平行四边形,∴B′到x′轴的距离为22.答案:2 27. 解析:由于直观图中,∠A′C′B′=45°,则在原图形中∠ACB=90°,AC=3,BC =4,则斜边AB=5,故斜边AB上的中线长为2.5.答案:2.58. 解析:先按照斜二测画法把直观图还原为真正的平面图形,然后根据平面图形的几何性质找与线段BD长度相等的线段,把△ABC还原后为直角三角形,则D为斜边AC的中点,∴AD=DC=BD.答案:29. 解:(1)画轴,以底面△ABC的垂心O为原点,OC所在直线为y轴,平行于AB的直线为x轴,建立平面直角坐标系,以上底面△A′B′C′的垂心O′与O的连线为z轴,建立空间坐标系.(2)画下底面,在xOy平面上画△ABC的直观图,在y轴上量取OC=33cm,OD=36cm.过D作AB∥x轴,且AB=2 cm,以D为中点,连接AC、BC,则△ABC为下底面三角形的直观图.(3)画上底面,在z轴上截取OO′=2 cm,过O′作x′轴∥x轴,y′轴∥y轴,在y′轴上量取O′C′=36cm,O′D′=312cm,过D′作A′B′∥x′轴,A′B′=1 cm,。
一、选择题
1.如果空间四点A,B,C,D不共面,那么下列判断中正确的是()
A.A,B,C,D四点中必有三点共线
B.A,B,C,D四点中不存在三点共线
C.直线AB与CD相交
D.直线AB与CD平行
2.若点A在直线b上,b在平面β内,则A,b,β之间的关系可以记作()
A.A∈b,b∈βB.A∈b,bβ
C.A b,bβD.A b,b∈β
3.如图,平面α∩平面β=l,点A∈α,点B∈α,且点C∈β,点C∉l.又AB∩l=R,设A,B,C三点确定的平面为γ,则β∩γ是()
A.直线AC B.直线BC
C.直线CR D.直线AR
4.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为() A.3 B.4 C.5 D.6
5.在四面体ABCD的棱AB,BC,CD,DA上分别取E,F,G,H四点,如果EF与HG交于点M,则()
A.M一定在直线AC上
B.M一定在直线BD上
C.M可能在AC上,也可能在BD上
D.M不在AC上,也不在BD上
二、填空题
6.空间四点A,B,C,D,其中任何三点都不在同一直线上,它们一共可以确定平面的个数为________.
7.如图,在这个正方体中,①BM与ED平行;②CN与BM是异面直线;③CN与BE是异面直线;④DN与BM是异面直线.。
一、选择题.下列说法中正确的个数是( )①相等的角在直观图中对应的角仍然相等②相等的线段在直观图中对应的线段仍然相等③平行的线段在直观图中对应的线段仍然平行④线段的中点在直观图中仍然是线段的中点.....利用斜二测画法画边长为的正方形的直观图,正确的是如图所示中的( ).已知一个正方形的直观图是一个平行四边形,其中有一边长为,则此正方形的面积是( )...或.都不对.如图,直观图所表示(′′∥′′,′′∥′′)的平面图形是( ).正三角形.锐角三角形.钝角三角形.直角三角形.一个平面四边形的斜二测画法的直观图是一个边长为的正方形,则原平面四边形的面积等于( ).二、填空题5.如图所示,为一个水平放置的正方形,它在直角坐标系中,点的坐标为(),则在用斜二测画法画出的正方形的直观图中,顶点′到′轴的距离为.6.水平放置的△的斜二测直观图如图所示,已知′′=,′′=,则边上的中线的实际长度为..如图所示是水平放置的△在直角坐标系中的直观图,其中是的中点,原△中,∠≠°,则原图形中与线段的长相等的线段有条.三、解答题.画出一个正三棱台的直观图(尺寸:上、下底面边长分别为、,高为 ).10.用斜二测画法得到一水平放置的三角形为直角三角形,=,∠=°,如图所示,试求原图的面积.答案.解析:选只有③④正确..解析:选正方形的直观图应是平行四边形,且相邻两边的边长之比为∶..解析:选当其中在′轴上的边长为时,正方形面积为;当其中在′轴上的边长为时,正方形面积为..解析:选由′′∥′′,′′∥′′,∠′′′=°知对应的平面图形为直角三角形..解析:选由题意知,平行四边形的直观图为。
