初中几何折叠习题(带图)
- 格式:doc
- 大小:711.55 KB
- 文档页数:15
八年级下册数学《第十七章 勾股定理》专题 利用勾股定理解决折叠问题【例题1】(2021•西城区校级模拟)如图,Rt △ABC 中,AB =18,BC =12,∠B =90°,将△ABC 折叠,使点A 与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .8B .6C .4D .10【变式1-1】如图,△ABC中,∠C=90°,AC=3,AB=5,点D是边BC上一点,若沿将△ACD翻折,点C刚好落在边上点E处,则BD等于( )A.2B.52C.3D.103【变式1-2】如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为( )A.1cm B.2cm C.3cm D.4cm【变式1-3】(2021•鞍山一模)如图的三角形纸片中,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED的周长是( )A.7B.8C.11D.14【变式1-4】(2021秋•高邮市期末)如图,在△ABC中,∠C=90°,AC=8cm,BC=6cm,点D、E 分别在AC、BC边上.现将△DCE沿DE翻折,使点C落在点H处.连接AH,则AH长度的最小值为( )A.0B.2C.4D.6【变式1-5】(2022秋•秦淮区校级月考)如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=12,BE=2,则AB2﹣AC2的值为( )A.20B.22C.24D.26【变式1-6】(2022•天津模拟)如图,Rt△ABC中,AB=8,BC=6,∠B=90°,M,N分别是边AC,AB上的两个动点.将△ABC沿直线MN折叠,使得点A的对应点D落在BC边的三等分点处,则线段BN的长为( )A.3B.53C.3或53D.3或154【变式1-7】(2022•平果市模拟)如图,在△ABC中,AC=5,BC=8,∠C=60°,BD=3,点D在边BC上,连接AD,如果将△ABD沿AD翻折后,点B的对应点为点E,那么点E到直线DC的距离为( )A B.4C D.5 2【变式1-8】(2023•沙坪坝区校级开学)如图,在△ABC中,∠C=90°,AC=BC=6,点D、E分别在AC边和AB边上,沿着直线DE翻折△ADE,点A落在BC边上,记为点F,如果CF=2,则BE的长为( )A.6B.C D【变式1-9】如图,在△ABC中,D为BC中点,连接AD,把△ABD沿着AD折叠得到△AED,连接EC,若DE=5,EC=6,AB=AD的长是( )A.4B.5C.6D.7【变式1-10】(2022秋•南海区校级月考)如图,Rt△ABC中,∠ABC=90°,AB=8,BC=D在AC 上,将△ABD 沿BD 折叠,点A 落在点A '处,A 'B 与AC 相交于点E ,则A 'E 的最大值为( )A .B .83C .163D .8﹣【变式1-11】如图,在△ABC 中,D 是BC 边上的中点,连接AD ,把△ACD 沿AD 翻折,得到△ADC ′,DC ′与AB 交于点E ,连接BC ′,若BD =BC ′=2,AD =3,则点D 到AC ′的距离( )A B C D 【变式1-12】(2020春•沙坪坝区校级月考)如图,在△ABC 中,∠ACB =120°,AC =6,BC =3,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,使点A 落在CD 的延长线上的点A ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段CF 的长为( )A B C D【例题2】(2021春•东昌府区期末)如图,在矩形ABCD 中,BC =8,CD =6,将△ABE 沿BE 折叠,使点A 恰好落在对角线BD 上F 处,则EF 的长是( )A .3B .245C .5D .8916【变式2-1】如图,在长方形纸片ABCD 中,AB =12,BC =5,点E 在AB 上,将△DAE 沿DE 折叠,使点A 落在对角线BD 上的点F 处,求AE 的长.【变式2-3】(2021秋•锦江区期末)如图,长方形ABCD 中,AB =5,AD =25,将此长方形折叠,使点D 与点B 重合,折痕为EF ,则BE 的长为( )A .12B .8C .10D .13【变式2-4】(2021春•栾城区期末)如图所示,在矩形ABCD 中,AB =4,AD =8,将矩形沿BD折叠,点A落在点E处,DE与BC交于点F,则重叠部分△BDF的面积是( )A.20B.16C.12D.10【变式2-5】(2021•斗门区一模)如图所示,矩形纸片ABCD中,AB=4cm,BC=8cm,现将其沿EF 对折,使得点C与点A重合,则AF的长为 .【变式2-6】(2021秋•历城区期末)如图,已知长方形纸片ABCD,点E在边AB上,且BE=4,BC=6,将△CBE沿直线CE翻折,使点B落在点G,延长EG交CD于点F,则线段FG的长为 .【变式2-7】如图,在矩形ABCD中,AB=2,BC=4,把矩形折叠,使点D与点B重合,点C落在点E 处,则折痕FG的长为( )A.2.5B.3C D.【变式2-8】如图,在矩形ABCD中,连接BD,将△ABD沿BD进行折叠,使得点A落到点M处,DM 交BC于点N,若AB=2,BD=5,则MN的长度为( )A B C.D.【变式2-9】(2022秋•梅县区校级期末)如图是一张矩形纸片ABCD,点E,G分别在边BC,AB上,把△DCE沿直线DE折叠,使点C落在对角线BD上的点F处;把△DAG沿直线DG折叠,使点A落在线段DF上的点H处,HF=1,BF=8,则矩形ABCD的面积为( )A.420B.360C.D.【变式2-10】(2022春•柯桥区期末)在矩形ABCD中,将边AB翻折到对角线BD上,点A落在点M 处,折痕BE交AD于点E.将边CD翻折到对角线BD上,点C落在点N处,折痕DF交BC于点F.AB=5,MN=3,则BC的长( )A.5B.12或C.12D.12或13【例题3】(2021春•永嘉县校级期末)如图,将边长为8cm正方形纸片ABCD折叠,使点D落在BC 边的中点E处,点A落在点F处,折痕为MN,则线段CN的长是( )A.6cm B.5cm C.4cm D.3cm【变式3-1】(2022•宽城区一模)如图,将正方形纸片ABCD折叠,使顶点B落在边AD上的点E处,折痕交AB于点F,交CD于点G,若AE=1,∠AFE=30°,则AB的长为( )A.2B.1+C.D.2【变式3-2】(2022春•桂林期末)如图,正方形ABCD的边长为4,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH,若BE:EC=3:1,则线段CH的长是( )A.3B.158C.1D.2【变式3-3】(2022春•大连月考)如图,在正方形ABCD 中,AB =4,点E 是CD 边的中点,将该纸片折叠,使点B 与点E 重合,折痕交AD ,BC 边于点M ,N ,连接ME ,NE .则ME 的长为 .【变式3-4】(2022春•荔城区校级月考)如图,在边长为7的正方形ABCD 中,E 为BC 边上一点,F 为AD 边上一点,连接AE 、EF ,将△ABE 沿EF 折叠,使点A 恰好落在CD 边上的A ′处,若A ′D =2,则B ′E 的长度为( )A .2714B .137C .2514D .2【变式3-5】如图,在正方形纸片ABCD 中,E 是CD 的中点,将正方形纸片折叠,点B 落在线段AE 上的点G 处,折痕为AF .若AD =4cm ,则CF 的长为( )cmA .6﹣B .6﹣C .32D .54【变式3-6】(2022春•社旗县期末)如图,点E 和点F 分别在正方形纸片ABCD 的边CD 和AD 上,连接AE ,BF ,沿BF 所在直线折叠该纸片,点A 恰好落在线段AE 上点G 处.若正方形纸片边长12,DE =5,则GE 的长为( )A .4913B .5013C .4D .3【变式3-7】(2022春•长清区期末)如图1,将正方形纸片ABCD 对折,使AB 与CD 重合,折痕为EF 如图2,展开后再折叠一次,使点C 与点E 重合,折痕为GH ,点B 的对应点为点M ,EM 交AB 于N ,AD =4,则CH 的长为( )A .52B .65C .34D .54【变式3-8】(2022秋•和平区期末)如图,已知正方形ABCD 面积为2,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A B.2C.8D.【变式3-9】(2022春•满洲里市校级期末)如图,在正方形ABCD中,E为CD边上一点,将△AED沿着AE翻折得到△AEF,点D的对应点F恰好落在对角线AC上,连接BF.若EF=2,则BF2=( )A.4B.C.12D.【变式3-10】如图,正方形ABCD中,CD=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.(1)求证:△ABG≌△AFG;(2)求GC的长;(3)求△FGC的面积.。
专题33 中考几何折叠翻折类问题专题知识点概述1.轴对称(折痕)的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.2.折叠或者翻折试题解决哪些问题(1)求角度大小;(2)求线段长度;(3)求面积;(4)其他综合问题。
3.解决折叠问题的思维方法(1)折叠后能够重合的线段相等,能够重合的角相等,能够重合的三角形全等,折叠前后的图形关于折痕对称,对应点到折痕的距离相等。
(2)折叠类问题中,如果翻折的直角,那么可以构造三垂直模型,利用三角形相似解决问题。
(3)折叠类问题中,如果有平行线,那么翻折后就可能有等腰三角形,或者角平分线。
这对解决问题有很大帮助。
(4)折叠类问题中,如果有新的直角三角形出现,可以设未知数,利用勾股定理构造方程解决。
(5)折叠类问题中,如果折痕经过某一个定点,往往用辅助圆解决问题。
一般试题考查点圆最值问题。
(6)折叠后的图形不明确,要分析可能出现的情况,一次分析验证可以利用纸片模型分析。
例题解析与对点练习【例题1】(2020•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【答案】A【解析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°。
几何中的折叠问题一、单选题1如图,在菱形ABCD中,AD=5,tan B=2,E是AB上一点,将菱形ABCD沿DE折叠,使B、C的对应点分别是B 、C ,当∠BEB =90°时,则点C 到BC的距离是()A.5+5B.25+2C.6D.35【答案】D【分析】过C作CH⊥AD于H,C 作C F⊥AD于F,HD=5,HC=25,再由折叠证明∠BED=∠B ED=135°,∠EDC=∠EDC =45°,△CHD≌△DFC ,C F= HD=5,【C作CH⊥AD于H,C 作C F⊥AD于F,由已知AD=5,tan B=2,=2,∴CD=5,tan∠CDH=HCHD∴设HD=x,HC=2x,∴在Rt△HDC中HC2+HD2=CD2,2x2+x2=52,解得x=5,∴HD=5,HC=25,由折叠可知∠BED=∠B ED,∠EDC=∠EDC ,CD=C D∵∠BEB =90°,∴∠BED=∠B ED=135°,∵AB∥DC,∴∠EDC=180°-∠BED=45°,∴∠EDC=∠EDC =45°∴∠CDC =90°∵∠CHD =∠C AD =90°,∴∠CDH +C DF =90°,∵∠CDH +∠HCD =90°,∴∠C DF =∠HCD ,∴△CHD ≌△DFC ,∴C F =HD =5,∴点C 到BC 的距离是C F +CH =5+25=35.故选:D .【点睛】本题考查了全等三角形的性质和判定、菱形的性质、图形的折叠以及正切定义的应用,解答关键是根据折叠的条件推出∠BED =∠B ED =135°.2如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l 与BC 交于点P ,且点P 到AB 的距离为3cm ,点Q 为AC 上任意一点,则PQ 的最小值为()A.2cmB.2.5cmC.3cmD.3.5cm【答案】C【分析】由折叠可得:PA 为∠BAC 的角平分线,根据垂线段最短即可解答.【详解】解:∵将△ABC 折叠,使AC 边落在AB 边上,∴PA 为∠BAC 的角平分线,∵点Q 为AC 上任意一点,∴PQ 的最小值等于点P 到AB 的距离3cm .故选C .【点睛】本题主要考查了折叠的性质、角平分线的性质定理等知识点,掌握角平分线上的点到两边距离相等是解答本题的关键.3如图,在▱ABCD 中,BC =8,AB =AC =45,点E 为BC 边上一点,BE =6,点F 是AB 边上的动点,将△BEF 沿直线EF 折叠得到△GEF ,点B 的对应点为点G ,连接DE ,有下列4个结论:①tan B =2;②DE =10;③当GE ⊥BC 时,EF =32;④若点G 恰好落在线段DE 上时,则AF BF=13.其中正确的是()A.①②③B.②③④C.①③④D.①②④【答案】D【分析】过点A 作AH ⊥BC 于点H ,利用三线和一以及正切的定义,求出tan B ,即可判断①;过点D 作DK ⊥BC 于点K ,利用勾股定理求出DE ,判断②;过点F 作FM ⊥BC 于点M ,证明△EMF 为等腰直角三角形,设EM =FM =x ,三角函数求出BM 的长,利用BE =BM +EM ,求出x 的值,进而求出EF 的长,判断③;证明△AND ∽△CNE ,推出∠ENC =∠ECN ,根据折叠的性质,推出EF ∥CA ,利用平行线分线段成比例,即可得出结论,判断④.【详解】解:①过点A 作AH ⊥BC 于点H ,∵BC =8,AB =AC =45,∴BH =12BC =4,∴AH =AB 2-BH 2=8,∴tan B =AHBH=2;故①正确;②过点D 作DK ⊥BC 于点K ,则:四边形AHKD 为矩形,∴DK =AH =8,HK =AD =BC =8,∵BE =6,∴CE =2,∵CH =12BC =4,∴CK =4,∴EK =CE +CK =6,∴DE =EK 2+DK 2=10;故②正确;③过点F 作FM ⊥BC 于点M ,∵GE ⊥BC ,∴∠BEG =90°,∵翻折,∴∠BEF =∠GEF =45°,∴∠EFM =∠BEF =45°,∴EM =FM ,设EM =FM =x ,∵tan B =FMBM =2,∴BM =12FM =12x ,∴BE =BM +EM =12x +x =6,∴x =4,∴EM =FM =4,∴EF =2EM =42;故③错误;④当点G 恰好落在线段DE 上时,如图:设AC 与DE 交于点N ,∵▱ABCD ,∴AD ∥BC ,∴△AND ∽△CNE ,∴EN DN =CE AD=28=14,∴EN DE =15,∴EN =15DE =2=CE ,∴∠ENC =∠ECN ,∴∠BEN =∠ENC +∠ECN =2∠ECN ,∵翻折,∴∠BEN =2∠BEF ,∴∠BEF =∠ECN ,∴EF ∥AC ,∴AF BF =CE BE=26=13;故④正确,综上:正确的是①②④;故选D .【点睛】本题考查平行四边形的折叠问题,同时考查了解直角三角形,相似三角形的判定和性质,等腰三角形的判定和性质,勾股定理.本题的综合性强,难度较大,是中考常见的压轴题,熟练掌握相关性质,添加合适的辅助线,构造特殊三角形,是解题的关键.4如图,AB 是⊙O 的直径,点C 是⊙O 上一点,将劣弧BC 沿弦BC 折叠交直径AB 于点D ,连接CD ,若∠ABC =α0°<α<45° ,则下列式子正确的是()A.sin α=BCABB.sin α=CD ABC.cos α=AD BDD.cos α=CD BC【答案】B【分析】连AC ,由AB 是⊙O 的直径,可知∠ACB =90°,由折叠,AC和CD所在的圆为等圆,可推得AC =CD ,再利用正弦定义求解即可.【详解】解:连AC ,∵AB 是⊙O 的直径,∴∠ACB =90°,由折叠,AC 和CD所在的圆为等圆,又∵∠CBD =∠ABC ,∴AC和CD所对的圆周角相等,∴AC=CD,∴AC =CD ,在Rt △ACB 中,sin α=AC AB =CDAB,故选:B .【点睛】本题考查圆周角定理和圆心角、弦、弧之间的关系以及正弦、余弦定义,解答关键是通过折叠找到公共的圆周角推出等弦.5如图,在平面直角坐标系中,OA 在x 轴正半轴上,OC 在y 轴正半轴上,以OA ,OC 为边构造矩形OABC ,点B 的坐标为8,6 ,D ,E 分别为OA ,BC 的中点,将△ABE 沿AE 折叠,点B 的对应点F 恰好落在CD 上,则点F 的坐标为()A.3213,3013B.3013,3213C.3013,2013D.2013,3013【答案】A【分析】先求得直线CD 的解析式,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m ,-32m +6 ,在Rt △EMF 中,再利用勾股定理得到关于m 的方程,解方程即可.【详解】解:∵点B 的坐标为8,6 ,四边形OABC 是矩形,D ,E 分别为OA ,BC 的中点,∴C 0,6 ,D 4,0 ,E 4,6 ,由折叠的性质可得:EF =BE =4,设直线CD 的解析式为y =kx +b ,则6=b 4k +b =0 ,解得:k =-32b =6,∴直线CD 的解析式为y =-32x +6,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m,-32m+6,则MF=CN=6--32m+6=32m,EM=4-m,在Rt△EMF中,EM2+MF2=EF2,∴4-m2+32m2=42,解得:m=3213或m=0(不合题意,舍去),当m=3213时,y=-32×3213+6=3013,∴点F的坐标为3213,30 13,故选:A.【点睛】本题是一次函数与几何综合题,考查了求一次函数解析式,勾股定理,翻折的性质,矩形的性质,中点的性质,熟练掌握知识点并灵活运用是解题的关键.6综合与实践课上,李老师让同学们以矩形纸片的折叠为主题开展数学活动.如图,将矩形纸片ABCD对折,折痕为EF,再把点A折叠在折痕EF上,其对应点为A ,折痕为DP,连接A B,若AB=2,BC =3,则tan∠A BF的值为()A.33B.3 C.32D.12【答案】A【分析】先证明EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,AD=A D=3,可得A E=A D2-DE2=32,AF=2-32=12,再利用正切的定义求解即可.【详解】解:∵矩形纸片ABCD对折,折痕为EF,AB=2,BC=3,∴EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,由折叠可得:AD=A D=3,∴A E=A D2-DE2=32,∴A F=2-32=12,∴tan ∠A BF =1232=33.