课下能力提升(十九)一、选择题1.已知A (-1,1),B (3,-5),则线段AB 的垂直平分线方程是( ) A .3x +2y -2=0 B .2x +3y +2=0 C .3x -2y +8=0 D .2x -3y -8=02.点P (x ,y )在直线x +y -4=0上,O 是坐标原点,则|OP |的最小值是( ) A. 5 B.7 C. 6 D .2 23.已知直线3x +2y -3=0和6x +my +1=0互相平行,则它们之间的距离是( ) A .4 B.21313C.51326D.713264.已知点A (0,2),B (2,0).若点C 在函数y =x 2的图像上,则使得△ABC 的面积为2的点C 的个数为( )A .4B .3C .2D .15.若两条平行直线l 1:3x -2y -6=0,l 2:3x -2y +8=0,则与l 2的距离等于l 1与l 2间距离的直线方程为( )A .3x -2y +22=0B .3x -2y -10=0C .3x -2y -20=0D .3x -2y +24=0 二、填空题6.经过点P (2,1)且与点Q (1,-2)的距离为2的直线方程是________.7.动点P 在直线x +y -1=0上运动,Q (1,1)为定点,当|PQ |最小时,点P 的坐标为________.8.两条平行线分别过点P (-2,-2),Q (1,3),它们之间的距离为d ,如果这两条直线各自绕点P ,Q 旋转并互相保持平行,则d 的范围是________.三、解答题9.用坐标法证明:在△ABC 中,AO 为BC 边上的中线,则|AB |2+|AC |2=2(|AO |2+|BO |2). 10.求经过两直线l 1:x -3y -4=0与l 2:4x +3y -6=0的交点,且和点A (-3,1)的距离为5的直线l 的方程.答案1.解析:选D ∵k AB =-5-13-(-1)=-32,∴线段AB 的垂直平分线的斜率为23.又线段AB的中点坐标为(1,-2),∴线段AB 的垂直平分线的方程为y +2=23(x -1),即2x -3y -8=0.2.解析:选D |OP |的最小值就是原点到直线x +y -4=0的距离,d =|0+0-4|2=2 2.3.解析:选D 直线3x +2y -3=0可化为6x +4y -6=0,与6x +my +1=0平行,所以m =4,由两平行线间的距离公式得d =|-6-1|62+42=71326.4.解析:选A 设点C (t ,t 2),直线AB 的方程是x +y -2=0,|AB |=22,由于△ABC 的面积为2,则这个三角形AB 边上的高h 满足方程12×22h =2,即h =2,由点到直线的距离公式得2=|t +t 2-2|2,即|t 2+t -2|=2,即t 2+t -2=2或t 2+t -2=-2,这两个方程各自有2个不相等的实数根,故这样的点C 有4个.5.解析:选A 设所求直线方程为3x -2y +C =0,则解得C =-6(舍去)或C =22,所以所求直线的方程为3x -2y +22=0.6.解析:设所求直线的斜率为k ,则l 的方程为y -1=k (x -2), 即kx -y -2k +1=0.∵点Q 到直线l 的距离为2, ∴|k +2-2k +1|k 2+1=2,解得k =1或k =-7.∴直线方程为x -y -1=0或7x +y -15=0. 答案:x -y -1=0或7x +y -15=07.解析:设P (x,1-x ),由两点间距离公式得|PQ |=(x -1)2+x 2=2x 2-2x +1= 2⎝⎛⎭⎫x -122+12,当x =12时,|PQ |最小.答案:⎝⎛⎭⎫12,12 8.解析:由图可知,当这两条直线l 1,l 2与直线PQ 垂直时,d 达到最大值,此时 d =|PQ |=(-2-1)2+(-2-3)2=34, ∴0<d ≤34. 