故选A【点睛】本题考查的是轴对称的性质,矩形的性质,勾股定理的应用,求解锐角的正切,熟记轴对称的性质是解本题的关键.7如图,矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,将顶点D 折叠至线段AP 上一点D ,折痕为EF ,此时,点C 折叠至点C .下列说法中错误的是()A.cos ∠BAP =45B.当AE =53时,D E ⊥AP C.当AE =18-65时,△AD E 是等腰三角形 D.sin ∠DAP =45【答案】C【分析】根据矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质计算判断即可.【详解】∵矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,∴BP =12BC =32,∠B =90°,∴AP =AB 2+BP 2=22+32 2=52,∴cos ∠BAP =AB AP=252=45,故A 正确;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴sin ∠DAP =sin ∠APB =cos ∠BAP =45,故D 正确;设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,sin ∠DAP =45,∵D E ⊥AP ,∴sin ∠DAP =D E AE=x 3-x =45,解得x =43,∴AE =AD -DE =3-x =53,故B 正确;当D E =AE 时,∴x =3-x ,解得x =32;此时D ,A 重合,三角形不存在,不符合题意;当D E =AD 时,过点D 作D N ⊥AD 于点N ,则AN =NE ;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴cos ∠DAP =cos ∠APB =3252=35,设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,D E =AD =x ,∴AN AD=AN x =35,解得AN =35x ;∴AE =AD -DE =3-x =2AN =65x ,解得x =1511;∴AE =65×1511=1811;当AE =AD 时,过点D 作D H ⊥AD 于点H ,设DE =D E =x ,根据题意,得AE =AD =AD -DE =3-x ,∴D H =AD sin ∠DAP =453-x ,AH =AD cos ∠DAP =353-x ,∴HE =AE -AH =3-x -353-x =253-x ,根据勾股定理,得HE 2+D H 2=D E 2,∴253-x 2+453-x2=x 2解得x =65-12;∴AE =3-x =15-65;综上所述,AE =15-65或AE =1811,故C 错误,故选C .【点睛】本题考查了矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质,熟练掌握三角函数,勾股定理,矩形的性质,折叠的性质是解题的关键.8如图,AB 为半圆O 的直径,点O 为圆心,点C 是弧上的一点,沿CB 为折痕折叠BC交AB 于点M ,连接CM ,若点M 为AB 的黄金分割点(BM >AM ),则sin ∠BCM 的值为()A.5-12B.5+12C.5-14D.12【答案】A【分析】过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,根据折叠的性质可得:∠CMB=∠CM′B,BC⊥MM′,从而可得∠BDM=90°,再根据黄金分割的定义可得BMAB =5-12,然后利用直径所对的圆周角是直角可得∠ACB=90°,从而证明A字模型相似三角形△DBM∽△CBA,进而利用相似三角形的性质可得DMAC=BMAB=5-12,最后根据圆内接四边形对角互补以及平角定义定义可得:∠A=∠AMC,从而可得CA=CM,再在Rt△CDM中,利用锐角三角函数的定义进行计算,即可解答.【详解】解:过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,由折叠得:∠CMB=∠CM′B,BC⊥MM′,∴∠BDM=90°,∵点M为AB的黄金分割点(BM>AM),∴BMAB =5-12,∵AB为半圆O的直径,∴∠ACB=90°,∴∠ACB=∠MDB,∵∠DBM=∠CBA,∴△DBM∽△CBA,∴DMAC =BMAB=5-12,∵四边形ACM′B是半⊙O的内接四边形,∴∠A+∠CM′B=180°,∵∠AMC+∠CMB=180°,∠CMB=∠CM′B,∴∠A=∠AMC,∴CA=CM,在Rt△CDM中,sin∠BCM=DMCM=DMAC=5-12.故选:A.【点睛】本题考查了相似三角形的判定与性质,黄金分割,解直角三角形,翻折变换(折叠问题),圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.二、填空题9如图,将一张矩形纸片ABCD折叠,折痕为EF,折叠后,EC的对应边EH经过点A,CD的对应边HG交BA的延长线于点P.若PA=PG,AH=BE,CD=3,则BC的长为.【答案】43【分析】本题考查了矩形与折叠问题,全等三角形的判定和性质,勾股定理.连接PF ,设BC =2x ,AH =BE=a ,证明Rt △PAF ≌Rt △PGF HL ,求得FA =FG =FD =x ,由折叠的性质求得BE =12x ,在Rt △ABE中,利用勾股定理列式计算,即可求解.【详解】解:连接PF ,设BC =2x ,AH =BE =a ,由矩形的性质和折叠的性质知FG =FD ,∠G =∠FAP =90°,AB =CD =3,AD =BC ,∵PA =PG ,PF =PF ,∴Rt △PAF ≌Rt △PGF HL ,∴FA =FG =FD =12AD =12BC =x ,由矩形的性质知:AD ∥BC ∴∠AFE =∠FEC ,折叠的性质知:∠FEA =∠FEC ,∴∠FEA =∠AFE ,∴AE =FA =x ,由折叠的性质知EC =EH =AE +AH =x +a ,∴BC =BE +EC =a +x +a =2x ,∴a =12x ,即BE =12x ,在Rt △ABE 中,AB 2+BE 2=AE 2,即32+12x 2=x 2,解得x =23,∴BC =2x =43,故答案为:4310如图,在矩形ABCD 中,AB =3,AD =6,M 为AD 的中点,N 为BC 边上一动点,把矩形沿MN 折叠,点A ,B 的对应点分别为A ,B ,连接AA '并延长交射线CD 于点P ,交MN 于点O ,当N 恰好运动到BC 的三等分点处时,CP 的长为.【答案】1或5【分析】分两种情况:①当CN =2BN 时.过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形;②当BN =2CN 时,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,根据矩形的性质得GM =AM -AG =1.再由折叠的性质可得∠AOM =90°,然后根据相似三角形的判定与性质可得答案.【详解】解:①当CN =2BN 时.如图1,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =2.∵M 为AD 的中点,∴AM =3,∴GM =AM -AG =1.由折叠A 与A 对应,∴∠AOM =90°,∵∠MAO +∠APD =90°,∠MAO +∠AMO =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∵∠NGM =∠ADP =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD -DP =1.②当BN =2CN 时,如图2,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =4.∵M 为AD 的中点,∴AM =3,∴GM =AG -AM =1.由折叠A 与A 对应,∴∠AOM =90°∠MAO +∠AMO =90°,∠MAO +∠APD =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∠ADP =∠NGM =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD +DP =5.综上,CP 的长为1或5.故答案为:1或5.【点睛】此题考查的是翻折变换-折叠问题、矩形的性质,正确作出辅助线是解决此题的关键.11如图,DE 平分等边△ABC 的面积,折叠△BDE 得到△FDE ,AC 分别与DF ,EF 相交于G ,H 两点.若DG =m ,EH =n ,用含m ,n 的式子表示GH 的长是.【答案】m 2+n 2【分析】先根据折叠的性质可得S △BDE =S △FDE ,∠F =∠B =60°,从而可得S △FHG =S △ADG +S △CHE ,再根据相似三角形的判定可证△ADG ∽△FHG ,△CHE ∽△FHG ,根据相似三角形的性质可得S △ADG S △FHG =DG GH2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,然后将两个等式相加即可得.【详解】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,∵折叠△BDE 得到△FDE ,∴△BDE ≌△FDE ,∴S △BDE =S △FDE ,∠F =∠B =60°=∠A =∠C ,∵DE 平分等边△ABC 的面积,∴S 梯形ACED =S △BDE =S △FDE ,∴S △FHG =S △ADG +S △CHE ,又∵∠AGD =∠FGH ,∠CHE =∠FHG ,∴△ADG ∽△FHG ,△CHE ∽△FHG ,∴S △ADG S △FHG =DG GH 2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,∴S △ADG S △FHG +S △CHE S △FHG =m 2+n 2GH 2=S △ADG +S △CHE S △FHG =1,∴GH 2=m 2+n 2,解得GH =m 2+n 2或GH =-m 2+n 2(不符合题意,舍去),故答案为:m 2+n 2.【点睛】本题考查了等边三角形的性质、折叠的性质、相似三角形的判定与性质等知识点,熟练掌握相似三角形的判定与性质是解题关键.12在矩形ABCD 中,点E 为AD 边上一点(不与端点重合),连接BE ,将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,连接并延长EF ,BF 分别交BC ,CD 于G ,H 两点.若BA =6,BC =8,FH =CH ,则AE 的长为.【答案】92【分析】连接GH ,证明Rt △FHG ≅Rt △CHG (HL ),可得FG =CG ,设FG =CG =x ,在Rt △BFG 中,有62+x 2=(8-x )2,可解得CG =FG =74,知BG =254,由矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,得∠AEB =∠FEB ,可得∠FEB =∠EBG ,EG =BG =254,故EF =EG -FG =92,从而得到AE =92.【详解】连接GH ,如图:∵四边形ABCD 是矩形,∴∠A =∠C =90°,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴BF =AB =6,AE =EF ,∠BFE =∠A =90°,∴∠GFH =90°=∠C ,∵GH =GH ,FH =CH ,∴Rt △FHG ≅Rt △CHG (HL ),∴FG =CG ,设FG =CG =x ,则BG =BC -CG =8-x在Rt △BFG 中,BF 2+FG 2=BG 2∴62+x 2=(8-x )2,解得:x =74,∴CG =FG =74,∴BG =8-x =25x,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴∠AEB =∠FEB ,∵AD ⎳BC ,∴∠AEB =∠EBG ,∴∠FEB =∠EBG ,∴EG =BG =254,∴AE =92,故答案为:92.【点睛】本题考查矩形中的翻折变换,涉及三角形全等的判定与性质,勾股定理及应用,掌握相关知识是解题的关键.13如图,在矩形ABCD 中,AD =23,CD =6,E 是AB 的中点,F 是线段BC 上的一点,连接EF ,把△BEF 沿EF 折叠,使点B 落在点G 处,连接DG ,BG 的延长线交线段CD 于点H .给出下列判断:①∠BAC =30°;②△EBF ∽△BCH ;③当∠EGD =90°时,DG 的长度是23 ④线段DG 长度的最小值是21-3;⑤当点G 落在矩形ABCD 的对角线上,BG 的长度是3或33;其中正确的是.(写出所有正确判断的序号)【答案】①②③【分析】利用正切函数的定义即可判断①正确;利用同角的余角相等推出∠HBC =∠BEF ,可判断②正确;推出点D 、G 、F 三点共线,证明Rt △EAD ≌Rt △EGD HL ,可判断③正确;当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,由于F 是线段BC 上的一点,不存在D 、G 、E 三点共线,可判断④不正确;证明△BGE 是等边三角形,可判断⑤.【详解】解:连接AC ,∵矩形ABCD 中,AD =23,CD =6,∴tan ∠ACD =AD CD=236=33,∴∠ACD =30°,∴∠BAC =30°,故①正确;由折叠的性质知EF 是BG 的垂直平分线,∴∠HBC +∠BFE =90°=∠BEF +∠BFE ,∴∠HBC =∠BEF ,∴△EBF ∽△BCH ,故②正确;由折叠的性质知∠EGF =∠ABC =90°,∵∠EGD =90°,∴点D 、G 、F 三点共线,连接DE ,在Rt △EAD 和Rt △EGD 中,AE =BE =EG ,DE =DE ,∴Rt △EAD ≌Rt △EGD HL ,∴DG =AD =23,故③正确;∵AE =BE =EG ,∴点A 、G 、B 都在以E 为圆心,3为半径的圆上,DE =23 2+32=21,∴当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,但F 是线段BC 上的一点,∴D 、G 、E 三点不可能共线,故④不正确;当点G 落在矩形ABCD 的对角线AC 上时,由折叠的性质知BE =EG ,∵E 是AB 的中点,由①知∠BAC =30°,∴BE =EG =EA ,∠BAC =∠EGA =30°,∴∠BEG =∠BAC +∠EGA =60°,∴△BGE 是等边三角形,∴BG 的长度是3;由于F 是线段BC 上的一点,则点G 不会落在矩形ABCD 的对角线BD 上,故⑤不正确;综上,①②③说法正确,故答案为:①②③.【点睛】本题考查了矩形与折叠问题,正切函数,相似三角形的判定,勾股定理等知识,解答本题的关键是明确题意,找出所求问题需要的条件.14如图,将矩形ABCD沿BE折叠,点A与点A 重合,连接EA 并延长分别交BD、BC于点G、F,且BG=BF.(1)若∠AEB=55°,则∠GBF=;(2)若AB=3,BC=4,则ED=.【答案】40°/40度5-10/-10+5【分析】(1)先证明∠DEF=180°-2×55°=70°,∠BFG=∠DEF=70°,利用BG=BF,可得答案;(2)如图,过F作FQ⊥AD于Q,可得CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,则∠DEG=∠DGE,设DE=DG=x,而BD=32+42=5,则BG=BF=5-x,CF=4-5-x=1,再求解EF=12+32=10,由折叠可得:A E=AE=4 =x-1,EQ=x-x-1-x,AF=10-4+x,利用cos∠BFA=cos∠FEQ,再建立方程求解即可.【详解】解:(1)∵∠AEB=55°,结合折叠可得:∠AEB=∠A EB=55°,∴∠DEF=180°-2×55°=70°,∵矩形ABCD,∴AD∥BC,∴∠BFG=∠DEF=70°,∵BG=BF,∴∠BGF=∠BFG=70°;∴∠GBF=180°-2×70°=40°;故答案为:40°.(2)如图,过F作FQ⊥AD于Q,∴四边形FCDQ是矩形,则CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,∴∠DEG=∠DGE,∴设DE=DG=x,∵矩形ABCD,AB=3,BC=4,∴BD=32+42=5,∴BG=BF=5-x,∴CF=4-5-x=x-1,∴EQ=x-x-1=1,∴EF=12+32=10,由折叠可得:A E=AE=4-x,∴AF =10-4+x,∵∠QEF=∠BFA ,∴cos∠BFA =cos∠FEQ,∴EQEF=A FBF,∴110=10-4+x5-x,解得:x=5-10,经检验符合题意;∴DE=5-10.故答案为:5-10.【点睛】本题考查的是轴对称的性质,矩形的性质与判定,勾股定理的应用,锐角三角函数的应用,等腰三角形的判定与性质,熟练的利用以上知识解题是关键.三、解答题15综合与实践课上,老师让同学们以“正方形的折叠”为主题开展实践活动.(1)操作判断操作一:如图(1),正方形纸片ABCD,点E是BC边上(点E不与点B,C重合)任意一点,沿AE折叠△ABE到△AFE,如图(2)所示;操作二:将图(2)沿过点F的直线折叠,使点E的对称点G落在AE上,得到折痕MN,点C的对称点记为H,如图(3)所示;操作三:将纸片展平,连接BM,如图(4)所示.根据以上操作,回答下列问题:①B,M,N三点(填“在”或“不在”)一条直线上;②AE和BN的位置关系是,数量关系是;③如图(5),连接AN,改变点E在BC上的位置,(填“存在”或“不存在”)点E,使AN平分∠DAE.(2)迁移探究苏钰同学将正方形纸片换成矩形纸片ABCD,AB=4,BC=6,按照(1)中的方式操作,得到图(6)或图(7).请完成下列探究:①当点N在CD上时,如图(6),BE和CN有何数量关系?并说明理由;②当DN的长为1时,请直接写出BE的长.【答案】(1)①在,②AE⊥BN,相等;③不存在;(2)①BECN =23,理由见解析;②BE=2或165.【分析】(1)①E的对称点为E ,BF⊥EE ,MF⊥EE ,即可判断;②由①AE⊥BN,由同角的余角相等得∠BAE=∠CBN,由AAS可判定△ABE≌△BCN,由全等三角形的性质即可得证;③由AAS可判定△DAN≌△MAN,由全等三角形的性质得AM=AD,等量代换得AB=AM,与AB>AM矛盾,即可得证;(2)①由(1)中的②可判定△ABE∽△BCN,由三角形相似的性质即可求解;②当N在CD上时,△ABE∽△BCN,由三角形相似的性质即可求解;当N在AD上时,同理可判定△ABE∽△NAB,由三角形相似的性质即可求解.【详解】(1)解:①E的对称点为E ,∴BF⊥EE ,MF⊥EE ,∴B、F、M共线,故答案为:在;②由①知:B、F、M共线,N在FM上,∴AE⊥BN,∴∠AMB=90°,∴∠ABM+∠BAE=90°,∵四边形ABCD是正方形,∴∠ABC=∠BCN=90°,AB=BC,∴∠CBN+∠ABM=90°,∴∠BAE=∠CBN,在△ABE和△BCN中,∠BAE=∠CBN ∠ABC=∠BCN AB=BC,∴△ABE≌△BCN(AAS),∴AE=BN,故答案为:相等;③不存在,理由如下:假如存在,∵AN平分∠DAE,∴∠DAN=∠MAN,∵四边形ABCD是正方形,AM⊥BN,∴∠D=∠AMN=90°,在△DAN和△MAN中,∠D=∠AMN∠DAN=∠MAN AN=ANN∴△DAN≌△MAN(AAS),∴AM=AD,∵AD=AB,∴AB=AM,∵AB是Rt△ABM的斜边,∴AB>AM,∴AB =AM 与AB >AM 矛盾,故假设不成立,所以答案为:不存在;(2)解:①BE CN=23,理由如下:由(1)中的②得:∠BAE =∠CBN ,∠ABE =∠C =90°,∴△ABE ∽△BCN ,∴BE CN =AB BC=23;②当N 在CD 上时,CN =CD -DN =3,由①知:△ABE ∽△BCN ,∴BE CN =AB BC =23,∴BE =23CN =2,当N 在AD 上时,AN =AD -DN =5,∵∠BAE =∠CBN =∠ANB ,∠ABE =∠BAN =90°,∴△ABE ∽△NAB ,∴BE AB =AB AN ,∴BE 4=45,∴BE =165,综上所述:BE =2或165.【点睛】本题考查了折叠的性质,矩形的性质,正方形的性质,全等三角形的判定及性质,三角形相似的判定及性质,掌握相关的判定方法及性质,“十字架”典型问题的解法是解题的关键.16在矩形ABCD 中,AD =2AB =8,点P 是边CD 上的一个动点,将△BPC 沿直线BP 折叠得到△BPC .(1)如图1,当点P 与点D 重合时,BC ′与AD 交于点E ,求BE 的长度;(2)当点P 为CD 的三等分点时,直线BC ′与直线AD 相交于点E ,求DE 的长度;(3)如图2,取AB 中点F ,连接DF ,若点C ′恰好落在DF 边上时,试判断四边形BFDP 的形状,并说明理由.【答案】(1)BE 的长度为5;(2)DE 的长度为113或83;(3)四边形BFDP 是平行四边形(理由见解析)【分析】本题利用了折叠的知识(折叠后的两个图形全等)以及矩形的性质(矩形的对边相等,对角相等),以及平行四边形的判定有关知识.(1)利用矩形性质和折叠的性质可推出BE=DE,设BE=x,则DE=x,AE=8-x,利用勾股定理建立方程求解即可得出答案;(2)设DE=m,则AE=m+8,设BE交CD于G,可证得△AEB∽△CBG,得出CGAB =BCAE,即CG4=8m+8,求得CG=32m+8,分两种情况:当PC=13CD=43时,当PC=23CD=83时,分别添加辅助线构造相似三角形,利用相似三角形性质建立方程求解即可得出答案;(3)由中点定义可得AF=BF,过点C 作C M∥AD交AB于点M,过点F作FN⊥BC 于点N,由矩形性质和翻折的性质可得∠C BP=∠CBP=12∠C BC,可证得△FC M∽△FDA,得出FMAF=C MAD,再证得△BFN∽△BC M,进而推出FM=FN,利用角平分线的判定定理可得∠BC F=∠MC F=12∠BC M推出∠BC F=∠C BP,再由平行线的判定定理可得DF∥BP,运用平行四边形的判定定理即可证得四边形BFDP是平行四边形.【点睛】点睛片段【详解】(1)解:∵AD=2AB=8,∴AB=4,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∴∠ADB=∠DBC,由折叠得:∠DBC=∠DBC ,∴∠ADB=∠DBC ,即∠EDB=∠EBD,∴BE=DE,设BE=x,则DE=x,AE=8-x,在Rt△ABE中,AE2+AB2=BE2,∴(8-x)2+42=x2,解得:x=5,∴BE的长度为5;(2)设DE=m,则AE=m+8,设BE交CD于G,∵四边形ABCD是矩形,∴BC=AD=8,CD=AB=4,AD∥BC,∠A=∠BCG=90°,∴∠AEB=∠CBG,∴△AEB∽△CBG,∴CG AB =BCAE,即CG4=8m+8,∴CG=32m+8,当PC=13CD=43时,BP=BC2+PC2=82+432=4373,连接CC ,过点C 作C H⊥CD于点H,如图,∵将△BPC沿直线BP折叠得到△BPC ,∴CC ⊥BP,△BPC ≌△BPC,∴S四边形BCPC =2S△BPC,∴1BP⋅CC =2×1BC⋅PC,即12×4373CC =2×12×8×43,∴CC =163737,∵∠C CH +∠BPC =90°,∠PBC +∠BPC =90°,∴∠C CH =∠PBC ,∵∠CHC =∠BCP =90°,∴△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 43=CH 8=1637374373,∴C H =1637,CH =9637,∵∠C HG =∠EDG =90°,∴C H ∥AE ,∴∠GC ′H =∠AEB ,∴△C GH ∽△EBA ,∴GH AB =C H AE ,即GH 4=1637m +8,∴GH =6437(m +8),∵CH +GH =CG ,∴9637+6437(m +8)=32m +8,解得:m =113,经检验,m =113是该方程的解,∴DE =113;当PC =23CD =83时,BP =BC 2+PC 2=82+83 2=8103,连接CC ,过点C 作C H ⊥CD 交CD 的延长线于点H ,作C G ⊥AD 于点G ,如图,同理可得:CC =8105,同理△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 83=CH 8=81058103,∴C H =85,CH =245,∴DH =CH -CD =245-4=45,∵∠HDG =∠H =∠C GD =90°,∴四边形DGC H 是矩形,∴C G =DH =45,DG =C H =85,∵∠C GE =∠A =90°,∠C EG =∠BEA ,∴△C EG ∽△BEA ,∴EG AE =C G AB =454=15,∴AE =5EG ,∵AE +EG =AG =AD -DG =8-85=325,∴5EG +EG =325,∴EG =1615,∴DE =DG +EG =85+1615=83,综上所述,DE 的长度为113或83;(3)四边形BFDP 是平行四边形,理由如下:∵点F 是AB 的中点,∴AF =BF ,过点C 作C M ∥AD 交AB 于点M ,过点F 作FN ⊥BC 于点N ,如图,则∠FC M =∠ADF ,∵四边形ABCD 是矩形,∴AD ∥BC ,AB ∥CD ,∴C M ∥BC ,∴∠BC M =∠C BC ,由翻折得:∠C BP =∠CBP =12∠C BC ,BC =BC =8,∵C M ∥AD ,∴△FC M ∽△FDA ,∴FM AF =C M AD ,∴FM BF =C MBC ,∵∠BNF =∠BMC =90°,∠FBN =∠C BM ,∴△BFN ∼△BC M∴FN BF =C MBC ,∴FM BF =FN BF ,∴FM =FN ,又∵FM ⊥C M ,FN ⊥C B ,∴∠BC F =∠MC F =12∠BC M ,∴∠BC F =∠C BP ,∴DF ∥BP ,∴四边形BFDP 是平行四边形.17矩形ABCD 中,AB =6,AD =8,点E 为对角线AC 上一点,过点E 作EF ⊥AD 于点F ,EG ⊥AC 交边BC 于点G ,将△AEF 沿AC 折叠得△AEH ,连接HG .(1)如图1,若点H 落在边BC 上,求证:AH =CH ;(2)如图2,若A ,H ,G 三点在同一条直线上,求HG 的长;(3)若△EHG 是以EG 为腰的等腰三角形,求EF 的长.【答案】(1)见解析(2)HG =94(3)EF =103或4【分析】(1)根据矩形的性质和翻折的性质证明∠ACH =∠HAC ,即可解决问题;(2)结合(1)的方法AG =CG ,解Rt △AEG ,Rt △HEG 分别求得EG ,HG ;(3)当△EHG 是以EG 为腰的等腰三角形时,分两种情况:①当EG =EH ,②当EG =HG ,结合(2)的方法,利用全等三角形的判定与性质和相似三角形的判定与性质即可解决问题.【详解】(1)∵四边形ABCD 是矩形,∴AD ∥BC .∴∠DAE =∠ACH .∵△AHE 由△AFE 折叠得到,∴∠HAC =∠DAE ,∴∠HAC =∠ACH ,∴AH =CH ;(2)∵矩形ABCD 中,AB =6,AD =8.∴AC =10.当A ,H ,G 三点在同一条直线上时,∠EHG =90°.同(1)可得AG =CG .又∵EG ⊥AC ,∴AE =12AC =5.∵∠AEH +∠HEG =90°,∠AEH +∠HAE =90°,∴∠HEG =∠HAC =∠CAD .∵在Rt △AEG 中,tan ∠EAG =EG AE =34,∴EG =34AE =154.∵在Rt △HEG 中,sin ∠HEG =HG EG =35,∴HG =35EG =94.(3)①若EH =EG ,如图3①设EF =EH =EG =x ,∵EF ⊥AD ,∴EF ∥CD ,∴△AEF ∽△ACD ,∴AE AC =AF AD =EF CD ∴AE 10=AF 8=x 6∴AE =53x ,AF =43x ,∴AH =AF =43x ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,EH =EH ,∴△AHE ≌△CGE AAS ,∴AH =CE ,∴43x =10-53x ,∴x =103∴EF =103.②若HG =GE ,如图3②.(图3②)过点G 作GM ⊥HE ,设EF =a ,∵EC =10-53a ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,∴△AHE ∽△CGE ,∴EG =34EC =3410-53a =152-54a ,∵∠GME =∠EHA ,∠MGE =90°-∠MEG =∠HAE ,∴△MGE ∽△HEA ,∴ME AH =EG AE ,∵AH AE =AD AC =45,∴AH =45AE ,∴ME =45EG =45152-54a =6-a ,∴HE =2ME =12-2a =EF ,∴12-2a =a ,∴a =4,∴EF =4,综上,EF =103或4.【点睛】本题考查了矩形的性质,解直角三角形,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰三角形的性质,翻折的性质,解决本题的关键是综合运用以上知识.18综合与实践【问题情境】数学活动课上,老师准备了若干张正方形纸片ABCD,组织同学们进行折纸探究活动.【初步尝试】把正方形对折,折痕为EF,然后展开,沿过点A与点E所在的直线折叠,点B落在点B 处,连接 B C,如图1,请直接写出∠AEB 与∠ECB 的数量关系.【能力提升】把正方形对折,折痕为EF,然后展开,沿过点A与BE上的点G所在的直线折叠,使点B落在EF上的点P处,连接PD,如图2,猜想∠APD的度数,并说明理由.【拓展延伸】在图2的条件下,作点A关于直线CP的对称点A ,连接PA ,BA ,AC,如图3,求∠PA B的度数.【答案】初步尝试:∠AEB =∠ECB ;能力提升:猜想:∠APD=60°,理由见解析;拓展延伸:∠PA B=15°【分析】初步尝试:连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,根据等边对等角的性质和三角形内角和定理,得出∠BB C=90°,推出AE∥CB ,即可得出答案;能力提升:根据正方形的性质和折叠的性质,易证△AFP≌△DFP SAS,从而证明△APD是等边三角形,即可得到答案;拓展延伸:连接A C、AA ,由(2)得△APD是等边三角形,进而得出∠PDC=30°,再结合等边对等角的性质和三角形内角和定理,求得∠PAC=15°,∠ACP=30°,由对称性质得:AC=A C,∠ACP=∠A CP=30°,证明△AA B≌△CA B SSS,得到∠CA B=30°,再由∠CA P=∠CAP=15°,即可求出∠PA B的度数.【详解】解:初步尝试:∠AEB =∠ECB ,理由如下:如图,连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,∴BE=CE=BE ,∴∠EBB =∠EB B,∠ECB =∠EB C,∵∠EBB +∠EB B+∠EB C+∠ECB =2∠EB B+∠EB C=180°,∴∠BB C=90°,即BB ⊥CB ,∴AE∥CB ,∴∠AEB=∠ECB ,∴∠AEB =∠ECB ;解:能力提升:猜想:∠APD=60°,理由如下:理由:∵四边形ABCD是正方形,∴AB=AD,∠ADC=90°,由折叠性质可得:AF =DF ,EF ⊥AD ,AB =AP ,在△AFP 和△DFP 中,AF =DF∠AFP =∠DFP =90°FP =FP,∴△AFP ≌△DFP SAS ,∴AP =PD ,∴AP =AD =PD ,∴△APD 是等边三角形,∴∠APD =60°;解:拓展延伸:如图,连接A C 、AA ,由(2)得△APD 是等边三角形,∴∠PAD =∠PDA =∠APD =60°,AP =DP =AD ,∵∠ADC =90°,∴∠PDC =30°,又∵PD =AD =DC ,∴∠DPC =∠DCP =12×180°-30° =75°,∠DAC =∠DCA =45°,∴∠PAC =∠PAD -∠DAC =60°-45°=15°,∠ACP =∠DCP -∠DCA =75°-45°=30°,由对称性质得:AC =A C ,∠ACP =∠A CP =30°,∴∠ACA =60°,∴△ACA 是等边三角形,在△AA B 与△CA B 中,A A =A CA B =A B AB =BC,∴△AA B ≌△CA B SSS ,∴∠AA B =∠CA B =12∠AA C =30°,又∵∠CA P =∠CAP =15°,∴∠PA B =∠CA B -∠CA P =15°.【点睛】本题考查了折叠的性质,等腰三角形的判定和性质,三角形内角和定理,正方形的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,作辅助线构造全等三角形是解题关键.19综合与实践数学活动课上,数学老师以“矩形纸片的折叠”为课题开展数学活动:将矩形纸片ABCD 对折,使得点A ,D 重合,点B ,C 重合,折痕为EF ,展开后沿过点B 的直线再次折叠纸片,点A 的对应点为点N ,折痕为BM . (1)如图(1)若AB =BC ,则当点N 落在EF 上时,BF 和BN 的数量关系是,∠NBF 的度数为.思考探究:(2)在AB=BC的条件下进一步进行探究,将△BMN沿BN所在的直线折叠,点M的对应点为点M .当点M 落在CD上时,如图(2),设BN,BM 分别交EF于点J,K.若DM =4,请求出三角形BJK的面积.开放拓展:(3)如图(3),在矩形纸片ABCD中,AB=2,AD=4,将纸片沿过点B的直线折叠,折痕为BM,点A的对应点为点N,展开后再将四边形ABNM沿BN所在的直线折叠,点A的对应点为点P,点M的对应点为点M ,连接CP,DP,若PC=PD,请直接写出AM的长.(温馨提示:12+3=2-3,12+1=2-1)【答案】(1)BF=12BN,60°(2)2+2(3)4-23【分析】(1)根据折叠的性质得:AB=BN,BF=CF=12BC,根据直角三角形的性质可得∠BNF=30°,由直角三角形的两锐角互余可得结论;(2)由折叠得:BM=BM ,证明Rt△ABM≌Rt△CBM (HL),可知AM=CM ,∠ABM=∠CBM ,得△BFJ是等腰直角三角形,再证明四边形ABCD是正方形,分别计算BF=FJ=12BC=2+2,JK=2,由三角形面积公式可得结论;(3)如图(3),过点P作PG⊥BC于G,PH⊥CD于H,根据等腰三角形的三线合一可得DH=CH=12CD=12AB=1,由折叠的性质和矩形的性质可得PG=CH=1,BN=BP=AB=2,∠NBP=∠ABN,设PL=x,则M L=2x,M P=3x,根据NL=233=NM +M L,列方程可解答.【详解】(1)解:由折叠得:AB=BN,BF=CF,∠BFN=90°,∵AB=BC,∴BF=12BN,∴∠BNF=30°,∴∠NBF=90°-30°=60°,故答案为:BF=12BN,60°;(2)由折叠得:BM=BM ,∵四边形ABCD是矩形,∴∠A=∠C=90°,∵AB=BC,∴Rt△ABM≌Rt△CBM (HL),∴AM=CM ,∠ABM=∠CBM ,∴∠ABM=∠MBN=∠NBM =∠CBM ,∴∠FBJ=45°,∴△BFJ是等腰直角三角形,∵四边形ABCD是矩形,AB=BC,∴矩形ABCD是正方形,∴AD=CD,∠D=90°,∴DM=DM =4,∴MM =42,∵AM=MN=M N=CM ,∴CM =22,∴BC =CD =4+22,∴BF =FC =2+2,∵FK ∥CM ,∴BK =KM ,∴FK =12CM =2,∵△BFJ 是等腰直角三角形,∴BF =FJ =12BC =2+2,∴JK =2+2-2=2,∴S △BJK =12⋅JK ⋅BF =12×2×(2+2)=2+2;(3)如图,过点P 作PG ⊥BC 于G ,PH ⊥CD 于H ,∵PC =PD ,∴DH =CH =12CD =12AB =1,∵∠PGC =∠PHC =∠BCH =90°,∵四边形PGCH 是矩形,∴PG =CH =1,由折叠得:BN =BP =AB =2,∠NBP =∠ABN ,Rt △BPG 中,∠PBG =30°,∴∠ABN =∠NBP =90°-30°2=30°,延长NM ,BP 交于L ,Rt △BNL 中,BN =2,∠NBL =30°,∴NL =2×33=233,Rt △M PL 中,∠M LP =90°-30°=60°,∴∠PM L =30°,设PL =x ,则M L =2x ,M P =3x ,∵NL =233=NM +M L ,∴3x +2x =233,∴x =433-2,∴AM =3x =3×433-2 =4-23.【点睛】本题是四边形的综合题,考查了折叠的性质,含30°角的直角三角形的性质,矩形的性质和判定,正方形的判定和性质,三角函数等知识,掌握折叠的性质和正确作辅助线是解题的关键,题目具有一定的综合性,比较新颖.20综合与实践综合与实践课上,老师带领同学们以“矩形和平行四边形的折叠”为主题开展数学活动.(1)操作判断如图1,先用对折的方式确定矩形ABCD 的边AB 的中点E ,再沿DE 折叠,点A 落在点F 处,把纸片展平,延长DF ,与BC 交点为G .。
初中数学专题:折叠问题精选40题