答案:(0,34] 9.证明:如图,以O 为坐标原点,BC 边所在直线为x 轴,建立平面直角坐标系, 设B (-a,0),C (a,0),A (b ,c ),则|AB |2=(b +a )2+(c -0)2=(b +a )2+c 2, |AC |2=(b -a )2+(c -0)2=(b -a )2+c 2,∴|AB |2+|AC |2=(b +a )2+c 2+(b -a )2+c 2=2(a 2+b 2+c 2). 又|AO |2=b 2+c 2,|BO |2=a 2, ∴|AB |2+|AC |2=2(|AO |2+|BO |2).10.解:由⎩⎪⎨⎪⎧x -3y -4=0,4x +3y -6=0,解得⎩⎪⎨⎪⎧x =2,y =-23,即直线l 过点B ⎝⎛⎭⎫2,-23. ①当l 与x 轴垂直时,方程为x =2,A (-3,1)到l 的距离d =|-3-2|=5,满足题意. ②当l 与x 轴不垂直时,设斜率为k ,则l 的方程为y +23=k (x -2),即kx -y -2k -23=0.由A 到l 的距离为5,得⎪⎪⎪⎪-3k -1-2k -23k 2+(-1)2=5,解得k =43,∴l 的方程为43x -y -83-23=0,即4x -3y -10=0,综上,所求直线方程为x =2或4x -3y -10=0.给高中生的建议初中学生学数学,靠的是一个字:练!高中学生学数学靠的也是一个字:悟!学好数学的核心就是悟,悟就是理解,为了理解就要看做想。
课下能力提升(十八)一、选择题1.直线3x -2y +m =0和(m 2+1)x +3y -3m =0的位置关系是( )A .平行B .重合C .相交D .不确定2.直线l 过直线3x -y =2和x +y =6的交点,且过点(-3,-1),则直线l 的方程为( )A .2x -y +5=0B .x +y +4=0C .x -y +2=0D .3x -y -2=03.直线(2k -1)x -(k +3)y -(k -11)=0(k ∈R )所经过的定点为( )A .(2,3)B .(5,2)C.⎝⎛⎭⎫-12,3 D .(5,9) 4.已知点P (-1,0),Q (1,0),直线y =-2x +b 与线段PQ 相交,则b 的取值范围是( )A .[-2,2]B .[-1,1]C.⎣⎡⎦⎤-12,12 D .[0,2] 5.使三条直线4x +y =4,mx +y =0,2x -3my =4不能围成三角形的m 值最多有( )A .1个B .2个C .3个D .4个二、填空题6.已知直线ax +4y -2=0和2x -5y +b =0垂直且都过点A (1,m ),则a =__________,b =________,m =________.7.若三条直线x -2y +1=0,x +3y -1=0,ax +2y -3=0共有两个不同的交点,则a =________.8.在△ABC 中,已知B (2,1),AC 边所在直线的方程为2x -y +5=0,直线3x -2y +1=0是BC 边的高线,则点C 的坐标为________.三、解答题9.求经过直线l 1:x -y +1=0与l 2:x +2y -5=0的交点且与直线l 3:4x +y +1=0平行的直线l 的方程.10.已知点A 是x 轴上的动点,一条直线过点M (2,3)且垂直于MA ,交y 轴于点B ,过A ,B 分别作x ,y 轴的垂线交于点P ,求点P (x ,y )满足的关系式.答案1.解析:选C ∵k 1=32,k 2=-m 2+13,∴k 1≠k 2.∴两直线相交. 2.解析:选C 由⎩⎪⎨⎪⎧ 3x -y =2,x +y =6,得直线3x -y =2和x +y =6的交点为(2,4), ∵直线l 过点(2,4)和(-3,-1)两点,∴直线l 的方程为y -4-1-4=x -2-3-2,即x -y +2=0.3.