初中数学分为代数、几何和概率统计三大部分。
其中几何以平面几何为主。
欧几里得曾说过这样一句话“几何是人类思维的体操”,它在训练我们逻辑能力方面起着重要的作用。
初中几何里面有一个非常重要的知识点,就是轴对称。
这个知识从初一开始学,一直到初三到中考,都会进行各种方式的考察。
它的出题形式多种多样,其中翻折折叠问题是最为普遍也是最难解答的一类方式。
尤其在中考的折叠问题中,折叠是将轴对称隐藏在题目之中,在整个题干中看不到轴对称的字眼,学生很难发现隐藏的这个知识,所以经常手足无措,不知从何入手。
解决这类问题的关键,一是要找准图形沿着那条直线折叠,这条直线就是对称轴。
二是要找准折叠前后的两个图形是谁,对应点、对应角分别是谁。
只有找准这两条,才能判断图中哪些线段是相等的,那些角是相等的,那条线段是另一条线段的垂直平分线。
解决问题的时候,才能有的放矢。
本篇文章,老师给大家精选了40道折叠问题,形式上有选择题、填空题、解答题,难度有难有易,从初一学生到即将参加中考的初三学生都能从中找到适合自己学段的题目进行练习。
中考数学几何图形折叠试题典题及解答一、选择题1.(德州市)如图,四边形ABCD为矩形纸片.把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF.若CD=6,则AF等于()A.4B.3C.4D.82.(江西省)如图,将矩形ABCD纸片沿对角线BD折叠,使点C落在C′处,BC′交AD于E,若∠DBC=22.5°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有()A.6个B.5个C.4个D.3个3.(乐山市)如图,把矩形纸条ABCD沿EF,GH同时折叠,B,C两点恰好落在AD边的P 点处,若∠FPH=90°,PF=8,PH=6,则矩形ABCD的边BC长为()A.20B.22C.24D.304.(绵阳市)当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知矩形ABCD,我们按如下步骤操作可以得到一个特定的角:(1)以点A所在直线为折痕,折叠纸片,使点B落在AD 上,折痕与BC交于E;(2)将纸片展平后,再一次折叠纸片,以E所在直线为折痕,使点A 落在BC上,折痕EF交AD于F.则∠AFE =()A.60°B.67.5°C.72°D.75°5. (绍兴市)学习了平行线后,小敏想出了过己知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4)).从图中可知,小敏画平行线的依据有()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①②B.②③C.③④D.①④6.(贵阳市)如图6-1所示,将长为20cm,宽为2cm的长方形白纸条,折成图6-2所示的图形并在其一面着色,则着色部分的面积为()A.34cm2 B.36cm2C.38cm2 D.40cm2二、填空题7.(成都市)如图,把一张矩形纸片ABCD沿E F折叠后,点C,D分别落在C′,D′的位置上,EC′交AD于点G.已知∠EFG=58°,那么∠B EG°.8. (苏州市)如图,将纸片△ABC沿DE折叠,点A落在点A′处,已知∠1+∠2=100°,则∠A的大小等于____________度.三、解答题9.(荆门市)如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;在(2)的情况下,在该抛物线上是否存在点Q,使△P EQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.10. (济宁市)如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ.求证:△PBE∽△QAB;你认为△PBE和△BAE相似吗?如果相似给出证明,如不相似请说明理由;如果沿直线EB折叠纸片,点A是否能叠在直线EC 上?为什么?11.(威海市)如图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC.翻折纸片ABCD,使点A与点C重合,折痕为EF.已知CE⊥AB.(1)求证:EF∥BD;(2)若AB=7,CD=3,求线段EF的长.12. (烟台市)生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为2 6 cm,宽为xcm,分别回答下列问题:为了保证能折成图④的形状(即纸条两端均超出点P),试求x的取值范围.(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离(用x表示).13. 将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.14.(孝感市)在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).请解答以下问题:(1)如图2,若延长MN交BC于P,△BMP 是什么三角形?请证明你的结论.(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP ?(3)设矩形ABCD的边AB=2,BC=4,并建立如图3所示的直角坐标系. 设直线BM′为y=kx,当∠M′BC=60°时,求k的值.此时,将△ABM′沿BM′折叠,点A是否落在EF上(E、F分别为AB、CD中点)?为什么?15.(邵阳市)如图①,△ABC中,∠ACB=90°,将△ABC沿着一条直线折叠后,使点A与点C 重合(图②).(1)在图①中画出折痕所在的直线l.设直线l 与AB,AC分别相交于点D,E,连结CD.(画图工具不限,不要求写画法)(2)请你找出完成问题(1)后所得到的图形中的等腰三角形.(不要求证明)16.(济宁市)如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ. 求证:△PBE∽△QAB;你认为△PBE和△BAE相似吗?如果相似给出证明,如补相似请说明理由;(3)如果直线EB折叠纸片,点A是否能叠在直线EC上?为什么?17.(临安市)如图,△OAB 是边长为的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB 折叠,使点A落在边OB上,记为A′,折痕为EF.(1)当A′E//x轴时,求点A′和E的坐标;(2)当A′E//x轴,且抛物线经过点A′和E时,求抛物线与x轴的交点的坐标;(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.18.(南宁市)如图,在锐角△ABC中,BC=9,AH⊥BC于点H,且AH=6,点D为AB边上的任意一点,过点D作DE∥BC,交AC于点E.设△ADE的高AF为x(0<x<6),以DE为折线将△ADE翻折,所得的△A′DE与梯形DBCE重叠部分的面积记为y(点A关于DE的对称点A′落在AH所在的直线上).(1)分别求出当0<x≤3与3<x<6时,y与x 的函数关系式;(2)当x取何值时,y的值最大?最大值是多少?19.(宁夏回族自治区)如图,将矩形纸片ABCD沿对角线B D折叠,点C落在点E处,BE交AD于点F,连结AE.证明:(1)BF=DF;(2)AE∥BD.参考答案一、1.A 2.B 3.C 4.B 5.C 6.B二、7.648.50°三、9. 解:(1)由已知PB平分∠APD,PE平分∠OPF,且PD、PF重合,则∠OPE+∠APB= 90°.又∠APB+∠ABP=90°,∴∠OPE=∠PBA.∴Rt△POE∽Rt△BPA.∴.即.∴.且当x=2时,y 有最大值.由已知,△PAB、△POE均为等腰直角三角形,可得P(1,0),E(0,1),B(4,3).……6分设过此三点的抛物线为y=ax2+bx+c ,则∴y=.由(2)知∠EPB=90°,即点Q与点B重合时满足条件.直线PB为y=x-1,与y轴交于点(0,-1).将PB向上平移2个单位则过点E(0,1),∴该直线为y=x+1.由得∴Q(5,6).故该抛物线上存在两点Q(4,3)、(5,6)满足条件.10. 证明:(1)∵∠PBE+∠ABQ=180°-90°=90°,∠PBE+∠PEB=90°,∴∠ABQ=∠PEB.又∵∠BPE=∠AQB=90°,∴△PBE~△QAB.(2)∵△PBE~△QAB ,∴∵B Q=P B,∴.又∵∠ABE=∠BPE=90°,∴△PBE~△BAE.(3)点A能叠在直线EC上.由(2)得,∠AE B=∠CEB,∴EC和折痕AE重合.11. 解:(1)证明:过C点作CH∥BD,交AB的延长线于点H;连结AC,交EF于点K,则AK=CK.∵AB∥CD,∴BH=CD,BD=CH.∵AD=BC,∴AC=BD=CH.∵CE⊥AB,∴AE=EH.∴EK是△AHC的中位线.∴EK∥CH.∴EF∥BD.(2)解:由(1)得BH∥CD,EF∥BD,∴∠AEF=∠ABD.∵AB=7,CD=3,∴AH=10.∵AE=CE,AE=EH,∴AE=CE=EH=5.∵CE⊥AB,∴CH=5=BD.∵∠EAF=∠BAD,∠AEF=∠ABD,∴△AFE∽△ADB.∴.∴.12. 解:(1)由折纸过程知0<5x<26,,0<x <.(2)图④为轴对称图形,∴A M =.即点M与点A的距离是(13-x)cm.13. 证明:⑴由折叠可知:∠D=∠D′,CD=A D′,∠C=∠D′AE.∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,∠C=∠BAD.∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD,即∠1+∠2=∠2+∠3.∴∠1=∠3.∴△ABE ≌△AD′F.⑵四边形AECF是菱形.由折叠可知AE=EC,∠4=∠5.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠5=∠6.∴∠4=∠6.∴AF=AE.∵AE=EC,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.∵AF=AE,∴四边形AECF是菱形.14. 解:(1)△BMP是等边三角形.证明:连结AN.∵EF垂直平分AB,∴AN = BN.由折叠知AB = BN ,∴AN = AB = BN,∴△ABN为等边三角形.∴∠ABN =60°. ∴∠PBN =30°.又∵∠ABM =∠NBM =30°,∠BNM =∠A =9 0°.∴∠BPN =60°.∠MBP =∠MBN +∠PBN =60°.∴∠BMP =60°∴∠MBP =∠BMP =∠BPM =60°.∴△BMP为等边三角形 .(2)要在矩形纸片ABCD上剪出等边△BMP,则BC ≥BP.在Rt△BNP中,BN = BA =a,∠PBN =30°,∴BP =. ∴b≥. ∴a≤b .∴当a≤b时,在矩形上能剪出这样的等边△BMP.(3)∵∠M′BC =60°,∴∠ABM′=90°-60°= 30°.在Rt△ABM′中,tan∠ABM′ =. ∴tan3 0°=. ∴AM′ =.∴M′(,2). 代入y=kx中,得k== .设△ABM′沿BM′折叠后,点A落在矩形ABCD 内的点为A′.过A′作AH ⊥BC交BC于H.∵△A′BM′ ≌△ABM′,∴∠A′BM′=∠ABM′=3 0°, A′B = AB =2.∴∠A′BH=∠M′BH-∠A′BM′=30°.在Rt△A′BH中,A′H =A′B =1 ,BH=,∴.∴A'落在EF上.(图2)(图3)15.解:(1)如图.等腰三角形DAC.16.(1)证明:∵∠PBE+∠ABQ=180°-90°=90°,∠PBE+∠PEB=90°,∴∠ABQ=∠PEB.又∵∠BPE=∠AQB,∴△PBE∽△QAB.(2)∵△PBE∽△QAB,∴. ∵B Q=P B,∴.又∵∠ABE=∠BPE=90°,∴△PBE~△BAE.(3)点A能折叠在直线EC上.由(2)得,∠AEB=∠CEB,∴EC和折痕AE 重合.17. 解:(1)由已知可得∠A'OE=60o , A'E= AE.由A′E//x轴,得△OA'E是直角三角形.设A′的坐标为(0,b),则AE=A'E=b,OE=2b.∵b+2b=2+,∴b=1.∴A'、E的坐标分别是(0,1)与(,1).(2)因为A'、E在抛物线上,所以所以函数关系式为y =.由=0得,.与x轴的两个交点坐标分别是(-,0)与(,0).(3)不可能使△A'EF成为直角三角形.∵∠FA'E=∠FAE=60o,若△A'EF成为直角三角形,只能是∠A'EF=90o或∠A'FE=90o.若∠A'EF=90o,利用对称性,则∠AEF=90o, A'、E、A三点共线,O与A重合,与已知矛盾.同理若∠A'FE=90o也不可能.所以不能使△A′EF成为直角三角形.18. 解:(1)①当0<x≤3时,由折叠得到的△A'ED落在△ABC内部如图10(1),重叠部分为△A'ED.∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC.∴.∴,即.又∵FA'=FA=x,∴y=DE·A'F=·x·x.∴(0<x≤3).②当3<x<6时,由折叠得到的△A'ED有一部分落在△ABC外,如图10(2),重叠部分为梯形EDPQ.∵FH=6-AF=6-x, A'H=A'F-FH=x-(6-x)=2x-6,又∵DE∥PQ,∴△A'PQ∽△A'DE.∴.∴∴.(2)当0<x≤3时,y的最大值;当3<x<6时,由,可知当x=4时,y的最大值y2=9.∵y1<y2,∴当x=4时,y有最大值y最大=9.19. 证明:(1)能正确说明∠ADB=∠EBD(或△ABF≌△EDF),∴BF=DF.(2)能得出∠AEB=∠DBE(或∠EAD=∠BD A),∴AE∥BD.。
七年级数学下册平行线【折叠问题】专项练习题+答案1、把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若∠CDF=38°,则∠EFD的度数是( B )A.72°B.64°C.48°D.52°ABCD沿AE向上折叠,使点B落在DC边上的点F处.若△AFD的周长为18,△ECF的周长为6,四边形纸片ABCD的周长为( B )A.20B.24C.32D.48解:由折叠的(电子版关注微信公众号:初一数学语文英语)性质知,AF=AB,EF=BE. 所以四边形纸片ABCD的周长等于△AFD和△ECF的周长和为18+6=24. 故四边形纸片ABCD的周长为24.3.将正方形纸片ABCD折叠,使得点A落在CD边上的点E处,折痕为MN.则下列说法错误的是( D )A.AE⊥MNB.AM=EMC.∠BNO=∠FNOD.∠OEF=90°解:在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等.∠BAM和∠FEM是对应角,所以∠BNO=∠FNO,∠BAM=∠FEM=90°,4.如图,先将正方形ABCD对折,折痕为EF,将这个正方形展平后,再分别将A,B 折叠到折痕EF,使点A,B都与折痕EF上的点G重合,则下列说法错误的是( B )A.∠MGD=90°B.∠DGF=∠MGEC.DG=CGD.∠BCN=∠GCN解:将A,B折叠到折痕EF,使点A,B都与折痕EF上的点G重合,则直线MD,NC 分别是对称轴,根据轴对称图形中,(电子版关注微信公众号:初一数学语文英语)对应线段相等,对应角相等,5.图1的长方形ABCD中,点E在AD边上,AD∥BC,∠A=∠D=90°,∠BEA=60°.(电子版关注微信公众号:初一数学语文英语)现分别以BE,CE为折线,将A,D向BC的方向折过去,图2为对折后A,B,C,D,E五点在同一平面上的位置图.若,则∠BCE的度数为( D )A.30°B.32.5°C.35°D.37.5°解:分别以BE,CE为折线,将A,D向BC的方向翻折,则直线BE,CE分别是对称轴,6.如图,△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC于D,交AC于E,连接AD,若AE=4cm,则△ABD的周长是多少cm.( D )A.26B.16C.18D.22由轴对称图形的性质,(电子版关注微信公众号:初一数学语文英语)得AD=CD,AE=CE.7.如图,在△ABC中,AB=AC=20cm,将△ABC对折,使A与B重合,折痕为DE,(电子版关注微信公众号:初一数学语文英语)若△BCD的周长为27cm,则BC的长为多少cm.( C )A.10B.9C.7D.138.在Rt△ABC中,CD=3cm,现将直角边BC沿直线BD折叠,使它落在斜边AB上,且与BE重合,△ABD的面积是12cm²,则AB的长是多少cm( A )A.8B.4C.9D.3。
初中数学几何图形中的折叠问题解题思路折叠问题中的背景图形通常有,三角形、正方形、矩形、梯形等,解决这类问题的关键是一定要灵活运用轴对称和背景图形的性质。
轴对称性质:折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上。
典型例题:例题1、如图,在Rt△ABC 中,∠ACB=90°,AB=10,AC=8,E、F 分别为 AB、BC 上的点,沿线段 EF 将∠B 折叠,使点 B 恰好落在 AC 上的点 D 处,试问当△ADE 恰好为直角三角形时,此时 BE 的长度为多少?解题思路:△ADE 为直角三角形分两种情况:①∠ADE =90°,②∠AED = 90°,此题需要分类讨论,结合三角形的相似、折叠的性质,来求折叠中线段的长度,关键是能画出折叠后的图形。
解答过程:当 ∠ADE = 90°时,如下图所示:证明:先来证明四边形 DEBF 为棱形:∵ 在Rt△ABC 中,∠ACB=90°,∠ADE = 90° ,∴ DE∥BC ,∴ ∠DEF = ∠EFB ,又∵ 沿线段 EF 将 ∠B 折叠,∴ DE = BE ,DF = BF ,∠DFE = ∠BFE ,∴ ∠DEF = ∠DFE ,DE = DF = BF ,∴ 四边形 DEBF 为棱形。
(一组对边平行且相等的四边形是平行四边形,邻边相等的平行四边形是棱形)。
再来证明Rt△ADE ∽ Rt△ACB (相似三角形判断图形中的“A”字型)∵ 在三角形 ACB 中,DE∥BC ,∴ Rt△ADE ∽ Rt△ACB ,设棱形 DEBF 的边长为 x , 则有 DE = x , AE = 10 - x ,在Rt△ACB 中,AB = 10 , AC = 8 ,由勾股定理得:BC = 6 。
01如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG,GF,AF之间的数量关系,并说明理由;(3)若AG=6,EG=25,求BE的长.(1)证明:由折叠性质可得,EF =FD ,∠AEF =∠ADF =90°,∠EFA =∠DFA ,EG =GD ,∵EG ∥DC ,∴∠DFA =∠EGF ,∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形;(2)解:EG 2=12GF ·AF .理由如下: 如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE , ∵∠FEH =90°-∠EFA =∠FAE ,∠FHE =∠AEF =90°,∴Rt △FEH ∽Rt △FAE ,∴EF AF =FH EF,即EF 2=FH ·AF , 又∵FH =12GF ,EG =EF ,∴EG 2=12GF ·AF ; (3)解:∵AG =6,EG =25,EG 2=12AF ·GF ,∴(25)2=12(6+GF )·GF , 解得GF =4或GF =-10(舍),∴GF =4,∴AF =10.∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8,∵∠CDE+∠DFA=90°,∠DAF+∠DFA=90°,∴∠CDE=∠DAF,∵∠DCE=∠ADF=90°,∴Rt△DCE∽Rt△ADF,∴ECDF=DEAF,即EC25=810,∴EC=855,∴BE=BC-EC=1255.02如图,将矩形ABCD沿对角线BD对折,点C落在E处,BE与AD相交于点F,若DE=4,BD=8.(1)求证:AF=EF;(2)求证:BF平分∠ABD.证明:(1)在矩形ABCD中,AB=CD,∠A=∠C=90°,∵△BED是△BCD对折得到的,∴ED=CD,∠E=∠C,∴ED=AB,∠E=∠A,(2分)又∵∠AFB=∠EFD,∴△ABF≌△EDF(AAS),∴AF=EF;(4分)(2)在Rt△BCD中,∵DC=DE=4,BD=8,∴sin∠CBD=DCBD=12,∴∠CBD=30°,(5分)∴∠EBD=∠CBD=30°,∴∠ABF=90°-30°×2=30°,(7分)∴∠ABF=∠EBD,∴BF平分∠ABD.(8分)03把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG。
初三几何翻折练习题翻折几何是初中数学中的重要知识点之一,它既有理论基础,也有实际应用。
通过翻折几何的学习,可以培养学生的观察力、思维能力和创造力。
下面,我们将介绍一些初三几何翻折练习题,帮助同学们更好地掌握这一知识点。
1. 长方形翻折练习将一张纸沿着AB和CD两边对折,将得到一个正方形,记作EFGH。
接下来,将纸沿着FE和GH两边对折,再将其展开,你会发现得到的是什么图形?请给出理论解释。
解析:经过两次对折后,纸张被完全折叠成原来的形状。
即纸张经过对折后与原来的图形完全重合。
2. 正六边形翻折练习请用翻折的方法,将一个正六边形折叠成一个正三角形,并给出详细步骤。
解析:将正六边形的一个顶点A与相对的边BC中点O连接,再将AO对折成与BC相等的一条线段,记作M。
接下来,将B、M、O三点依次连接,得到一个正三角形。
3. 矩形翻折练习给定一个矩形ABCD,其中AB=4cm,BC=6cm。
请用翻折的方法,将矩形折叠成一个正方形,并给出详细步骤。
解析:将矩形的一个顶点A与相对的边BC中点O连接,再将AO对折成与BC相等的线段,记作M。
接下来,将A、B、M三点依次连接,得到一个正方形。
4. 圆形翻折练习给定一个圆形O,半径为5cm。
请用翻折的方法,将圆形折叠成一个正方形,并给出详细步骤。
解析:将圆形的直径DE对折,记作F。
然后利用点F为中心,FO为半径画圆得到一个正方形。
通过以上几个例题的翻折练习,同学们可以更好地理解和掌握几何翻折的方法和技巧。
在实际操作中,同学们还可以尝试其他形状的翻折练习,如三角形、梯形等,以提升自己的几何思维能力。
总结初三几何翻折练习题是一个既有趣又具有教育意义的活动。
通过这些翻折练习,同学们不仅可以锻炼自己的观察力和思维能力,还可以加深对几何知识的理解和应用。
因此,在学习初三几何课程的过程中,我们应该注重对翻折几何的训练和巩固。
希望同学们通过这些练习,能够更好地掌握几何翻折的方法和技巧,为未来学习打下坚实的基础。
中考数学专题训练:图形的折叠问题(附参考答案)1.如图,在平面直角坐标系中,矩形ABCD的边AD=5,OA∶OD=1∶4,将矩形ABCD沿直线OE折叠到如图所示的位置,线段OD1恰好经过点B,点C落在y轴的点C1处,则点E的坐标是( )A.(1,2) B.(-1,2)C.(√5-1,2) D.(1-√5,2)2.如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是( )A.30°B.45°C.74°D.75°3.如图,在矩形ABCD中,AB=2,BC=2√5,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连接CF,则cos ∠ECF的值为( )A.23B.√104C.√53D.2√554.把一张矩形纸片ABCD按如图所示方法进行两次折叠,得到等腰直角三角形BEF.若BC=1,则AB的长度为( )A.√2B.√2+12C.√5+12D.435.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D,E分别在AB,AC 上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.2076.如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为__________.7.如图,在Rt△ABC纸片中,∠ACB=90°,CD是边AB上的中线,将△ACD沿CD折叠,当点A落在点A′处时,恰好CA′⊥AB.若BC=2,则CA′=_______.8.如图,点E在矩形ABCD的边CD上,将△ADE沿AE折叠,点D恰好落在边BC 上的点F处.若BC=10,sin ∠AFB=45,则DE=_____.9.如图,在扇形AOB中,点C,D在AB⏜上,将CD⏜沿弦CD折叠后恰好与OA,OB 相切于点E,F.已知∠AOB=120°,OA=6,则EF⏜的度数为________;折痕CD 的长为_______.10.如图,在矩形ABCD中,AB=5,AD=4,M是边AB上一动点(不含端点),将△ADM沿直线DM对折,得到△NDM.当射线CN交线段AB于点P时,连接DP,则△CDP的面积为______;DP的最大值为_______.11.如图,在矩形ABCD中,AB=2,AD=√7,动点P在矩形的边上沿B→C→D →A运动.当点P不与点A,B重合时,将△ABP沿AP对折,得到△AB′P,连接CB′,则在点P的运动过程中,线段CB′的最小值为_________.12.如图,DE平分等边三角形ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是______.13.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若AGGE =73,则tan A=______.14.如图,在等边三角形ABC中,过点C作射线CD⊥BC,点M,N分别在边AB,BC上,将△ABC沿MN折叠,使点B落在射线CD上的点B′处,连接AB′,已知AB=2.给出下列四个结论:①CN+NB′为定值;②当BN=2NC时,四边形BMB′N为菱形;③当点N与C重合时,∠AB′M=18°;④当AB′最短时,MN=7√21.20其中正确的结论是__________.(填序号)15.将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(3,0),点C(0,6),点P在边OC上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O′落在第一象限.设OQ=t.(1)如图1,当t=1时,求∠O′QA的大小和点O′的坐标;(2)如图2,若折叠后重合部分为四边形,O′Q,O′P分别与边AB相交于点E,F,试用含有t的式子表示O′E的长,并直接写出t的取值范围;(3)若折叠后重合部分的面积为3√3,则t的值可以是__________________________________________.(请直接写出两个不同....的值即可)16.如图,已知△ABC,AB=AC,BC=16,AD⊥BC,∠ABC的平分线交AD于点E,且DE=4.将∠C沿GM折叠使点C与点E恰好重合.下列结论正确的有________.(填序号)①BD=8;②点E到AC的距离为3;③EM=103;④EM∥AC.17.综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:操作一:对折正方形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在正方形内部点M处,把纸片展平,连接PM,BM,延长PM交CD于点Q,连接BQ.(1)如图1,当点M在EF上时,∠EMB=________;(填度数)(2)改变点P在AD上的位置(点P不与点A,D重合)如图2,判断∠MBQ与∠CBQ 的数量关系,并说明理由.参考答案1.D 2.D 3.C 4.A 5.D6. 3√2-3 7.2√3 8.5 9.60°4√6 10.10 2√511.-2 12.√m2+n2 13.3√7714.①②④15.(1)∠O′QA=60°点O′的坐标为(32,√32)(2)O′E=3t-6,其中t的取值范围是2<t<3 (3)3或103(答案不唯一,满足3≤t<2√3即可) 16.①④17.(1)30°(2)∠MBQ=∠CBQ,理由略。
几何图形折叠问题【疑难点拨】1.折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.2.折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中.如果题目中有直角,则通常将条件集中于较小的直角三角形,利用勾股定理求解.3.矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段长度.矩形中的两次或多次折叠通常出现“一线三直角”的模型(如图),从而构造相似三角形,利用相似三角形求边或者角的度数.4.凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.1.常见的轴对称图形:等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【基础篇】一、选择题:1..(2018•四川凉州•3分)如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是()AD=BC′B.∠EBD=∠EDB C.△ABE∽△CBD D.sin∠ABE=A.2. (2017山东烟台)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知OA=6,取OA的中点C,过点C作CD⊥OA交于点D,点F是上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD,DF,FA依次剪下,则剪下的纸片(形状同阴影图形)面积之和为().A.36π-108 B.108-32π C.2πD.π3. (2017浙江衢州)如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD 于点F,则DF的长等于()A.B.C.D.4.(2018·山东青岛·3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知EF=,则BC的长是()A.B.32C.3 D.335.(2017乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4且∠AFG=60°,GE=2BG,则折痕EF的长为()A.1 B.C.2 D.二、填空题:6.(2018·辽宁省盘锦市)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC.AB 上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为.7.(2018·山东威海·8分)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C 与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,则BC的长.8.(2018·湖南省常德·3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB= .三、解答与计算题:9.(2018·广东·7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.10.(2018•山东枣庄•10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【能力篇】一、选择题:11.(2018·辽宁省阜新市)如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为( ).A.4 B.5 C.6 D.712.(2018·四川省攀枝花·3分)如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC.其中正确结论的个数为()A.1 B.2 C.3 D.413.(2018·湖北省武汉·3分)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A. B.C.D.二、填空题:14. (2018·辽宁省葫芦岛市) 如图,在矩形ABCD中,点E是CD的中点,将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,将BF延长交AD于点G.若=,则= .15.(2018·四川宜宾·3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE 折叠,使点B落在矩形内点F处,下列结论正确的是(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=95;③当A、F、C三点共线时,AE=;④当A、F、C三点共线时,△CEF≌△AEF.三、解答与计算题:16.(2018·湖北省宜昌·11分)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B 的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.17.(2018·广东·7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.18.(2018•江苏盐城•10分)如图,在以线段为直径的上取一点,连接、.将沿翻折后得到.(1)试说明点在上;(2)在线段的延长线上取一点,使.求证:为的切线;(3)在(2)的条件下,分别延长线段、相交于点,若,,求线段的长.【探究篇】19.(2018年江苏省泰州市•12分)对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)(1)根据以上操作和发现,求的值;(2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)20.(2018年江苏省宿迁)如图,在边长为1的正方形ABCD中,动点E、F分别在边AB、CD上,将正方形ABCD 沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A、D重合),点C落在点N处,MN与CD交于点P,设BE=x,(1)当AM= 时,求x的值;(2)随着点M在边AD上位置的变化,△PDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;(3)设四边形BEFC的面积为S,求S与x之间的函数表达式,并求出S的最小值.几何图形折叠问题【疑难点拨】1.折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.2.折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中.如果题目中有直角,则通常将条件集中于较小的直角三角形,利用勾股定理求解.3.矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段长度.矩形中的两次或多次折叠通常出现“一线三直角”的模型(如图),从而构造相似三角形,利用相似三角形求边或者角的度数.4.凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.1.常见的轴对称图形:等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【基础篇】一、选择题:1..(2018•四川凉州•3分)如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是()A.AD=BC′B.∠EBD=∠EDB C.△ABE∽△CBD D.sin∠ABE=【分析】主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.【解答】解:A、BC=BC′,AD=BC,∴AD=BC′,所以正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB正确.D、∵sin∠ABE=,∴∠EBD=∠EDB∴BE=DE∴sin∠ABE=.故选:C.【点评】本题主要用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.2. (2017山东烟台)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知OA=6,取OA的中点C,过点C作CD⊥OA交于点D,点F是上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD,DF,FA依次剪下,则剪下的纸片(形状同阴影图形)面积之和为().A.36π-108 B.108-32π C.2πD.π【考点】MO:扇形面积的计算;P9:剪纸问题.【分析】先求出∠ODC=∠BOD=30°,作DE⊥OB可得DE=OD=3,先根据S弓形BD=S扇形BOD﹣S△BOD求得弓形的面积,再利用折叠的性质求得所有阴影部分面积.【解答】解:如图,∵CD⊥OA,∴∠DCO=∠AOB=90°,∵OA=OD=OB=6,OC=OA=OD,∴∠ODC=∠BOD=30°,作DE⊥OB于点E,则DE=OD=3,∴S弓形BD=S扇形BOD﹣S△BOD=﹣×6×3=3π﹣9,则剪下的纸片面积之和为12×(3π﹣9)=36π﹣108,故答案为:36π﹣108.故选A3. (2017浙江衢州)如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD 于点F,则DF的长等于()A.B.C.D.