解析:选A 将原方程变为k (2x -y -1)-x -3y +11=0,令⎩⎪⎨⎪⎧ 2x -y -1=0,-x -3y +11=0,得⎩⎪⎨⎪⎧x =2,y =3,∴定点为(2,3). 4.解析:选A 直线PQ 的方程为y =0,由⎩⎪⎨⎪⎧y =-2x +b ,y =0,得交点⎝⎛⎭⎫b 2,0,由-1≤b 2≤1,得-2≤b ≤2. 5.解析:选D 要使三条直线不能围成三角形,只需其中两条直线平行或三条直线共点.若4x +y =4与mx +y =0平行,则m =4;若4x +y =4与2x -3my =4平行,则m =-16; 若mx +y =0与2x -3my =4平行,则m 不存在;若4x +y =4与mx +y =0及2x -3my =4共点,则m =-1或m =23. 6.解析:已知两直线方程可化为l 1:y =-a 4x +12,l 2:y =25x +b 5. ∵两直线垂直,∴-a 4·25=-1,∴a =10, 即直线l 1方程为10x +4y -2=0.又点A (1,m )在直线l 1上,∴10×1+4m -2=0,∴m =-2,即A (1,-2).又点A 在直线l 2上,∴2×1-5×(-2)+b =0,∴b =-12.答案:10 -12 -27.解析:因为直线x -2y +1=0与x +3y -1=0相交于一点,要使三条直线共有两个不同交点,只需ax +2y -3=0与以上两条直线中的一条平行即可,当ax +2y -3=0与x -2y +1=0平行时,有-a 2=12,解得a =-1; 当ax +2y -3=0与x +3y -1=0平行时,有-a 2=-13,解得a =23. 答案:23或-1 8.解析:设BC 的方程为2x +3y +m =0,将点B 的坐标代入,可得m =-7,∴BC 的方程为2x +3y -7=0.解方程组⎩⎪⎨⎪⎧2x +3y -7=0,2x -y +5=0.得C (-1,3). 答案:(-1,3) 9.解:联立⎩⎪⎨⎪⎧ x -y +1=0,x +2y -5=0,解得⎩⎪⎨⎪⎧x =1,y =2,即直线l 1与直线l 2的交点为(1,2).∵l ∥l 3,∴l 3的方程可设为4x +y +b =0.将(1,2)代入,得b =-6.∴直线l 的方程为4x +y -6=0.10.解:如图所示,∵P A ⊥x 轴,PB ⊥y 轴,P 点坐标为(x ,y ),∴A 点坐标为(x,0),B 点坐标为(0,y ),由题意可知MA⊥MB,当x≠2时,k MA·k MB=-1,即3-02-x·3-y2-0=-1(x≠2),化简得2x+3y-13=0.当x=2时,点P与M重合,点P(2,3)的坐标也满足方程2x+3y-13=0.∴点P(x,y)满足的关系式为2x+3y-13=0.。
一、选择题
1.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是()
A.平行
B.垂直
C.相交不垂直
D.不确定
2.在三棱锥A-BCD中,若AD⊥BC,BD⊥AD,那么必有()
A.平面ABD⊥平面ADC
B.平面ABD⊥平面ABC
C.平面ADC⊥平面BCD
D.平面ABC⊥平面BCD
3.在正方体ABCD-A1B1C1D1中,与AD1垂直的平面是()
A.平面DD1C1C
B.平面A1DCB1
C.平面A1B1C1D1
D.平面A1DB
4.设l、m为不同的直线,α为平面,且l⊥α,下列为假命题的是()
A.若m⊥α,则m∥l
B.若m⊥l,则m∥α
C.若m∥α,则m⊥l
D.若m∥l,则m⊥α
5.如图,在正方形ABCD中,E、F分别为边BC,CD的中点,H是EF的中点,现沿AE、AF,EF把这个正方形折成一个几何体,使B、C、D三点重合于点G,则下列结论中成立的是()
A.AG⊥平面EFG B.AH⊥平面EFG
C.GF⊥平面AEF D.GH⊥平面AEF
二、填空题
6.如图,在正方体ABCD-A1B1C1D1中,平面ACD1与平面BB1D1D的位置关系是。