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】根据折叠的性质得到AE=AB,∠E=∠B=90°,易证Rt△AEF≌Rt△CDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6﹣x,在Rt△CDF中利用勾股定理得到关于x的方程x2=42+(6﹣x)2,解方程求出x.【解答】解:∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,∴AE=AB,∠E=∠B=90°,又∵四边形ABCD为矩形,∴AB=CD,∴AE=DC,而∠AFE=∠DFC,∵在△AEF与△CDF中,,∴△AEF≌△CDF(AAS),∴EF=DF;∵四边形ABCD为矩形,∴AD=BC=6,CD=AB=4,∵Rt△AEF≌Rt△CDF,∴FC=FA,设FA=x,则FC=x,FD=6﹣x,在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6﹣x)2,解得x=,则FD=6﹣x=.故选:B.4.(2018·山东青岛·3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知EF=,则BC的长是()A.B.32C.3 D.33【分析】由折叠的性质可知∠B=∠EAF=45°,所以可求出∠AFB=90°,再直角三角形的性质可知EF=AB,所以AB=AC的长可求,再利用勾股定理即可求出BC的长.【解答】解:∵沿过点E的直线折叠,使点B与点A重合,∴∠B=∠EAF=45°,∴∠AFB=90°,∵点E为AB中点,∴EF=12AB,EF=32,∴AB=AC=3,∵∠BAC=90°,∴BC=2,故选:B.【点评】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出∠AFB=90°是解题的关键.5.(2017乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4且∠AFG=60°,GE=2BG,则折痕EF的长为()A.1 B.C.2 D.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】由折叠的性质可知,DF=GF、HE=CE、GH=DC、∠DFE=∠GFE,结合∠AFG=60°即可得出∠GFE=60°,进而可得出△GEF为等边三角形,在Rt△GHE中,通过解含30度角的直角三角形及勾股定理即可得出GE=2EC、DC= EC,再由GE=2BG结合矩形面积为4,即可求出EC的长度,根据EF=GE=2EC即可求出结论.【解答】解:由折叠的性质可知,DF=GF,HE=CE,GH=DC,∠DFE=∠GFE.∵∠GFE+∠DFE=180°﹣∠AFG=120°,∴∠GFE=60°.∵AF∥GE,∠AFG=60°,∴∠FGE=∠AFG=60°,∴△GEF为等边三角形,∴EF=GE.∵∠FGE=60°,∠FGE+∠HGE=90°,∴∠HGE=30°.在Rt△GHE中,∠HGE=30°,∴GE=2HE=CE,∴GH==HE=CE.∵GE=2BG,∴BC=BG+GE+EC=4EC.∵矩形ABCD的面积为4,∴4EC•EC=4,∴EC=1,EF=GE=2.故选C.二、填空题:6.(2018·辽宁省盘锦市)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC.AB 上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为.【解答】解:分两种情况:①如图,当∠CDM=90°时,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=,由折叠可得:∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=.∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如图,当∠CMD=90°时,△CDM是直角三角形,由题可得:∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD\1AB=,∴AN=2,BN=,过N作NH⊥AM于H,则∠ANH=30°,∴AH=AN=1,HN=,由折叠可得:∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=.故答案为:或.7.(2018·山东威海·8分)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C 与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.【分析】由题意知∠3=180°﹣2∠1=45°、∠4=180°﹣2∠2=30°、BE=KE、KF=FC,作KM⊥BC,设KM=x,知EM=x、MF=x,根据EF的长求得x=1,再进一步求解可得.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF=FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.(2018·湖南省常德·3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB= 75°.【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.【点评】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答与计算题:9.(2018·广东·7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE ≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.10.(2018•山东枣庄•10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【分析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.【点评】本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题(2)的关键,依据相似三角形的性质求得GH的长是解答问题(3)的关键.【能力篇】一、选择题:11.(2018·辽宁省阜新市)如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为( ).A.4 B.5 C.6 D.7【解答】解:由折叠的性质可得AE=A1E.∵△ABC为等腰直角三角形,BC=8,∴AB=8.∵A1为BC的中点,∴A1B=4,设AE=A1E=x,则BE=8﹣x.在Rt△A1BE中,由勾股定理可得42+(8﹣x)2=x2,解得x=5.故答案为:5.故选B12.(2018·四川省攀枝花·3分)如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC.其中正确结论的个数为()A.1 B.2 C.3 D.4解:①如图,EC,BP交于点G;∵点P是点B关于直线EC的对称点,∴EC垂直平分BP,∴EP=EB,∴∠EBP=∠EPB.∵点E为AB中点,∴AE=EB,∴AE=EP,∴∠PAB=∠PBA.∵∠PAB+∠PBA+∠APB=180°,即∠PAB+∠PBA+∠APE+∠BPE=2(∠PAB+∠PBA)=180°,∴∠PAB+∠PBA=90°,∴AP⊥BP,∴AF∥EC;∵AE∥CF,∴四边形AECF是平行四边形,故①正确;②∵∠APB=90°,∴∠APQ+∠BPC=90°,由折叠得:BC=PC,∴∠BPC=∠PBC.∵四边形ABCD是正方形,∴∠ABC=∠ABP+∠PBC=90°,∴∠ABP=∠APQ,故②正确;③∵AF∥EC,∴∠FPC=∠PCE=∠BCE.∵∠PFC是钝角,当△BPC是等边三角形,即∠BCE=30°时,才有∠FPC=∠FCP,如右图,△PCF不一定是等腰三角形,故③不正确;④∵AF=EC,AD=BC=PC,∠ADF=∠EPC=90°,∴Rt△EPC≌△FDA(HL).∵∠ADF=∠APB=90°,∠FAD=∠ABP,当BP=AD或△BPC是等边三角形时,△APB≌△FDA,∴△APB≌△EPC,故④不正确;其中正确结论有①②,2个.故选B.13. (2018·湖北省武汉·3分)如图,在⊙O 中,点C 在优弧上,将弧沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为,AB=4,则BC 的长是( )A .B .C .D .【分析】连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图,利用垂径定理得到OD ⊥AB ,则AD=BD=AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC 和弧CD 所在的圆为等圆,则根据圆周角定理得到=,所以AC=DC ,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF 为正方形得到OF=EF=1,然后计算出CF 后得到CE=BE=3,于是得到BC=3 2.【解答】解:连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图, ∵D 为AB 的中点, ∴OD ⊥AB , ∴AD=BD=AB=2,在Rt △OBD 中,OD=22(5)2 =1, ∵将弧沿BC 折叠后刚好经过AB 的中点D .∴弧AC 和弧CD 所在的圆为等圆, ∴=,∴AC=DC , ∴AE=DE=1,易得四边形ODEF 为正方形, ∴OF=EF=1,在Rt △OCF 中,CF=22(5)1 , ∴CE=CF+EF=2+1=3, 而BE=BD+DE=2+1=3, ∴BC=3.故选:B .【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理. 二、填空题:14. (2018·辽宁省葫芦岛市) 如图,在矩形ABCD 中,点E 是CD 的中点,将△BCE 沿BE 折叠后得到△BEF 、且点F 在矩形ABCD 的内部,将BF 延长交AD 于点G .若=,则= .【解答】解:连接GE .∵点E 是CD 的中点,∴EC=DE .∵将△BCE 沿BE 折叠后得到△BEF 、且点F 在矩形ABCD 的内部,∴EF=DE ,∠BFE=90°.在Rt △EDG 和Rt △EFG 中,∴Rt △EDG ≌Rt △EFG (HL ),∴FG=DG .∵=,∴设DG=FG=a,则AG=7a,故AD=BC=8a,则BG=BF+FG=9a,∴AB==4a,故==.故答案为:.15.(2018·四川宜宾·3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE 折叠,使点B落在矩形内点F处,下列结论正确的是①②③(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=95;③当A、F、C三点共线时,AE=;④当A、F、C三点共线时,△CEF≌△AEF.【考点】PB:翻折变换(折叠问题);KB:全等三角形的判定;LB:矩形的性质.【分析】分两种情形分别求解即可解决问题;【解答】解:如图1中,当AE=EB时,∵AE=EB=EF,∴∠EAF=∠EFA,∵∠CEF=∠CEB,∠BEF=∠EAF+∠EFA,∴∠BEC=∠EAF,∴AF∥EC,故①正确,作EM⊥AF,则AM=FM,在Rt△ECB中,EC==,,∵∠AME=∠B=90°,∠EAM=∠CEB,∴△CEB∽△EAM,∴=,∴=,∴AM=,∴AF=2AM=95,故②正确,如图2中,当A、F、C共线时,设AE=x.则EB=EF=3﹣x,AF=13﹣2,在Rt△AEF中,∵AE2=AF2+EF2,∴x2=(﹣2)2+(3﹣x)2,∴x=,,∴AE=,故③正确,如果,△CEF≌△AEF,则∠EAF=∠ECF=∠ECB=30°,显然不符合题意,故④错误,故答案为①②③.【点评】本题考查翻折变换、全等三角形的性质、勾股定理、矩形的性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.三、解答与计算题:16.(2018·湖北省宜昌·11分)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B 的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.【分析】(1)先判断出∠A=∠D=90°,AB=DC再判断出AE=DE,即可得出结论;(2)①利用折叠的性质,得出∠PGC=∠PBC=90°,∠BPC=∠GPC,进而判断出∠GPF=∠PFB即可得出结论;②判断出△ABE∽△DEC,得出比例式建立方程求解即可得出AE=9,DE=16,再判断出△ECF∽△GCP,进而求出PC,即可得出结论;③判断出△GEF∽△EAB,即可得出结论.【解答】解:(1)在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);(2)①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;②当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16,∴CE=20,BE=15,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,∴BP=,在Rt△PBC中,PC=,cos∠PCB==;③如图,连接FG,∵∠GEF=∠BAE=90°,∵BF∥PG,BF=PG,∴▱BPGF是菱形,∴BP∥GF,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=108.【点评】此题是四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,折叠的性质,利用方程的思想解决问题是解本题的关键.17.(2018·广东·7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE ≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.18.(2018•江苏盐城•10分)如图,在以线段为直径的上取一点,连接、.将沿翻折后得到.(1)试说明点在上;(2)在线段的延长线上取一点,使.求证:为的切线;(3)在(2)的条件下,分别延长线段、相交于点,若,,求线段的长. 【答案】(1)解:连接OC,OD,由翻折可得OD=OC,∵OC是⊙O的半径,∴点D在⊙O上。
八年级数学下册《图形的折叠问题》练习题与答案(人教版)一、选择题1.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为( )A.20°B.30°C.35°D.55°2.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=( )A.4cmB.6cmC.8cmD.10cm3.如图,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l交CD边于点E,连接BE.若BE平分∠ABC,且AB=5,BE=4,则AE=( )A.2B.3C.4D.54.在△ABC中,AB=10,AC=12,BC=9,AD是BC边上的高,将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为( )A.9.5B.10.5C.11D.15.55.如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为( )A.7cmB.10cmC.12cmD.22cm6.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是( )A.8 cmB.5 2 cmC.5.5 cmD.1 cm二、填空题7.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为.8.如图,将菱形ABCD折叠,使点A恰好落在菱形的对角线交点O处,折痕为EF.若菱形的边长为2 cm,∠BAD=120°,则EF的长为 .9.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC 上的点F处.若点D的坐标为(10,8),则点E的坐标为10.把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.若AB=6cm,BC=8cm,则线段FG的长为11.如图,有一块矩形纸片ABCD,AB=8,AD=6,将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则△CEF面积为________.12.把图一的矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD的面积为______.三、解答题13.如图,折叠长方形ABCD的一边AD,使点D落在BC边的点F处,已AB=32cm,BC=40cm,求CE的长.14.如图,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F 处.(1)求EF的长;(2)求四边形ABCE的面积.15.如图①,将矩形ABCD沿DE折叠使点A落在A′处,然后将矩形展平,如图②沿EF折叠使点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.16.如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.17.如图,在△ABC中,∠BAC=45°,AD⊥BC于D,将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H.(1)求证:四边形AFHG为正方形;(2)若BD=6,CD=4,求AB的长.18.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.19.在正方形ABCD中,E、F分别为BC、CD的中点,AE与BF相交于点G.(1)如图1,求证:AE⊥BF;(2)如图2,将△BCF沿BF折叠,得到△BPF,延长FP交BA的延长线于点Q,若AB=4求QF的值.20.如图1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.(1)求点B的坐标;(2)求证:四边形ABCE是平行四边形;(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.21.如图1,在矩形纸片ABCD中,AB=12 cm,AD=20 cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P,Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P,Q分别在边BA,BC上移动,求出点E在边AD上移动的最大距离.图1 图2参考答案1.A.2.A3.B.4.D.5.C.6.A7.答案为:36°.8.答案为:3(cm).10.答案为:3cm.11.答案为:2.12.答案为:28.8.13.解:∵四边形ABCD是矩形∴AD=BC=40cm,DC=AB=32cm;∠B=90°由题意得:AF=AD=40cm;DE=EF(设为x),EC=40﹣x;由勾股定理得:BF2=402﹣322=576∴BF=24,CF=40﹣24=16;由勾股定理得:x2=162+(40﹣x)2,解得:x=23.2∴EC=32﹣23.2=8.8.14.解:(1)设EF=x依题意知:△CDE≌△CFE∴DE=EF=x,CF=CD=6.∵在Rt△ACD中,AC=10∴AF=AC﹣CF=4,AE=AD﹣DE=8﹣x.在Rt△AEF中,有AE2=AF2+EF2即(8﹣x)2=42+x2解得x=3,即:EF=3.(2)由(1)知:AE=8﹣3=5∴S梯形ABCE=(5+8)×6÷2=39.15.解:(1)证明:由折叠知△AEF≌△GEF,△BCE≌△HCE∵AE=A′E=BC,∠AEF=∠BCE∴△AEF≌△BCE∴△GEF≌△HCE∴EG=CH;(2)∵AF=FG=2,∠FDG=45°∴FD=2,AD=2+2;∵AF=FG=HE=EB=2,AE=AD=2+ 2∴AB=AE+EB=2+2+2=2+2 2.16.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形∴BC=OA=4,∠AOC=∠DCE=90°由折叠的性质可得DE=BD=BC﹣CD=4﹣1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC=22,则有OE=OC﹣CE=m﹣2 2.在Rt△AOE中,OA2+OE2=AE2,即42+(m﹣22)2=m2,解得m=3 2.17.证明:(1)∵AD⊥BC∴∠ADB=∠ADC=90°;由折叠可知,AG=AF=AD,∠AGH=∠AFH=90°∠BAG=∠BAD,∠CAF=∠CAD∴∠BAG+∠CAF=∠BAD+∠CAD=∠BAC=45°;∴∠GAF=∠BAG+∠CAF+∠BAC=90°;∴四边形AFHG是正方形解:(2)∵四边形AFHG是正方形∴∠BHC=90°又GH=HF=AD,GB=BD=6,CF=CD=4;设AD的长为x则BH=GH﹣GB=x﹣6,CH=HF﹣CF=x﹣4.在Rt△BCH中,BH2+CH2=BC2∴(x﹣6)2+(x﹣4)2=102,解得x1=12,x2=﹣2(不合题意,舍去) ∴AD=12∴AB=6 5.18.证明:(1)由题意可得,△BCE≌△BFE∴∠BEC=∠BEF,FE=CE∵FG∥CE∴∠FGE=∠CEB∴∠FGE=∠FEG∴FG=FE∴FG=EC∴四边形CEFG是平行四边形又∵CE=FE∴四边形CEFG是菱形;(2)∵矩形ABCD中,AB=6,AD=10,BC=BF∴∠BAF=90°,AD=BC=BF=10∴AF=8∴DF=2设EF=x,则CE=x,DE=6﹣x∵∠FDE=90°∴22+(6﹣x)2=x 2,解得,x =103 ∴CE =103∴四边形CEFG 的面积是:CE •DF =103×2=203. 19.证明:(1)∵E ,F 分别是正方形ABCD 边BC ,CD 的中点 ∴CF =BE在△ABE 和△BCF 中∴Rt △ABE ≌Rt △BCF(SAS)∴∠BAE =∠CBF又∵∠BAE +∠BEA =90°∴∠CBF +∠BEA =90°∴∠BGE =90°∴AE ⊥BF ;(2)解:∵将△BCF 沿BF 折叠,得到△BPF∴FP =FC ,∠PFB =∠BFC ,∠FPB =90°∵CD ∥AB∴∠CFB =∠ABF∴∠ABF =∠PFB∴QF =QB设QF =x ,PB =BC =AB =4,CF =PF =2∴QB =x ,PQ =x ﹣2在Rt △BPQ 中∴x 2=(x ﹣2)2+42解得:x =5,即QF =5.20.解:(1)∵在△OAB 中,∠OAB =90º,∠AOB =30º,OB =8 ∴OA =43,AB =4.∴点B 的坐标为(43,4).(2)∵∠OAB =90º∴AB ⊥x 轴∴AB ∥EC.又∵△OBC 是等边三角形∴OC =OB =8.又∵D 是OB 的中点,即AD 是Rt △OAB 斜边上的中线∴AD =OD∴∠OAD =∠AOD =30º∴OE =4.∴EC =OC -OE =4.∴AB =EC.∴四边形ABCE 是平行四边形.(3)设OG =x ,则由折叠对称的性质,得GA =GC =8-x. 在Rt △OAG 中,由勾股定理,得GA 2=OA 2+OG2 即,解得,x =1. ∴OG 的长为1.21. (1)证明:∵折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ∴点B 与点E 关于PQ 对称∴PB =PE ,BF =EF ,∠BPF =∠EPF.又∵EF ∥AB∴∠BPF =∠EFP ,∴∠EPF =∠EFP∴EP =EF ,∴BP =BF =EF =EP ∴四边形BFEP 为菱形.(2)解:①∵四边形ABCD 是矩形∴BC =AD =20,CD =AB =12,∠A =∠D =90°.∵点B 与点E 关于PQ 对称∴CE =BC =20.在Rt △CDE 中,DE =CE 2-CD 2=16∴AE =AD -DE =20-16=4.在Rt △APE 中,AE =4,AP =12-PB =12-PE∴EP 2=42+(12-EP)2.解得EP =203∴菱形BFEP 的边长为203cm. ②当点Q 与点C 重合时,点E 离点A 最近,由①知,此时AE =4. 当点P 与点A 重合时,如图点E离点A最远,此时四边形ABQE为正方形,AE=AB=12 ∴点E在边AD上移动的最大距离为8 cm.。
图形翻折1、如图,把直角三角形纸片沿着过点B 的直线BE 折叠,折痕交AC 于点E ,欲使直角顶点C 恰好落在斜边AB 的中点上,那么∠A 的度数必须是 .2、如图,在矩形ABCD 中,,6=AB 将矩形ABCD 折叠,使点B 与点D 重合,C 落在C '处,若21::=BE AE ,则折痕EF 的长为 .3、已知△ABC 中,AB=AC ,∠BAC=120°,点D 是边AC 上一点,连BD ,若沿直线BD 翻折,点A 恰好落在边BC 上,则AD :DC= .A CBEDC BAA ’4、如图,已知边长为6的等边三角形ABC 纸片,点E 在AC 边上,点F 在AB 边上,沿EF 折叠,使点A 落在BC 边上的点D 的位置,且ED ⊥BC,则CE 的长是( ). (A)31224- (B)24312- (C)18312- (D)31218-5、正方形纸片ABCD 中,边长为4,E 是BC 的中点,折叠正方形,使点A 与点E 重合,压平后,得折痕MN (如图)设梯形ADMN 的面积为1S ,梯形BCMN 的面积为2S ,那么1S :2S =6、如图2,把腰长为4的等腰直角三角形折叠两次后,得到一个小三角形的周长是.7、如图1,在梯形ABCD 中,AD ∥BC ,75,ABC ︒∠=将梯形沿直线EF 翻折,使B 点落在线段AD 上,记作'B 点,连结'B B 、交EF 于点O ,若'90B FC ︒∠=,则:EO FO = .A N C DBM 图2B 'OF ED C B A8、等边△OAB 在直角坐标系中的位置如图所示,折叠三角形使点B 与y 轴上的点C 重合,折痕为MN ,且CN 平行于x 轴,则∠CMN = 度.9、有一块矩形的纸片ABCD ,AB=9,AD=6,将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则△CEF 的面积为 .A B A D B D BFD CE C E C10、如图,有一矩形纸片ABCD ,AB =10,AD =6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于F ,那么△CEF 的面积是 。
HistudyjiftS7^i viPTUk帮助预子個建持续迸步的孚刃力几何图形折叠问题【疑难点拨】1. 折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用•解题 的关键利用轴对称的性质找到折叠前后不变量与变量, 运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.2. 折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中•如果题目中有直角,则通常 将条件集中于较小的直角三角形,利用勾股定理求解.3. 矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段 长度•矩形中的两次或多次折叠通常出现“一线三直角”的模型 (如图),从而构造相似三角形,利用相似三角形求边或者角的度数.4. 凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相 关的条件量.1.常见的轴对称图形:等腰三角形、矩形、菱形、正方形、圆 .2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等. 【基础篇】 一、选择题:1. . (2018?四川凉州? 3分)如图将矩形 ABCD&对角线BD 折叠,使C 落在C'处,BC'交AD 于点E ,则下到结 论不一定成立的是()AD=BCB .Z EBD=/ EDB C.A ABE^A CBD D sin / ABE*A.IHistudyjlftS7^l viPTUk帮助预子個建持续iS步的孚刃力2. (2017山东烟台)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB已知OA=6取OA的中点C,过点C作CD L OA交理于点D,点F是上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD, DF, FA依次剪下,则剪下的纸片(形状同阴影图形)面积之和为(___________ .A. 36 n -108 B . 108-32 n C. 2 n D.nABC AB=AC / BAC=90,点E为AB中点.沿过点E的直线折5. (2017乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4胚且/ AFG=60 , GE=2BG则折痕EF的长为()A. 1B.说C. 2D.加如图,矩形纸片ABCD中, AB=4, BC=6将厶ABC沿AC折叠,使点B落在点E处,CE交AD 叠,使点B与点A重合,折痕现交于点F.已知E一,则BC的长是(3. (2017浙江衢州)于点F,则DF的长等于()4. (2018 •山东青岛• 3分)如图,三角形纸片B. 3.2C. 3HiSMldy」畅字刃VIPT住叱帮朗预子陶建持续进步的孚刃门二、填空题:6. (2018 •辽宁省盘锦市)如图,已知Rt△ ABC中,/ B=90°, / A=60°, AC=2三+4,点M N分别在线段AC.ABD恰好落在线段BC上,当△ DCM为直角三角形时,折痕MN勺长为.ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C2=75°, EF= + 1,则BC的长-3分)如图,将矩形ABCD沿 EF折叠,使点B落在AD边上的点G处,点C落在点H处,BG 则/ AGB=三、解答与计算题:9. (2018 •广东• 7分)如图,矩形ABCD中, AB> AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,上,将厶ANM沿直线Mr折叠,使点A的对应点8. (2018 •湖南省常德7. (2018 •山东威海• 8分)如图,将矩形已知/ DGH=30,连接(1)求证:△ ADE^A CEDAE交CD于点F,连接DEHistudyjlftS7^]l viPTUk|帮助预子陶建持续进步的孚刃力|10—( 2018?山东枣庄? 10分)如图,将矩形— D 交AF 于点G,连接DG(1) 求证:四边形EFDG 是菱形;(2) 探究线段EG GF AF 之间的数量关系,并说明理由; (3) 若 AG=6 EG=2E ,求 BE 的长.【能力篇】一、选择题: 11.( 2018 •辽宁省阜新市)如图,将等腰直角三角形ABC (/ B=90°)沿EF 折叠,使点A 落在BC 边的中点A处,BC=8,那么线段AE 的长度为()12.( 2018 •四川省攀枝花・3分)如图,在矩形 ABCD 中, E 是AB 边的中点,沿 EC 对折矩形ABCD 使B 点落 在点P 处,折痕为EC 连结AP 并延长AP 交CD 于 F 点,连结CP 并延长CP 交AD 于Q 点.给出以下结论: ① 四边形AECF 为平行四边形; ② / PBA=Z APQ③ 厶FPC 为等腰三角形; ④ 厶 APB^A EPC 其中正确结论的个数为()A . 1 B. 2 C. 3D. 4C. 6D. 7D GECEB .A .亠13. (2018 •湖北省武汉• 3分)如图,在O O 中,点C 在优弧-I.上,将弧「■沿BC 折叠后刚好经过 AB 的中点 D.若O O 的半径为 匚AB=4,则BC 的长是(、填空ABCD 中,点E 是CD 的中点,将△ BCE 沿BE 折叠后得到△ BEF14. (2018 •辽宁省葫芦岛市 ) 如图,在矩形15. ( 2018 •四川宜宾• 3分)如图,在矩形 ABCD 中, AB=3 CB=2,点E 为线段AB 上的动点,将△ CBE 沿 CE ①当E 为线段AB 中点时,AF// CE; ②当E 为线段AB 中点时,AF=9 ;5④当 A F 、C 三点共线时,△ CEF ^A AEF.DG 1且点F 在矩形ABCD 勺内部,将 BF 延长交AD 于点G.若 =' ,则折叠,使点B 落在矩形内点F 处,下列结论正确的是 (写出所有正确结论的序③当A F 、C 三点共线时,AE='HiSMiaa快乐字刃I VIPT 性叱帮朗滋子陶建持续进步的孚刃门GvPEDU !BCEDCA'B三、解答与计算题:16. (2018 •湖北省宜昌• 11分)在矩形 ABCD 中, AB=12 P 是边AB 上一点,把△ PBC 沿直线PC 折叠,顶点B 的对应点是点 G,过点B 作BEL CG 垂足为E 且在AD 上, BE 交PC 于点F . (1)如图1,若点E 是AD 的中点,求证:△ AEB^A DEC (2)如图2,①求证:BP=BF③当BP=9时,求 BE?EF 的值.②当 AD=25 且 AE v DE 时,求 cos / PCB 的值; 17. (2018 •广东• 7分)如图,矩形ABCC 中,AB> AD,把矩形沿对角线 AC 所在直线折叠,使点B 落在点E 处, AE 交CD 于点F ,连接DE (1)求证:△ ADE^A CED (2)求证:△ DEF 是等腰三角形.HiSMc!®快S 字刃丄VIP 亍性比 帮朗预子陶建持续进步的孚刃门■ BC *HiStUCU快乐字刃VIPT性比帮助预子问建持续迸步的字刃力18. (2018?江苏盐城?10分)如图,在以线段二5■为直径的上取一点,连接、就•将_二弓匚沿.止翻折后得到□.(1 )试说明点在上;(2)在线段.:「的延长线上取一点,使上厂—」一丄.求证:三壬为①门的切线;(3)在(2)的条件下,分别延长线段、匚吕相交于点,若m厂=J,二匸=-,求线段的长•【探究篇】19. (2018年江苏省泰州市?12分)对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD 边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)(2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:/ HPC=90 ;②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P 在折痕上,请简要说明折叠方法•(不需说明理由)(1)根据以上操作和发现,求的值;设四边形BEFC 的面积为S ,求S 与x 之间的函数表达式,并求出 S 的最小值.(2) 随着点M 在边AD 上位置的变化,△ PDM 的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;(3) 沿直线EF 折叠,使点B 的对应点M 始终落在边AD 上(点M 不与点A D 重合),点C 落在点N 处,MN W CD 交3 .....HistudyjlftS7^l VIPTlik帮助预子陶建持续iS步的孚刃力几何图形折叠问题【疑难点拨】1. 折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用•解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.2. 折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中•如果题目中有直角,则通常将条件集中于较小的直角三角形,利用勾股定理求解.3. 矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段长度•矩形中的两次或多次折叠通常出现“一线三直角”的模型(如图),从而构造相似三角形,利用相似三角形求边或者角的度数.4. 凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.1.常见的轴对称图形:等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【基础篇】一、选择题:1. . (2018?四川凉州?3分)如图将矩形ABCD&对角线BD折叠,使C落在C'处,BC'交AD于点E,则下到结论不一定成立的是()A. AD=BCB.Z EBD=/ EDBC.A ABE^A CBD D sin / ABE*ED【分析】主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.【解答】解:A、BC=BC, AD=BC二AD=BC,所以正确.B、 / CBD2 EDB / CBD=/ EBD EBD2 EDB正确.AED、T sin / ABE』,BE•••Z EBD=/ EDB••• BE=DEHistudyjlftS7^l VIPTlik帮助预子陶建持续iS步的孚刃力• sin / ABE^.ED故选:C.HistudyjlftS7^ll viPTUk|帮助预子詞11持续进步的字刃力|【点评】本题主要用排除法,证明 A , B , D 都正确,所以不正确的就是—C,排除法也是数学中一种常用的解题方 法. 2.(2017山东烟台)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB 已知OA=6取OA 的中点C,过点C 作CDL OA 交丽于点D,点F 是廳上一点.若将扇形BOD 沿 OD 翻折,点B 恰好与点F 重合, 用剪刀沿着线段 BD, DF , FA 依次剪下,则剪下的纸片(形状同阴影图形)面积之和为( __________ . A . 36 n -108 B . 108-32 n C . 2 n D.n【考点】MO 扇形面积的计算;P9:剪纸问题.1【分析】先求出/ ODC M BOD=30,作DEL OB 可得DE= OD=3先根据S 弓形BD =S 扇形BOD - & BOD 求得弓形的面积,2再利用折叠的性质求得所有阴影部分面积.【解答】解:如图,••• CD L OA•••/ DCO M AOB=90 ,•••/ ODC M BOD=30 ,则剪下的纸片面积之和为 12X ( 3 n- 9) =36 n- 108, 故答案为: 36 n- 108 .故选 A 3.(2017浙江衢州)如图,矩形纸片 ABCD 中, AB=4, BC=6将厶ABC 沿 AC 折叠,使点B 落在点E 处,CE 交AD于点F ,则DF 的长等于()…S 弓形B[=S 扇形X 6X 3=3n- 9,•/ OA =OD =OB =6OC |OA作DE L OB 于点E ,则 DE= OD=3c Mg 心BOD _d BOD=His【udy 』?i 乐字刃]vi 卩卞性比帮朗预子陶建持续迸步的孚刃门【考点】PB 翻折变换(折叠问题);LB :矩形的性质.【分析】根据折叠的性质得到 AE=AB / E=Z B=90°,易证Rt △ AEF ^ Rt △ CDF ,即可得到结论 设FA=x ,则FC=x , FD=6- x ,在Rt △ CDF 中利用勾股定理得到关于 x 的方程x 2=42+( 6-x )【解答】解:•••矩形 ABCD 沿对角线AC 对折,使△ ABC 落在厶ACE 的位置, ••• AE=AB / E=Z B=90°,又•••四边形ABCD 为矩形, • AB=CD • AE=DC 而/ AFE=Z DFC•••在△ AEF 与厶CDF 中,ZAFE-ZCFD•••△ AEF ^A CDF ( AAS ,• EF=DF ;•••四边形ABCD 为矩形, • AD=BC=6 CD=AB=4 •/ Rt △ AEF ^ Rt △ CDF • FC=FA设 FA=x ,贝U FC=x , FD=6- x , 13 在 Rt △ CDF 中,CF=C D+DF ,即 x 2=42+ (6 - x ) 2,解得 x= , 则 FD=6- x=. 故选:B.HiStUdyjl?iS7^l VIPTUk帮朗预子陶建持续进步的孚刃门D.5, 7EF=DF ;易得FC=FA,解方程求出x .B- AC4. (2018 •山东青岛• 3分)如图,三角形纸片ABC AB=AC / BAC=90,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知EF=,贝U BC的长是()2A. .B. 3、2C. 3D. 3 3【分析】由折叠的性质可知/ B=Z EAF=45,所以可求出/ AFB=90,再直角三角形的性质可知EF丄AB,所以AB=AC!的长可求,再利用勾股定理即可求出BC的长.【解答】解:•••沿过点E的直线折叠,使点B与点A重合,•••/ B=Z EAF=45 ,•••/ AFB=90° ,•••点E为AB中点,1 3•EF= —AB, EF= ,2 2•AB=AC=3•••/ BAC=90 ,•BC=3.2 ,故选:B.【点评】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出/ AFB=9C°是解题的关键.5. (2017乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4胚且/ AFG=60 , GE=2BG则折痕EF的长为()HiStUdyjl?iS7^l VIPTUk帮朗预子陶建持续is步的孚刃门【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】由折叠的性质可知,DF=GF HE=CE GH=DC/ DFE=/ GFE结合/ AFG=60即可得出/ GFE=60,进而可得出△ GEF为等边三角形,在Rt△ GHE中,通过解含30度角的直角三角形及勾股定理即可得出GE=2EC DC= EC,再由GE=2BG吉合矩形面积为4 ,即可求出EC的长度,根据EF=GE=2EC卩可求出结论.【解答】解:由折叠的性质可知,DF=GF HE=CE GH=DC Z DFE=Z GFE•••/ GFE+Z DFE=180 -Z AFG=120 ,•••/ GFE=60 .•/ AF// GE Z AFG=60 ,•Z FGE=/ AFG=60 ,•△ GEF为等边三角形,•EF=GE•••/ FGE=60,/ FGE+Z HGE=90 ,•Z HGE=30 .在Rt△ GHE中, Z HGE=30 ,•GE=2HE=C,•GH= =*$HE= CE•/ GE=2BG•BC=BG+GE+EC=4EC•••矩形ABCD勺面积为 4 ,•4EC?^EC=4 ,•EC=1, EF=GE=2故选C.二、填空题:6. (2018 •辽宁省盘锦市)如图,已知Rt△ ABC中,Z B=90°, Z A=60°, AC=2 :;+4,点M N分别在线段AC.AB上,将△ ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△ DCM为直角三角形时,折痕MN勺长为 .帮朗滋子陶建持续迸步的孚刃门①如图,当/ CDM=90时,△ CDM是直角三角形,•••在Rt△ ABC中,/ B=90°, / A=60° AC=^+4, /-Z C=30°, AB^ AC五+-,由折叠可得:Z MDN Z A=60°1_ 1_Z BDN=30,•/ BN空DN爰AN •/丄術+卸BN= AB= :,■2硬+4•• AN=2BN="Z DNB=60 , /Z ANM Z DNM=60,/•/ AMN=60 , •師+4•• AN=MN=";【解答】解:分两种情况:②如图,当/ CMD=90时,△ CDM是直角三角形,帮助预子问il持续迸步的孚刃力I □ ~I] ■由题可得:/ CDM=60 , / A=Z MDN=60 , /-Z BDN=60 , / BND=30 BD空DN= AN, BN庐BD\1AB巫+2 ,1_/• AN=2, BN^3,过N 作NH L AM于H,贝UZ ANH=30 , /• AH空AN=1, HN昉,由折叠可得:Z AMN Z DMN=45 ,/•△ MNH是等腰直角三角形,/• HM=HN= :,/ MN= ■.故答案为:'或;7. (2018 •山东威海• 8分)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知Z 仁67.5 ° ,Z 2=75°, EF= + 1,求BC的长.【分析】由题意知Z 3=180 ° - 2 Z 1=45°、Z 4=180°- 2Z 2=30 °、BE=KE KF=FC 作KM L BC,设KM=x 知EM=x MF= x,根据EF的长求得x=1,再进一步求解可得.【解答】解:由题意,得:Z 3=180 °- 2 Z 1=45°,Z 4=180°- 2Z 2=30 °, BE=KE KF=FC设KM=x 贝U EM=x MF^J x,x+ V3x^3+1,解得:x=1,••• EK=J办KF=2,.BC=BE+EF+FC=EK+EF+KF=3++J:,• BC的长为【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8. (2018 •湖南省常德・3分)如图,将矩形ABC[沿EF折叠,使点B落在AD边上的点G处,点C落在点H处, 已知Z DGH=30,连接BG 则Z AGB= 75如图,过点K作KM L BC于点M帮朗预子陶建持续进步的孚刃门/ EBC-Z EBG即:/ GBC M BGH由平行线的性质可知/ AGB=Z GBC从而易证/ AGB2 BGH据此可得答案.【解答】解:由折叠的性质可知:GE=BE / EGH M ABC=90 ,•••/ EBG=Z EGB•••/ EGH-Z EGB玄EBC-Z EBG 即:/ GBC=/ BGH又••• AD// BC•Z AGB=Z GBC•Z AGB=Z BGHvZ DGH=30 ,•Z AGH=150 ,•Z AGB二Z AGH=75 ,2故答案为:75°.【点评】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答与计算题:9. (2018 •广东• 7分)如图,矩形ABCD中, AB> AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE(1)求证:△ ADE^A CED(2)求证:△ DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC AB=CD结合折叠的性质可得出AD=CE AE=CD进而即可证出△ ADE◎ △ CED( SSS ;(2)根据全等三角形的性质可得出Z DEF=Z EDF利用等边对等角可得出EF=DF由此即可证出△ DEF是等腰三角形.HiSMlda快乐字刃I VI PT住叱帮朗预子陶建持续进步的孚刃门【解答】证明:(1):四边形ABCD是矩形,••• AD=BC AB=CD由折叠的性质可得:BC=CE AB=AE•AD=CE AE=CDC AD=CE在厶人。
七年级折叠问题例题一、折叠问题例题1。
1. 题目。
- 将一张长方形纸条ABCD沿EF折叠后,点D、C分别落在D'、C'的位置上,ED'与BC的交点为G,若∠EFG = 55°,求∠1和∠2的度数。
2. 解析。
- 因为AD∥BC,所以∠DEF = ∠EFG = 55°(两直线平行,内错角相等)。
- 由折叠可知,∠DEF = ∠D'EF,所以∠D'EF = 55°。
- 那么∠1 = 180° - ∠D'EF - ∠DEF = 180° - 55° - 55° = 70°。
- 又因为AD∥BC,所以∠1+∠2 = 180°(两直线平行,同旁内角互补),所以∠2 = 180° - ∠1 = 180° - 70° = 110°。
二、折叠问题例题2。
1. 题目。
- 如图,把一张矩形纸片ABCD沿对角线BD折叠,使C点落在C′处,BC′交AD 于E,已知AB = 3,BC = 4,求AE的长。
2. 解析。
- 因为四边形ABCD是矩形,所以AD = BC = 4,AB = CD = 3,∠A = ∠C = 90°。
- 由折叠可知,∠C′BD=∠CBD。
- 因为AD∥BC,所以∠ADB = ∠CBD,所以∠C′BD = ∠ADB,所以BE = DE。
- 在Rt△ABE中,根据勾股定理AB^2+AE^2=BE^2,即3^2+x^2=(4 - x)^2。
- 展开得9+x^2=16 - 8x+x^2,移项可得8x = 16 - 9 = 7,解得x=(7)/(8),所以AE的长为(7)/(8)。
三、折叠问题例题3。
1. 题目。
- 有一张直角三角形纸片,两直角边AC = 6cm,BC = 8cm,将△ABC折叠,使点B与点A重合,折痕为DE,求CD的长。
中考数学几何图形折叠试题典题及解答一、题目描述:下面是一道关于几何图形折叠的中考数学试题,请根据给出的图形进行折叠并回答相关问题。
二、题目内容:以下是一些典型的几何图形折叠试题,供同学们考试复习参考。
1. 长方形折叠在平面上给出一张长方形纸片,长为12厘米,宽为6厘米。
折叠该长方形纸片,使得长方形的两个对边重叠,然后再剪掉重叠部分。
请问最后得到的图形是什么?计算它的周长和面积。
解答:将长方形纸片对折,让两条边相重合。
然后沿着重合的边将多余的部分剪掉。
最后得到的图形是一个等边三角形。
它的周长为36厘米(等边三角形的三条边长相等,每条边长为12厘米),面积为36平方厘米(等边三角形的面积公式为:面积=(边长^2)×(根号3)/4)。
2. 圆形折叠给出一张半径为8厘米的圆形纸片,折叠该圆形纸片使得圆心与边上的一点重合,然后再剪掉重叠部分。
请问最后得到的图形是什么?计算它的周长和面积。
解答:将圆形纸片对折,使得圆心与边上的一点重合。
然后沿着重合的边将多余的部分剪掉。
最后得到的图形是一个等腰三角形。
它的周长为2πr+2r(其中r为圆的半径,即8厘米),面积为(r^2)×π(等腰三角形的面积公式为:面积=(底边×高)/2,这里的底边等于2r)。
3. 正方形折叠给出一张边长为10厘米的正方形纸片,折叠该正方形纸片使对边重叠,然后再剪掉重叠部分。
请问最后得到的图形是什么?计算它的周长和面积。
解答:将正方形纸片对折,使得对边重叠。
然后沿着重合的边将多余的部分剪掉。
最后得到的图形是一个等腰梯形。
它的周长为2a+2b(其中a和b分别为梯形的上、下底边,都等于10厘米),面积为((a+b)×h)/2(等腰梯形的面积公式为:面积=(上底+下底)×高/2,这里的高等于10厘米)。
4. 直角三角形折叠给出一张直角三角形纸片,已知直角边长为5厘米,斜边长为8厘米。
折叠该直角三角形纸片,使直角边重叠,然后再剪掉重叠部分。
【例1】如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,下列结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2.其中结论正确的个数是().A.1个B.2个C.3个D.4个【例2】已知如图,长方形ABCD,AB=8,BC=6,若将长方形顶点A、C重合折叠起来,则折痕PQ长为_________【例3】如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5,在矩形ABCD的边AB上取一点M,在CD 上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK。
(1)若∠1=70°,求∠MKN的度数;(2)△MNK的面积能否小于?若能,求出此时∠1的度数;若不能,试说明理由;(3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,求最大值。
【例4】将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3),动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点P从点A出发以相等的速度沿AO向终点O运动,当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒)。
(1)用含t的代数式表示OP=_______,OQ________;(2)当t=1时,如图1,将沿△OPQ沿PQ翻折,点O恰好落在CB边上的点D处,求点D的坐标;(3)连接AC,将△OPQ沿PQ翻折,得到△EPQ,如图2,问:PQ与AC能否平行?PE与AC能否垂直?若能,求出相应的t值;若不能,说明理由。
【例5】将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB 折叠后与BC边交于点G(如图).(1)如果M为CD边的中点,求证:DE:DM:EM=3:4:5;(2)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否有与点M的位置关系?若有关,请把△CMG的周长用含CM的长x的代数式表示;若无关,请说明理由.【练习1】【练习2】如图,将正方形ABCD折叠,使点C与点D重合于正方形内点P处,折痕分别为AF、BE,如果正方形ABCD的边长是2,那么△EPF的面积是.【练习】已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B 落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为______.【练习】如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为_______【练习】如图,已知矩形ABCD,把矩形沿直线AC折叠,点B落在点E处,连接DE、BE,若△ABE是等边三角形,则△DCE和△ABE面积之比为_____【练习】如图,把矩形OABC放入坐标系,矩形纸片沿AC折叠,若B(1,2),点D坐标_______【练习】如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC 上(含端点),且AB=6cm,BC=10cm.则折痕EF的最大值是cm.【练习】如图,在矩形纸片ABCD中,AB=3,BC=5,点E、F分别在线段AB、BC上,将△BEF沿EF折叠,点B落在B′处.如图,当B′在AD上时,B′在AD上可移动的最大距离为______;如图,当B′在矩形ABCD内部时,AB′的最小值为______.【练习】如图,在矩形ABCD中,AB=12cm,BC=6cm.点E、F分别在AB、CD上,将矩形ABCD沿EF 折叠,使点A、D分别落在矩形ABCD外部的点A1、D1处,则整个阴影部分图形的周长为______.【练习】如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为(用含t的代数式表示).【练习】折叠问题:(1)如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,折痕的一端G点在边BC上,BG=10.①当折痕的另一端点F在AB边上时,如图①,求△EFG的面积;②当折痕的另一端点F在AD边上时,如图②,证明四边形BGEF为菱形,并求出折痕GF的长.(2)在矩形纸片ABCD中,AB=5,AD=13.如图③所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ.当点A′在BC边上移动时,折痕的端点P,Q也随之移动.若限定点P,Q 分别在AB,AD边上移动,求点A′在BC边上可移动的最大距离.答案和解析>【练习】如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G。
八年级数学几何折叠问题专项练习题如图,矩形纸片ABCD 中,AD =4cm ,把纸片沿直线AC 折叠,点B 落在E 处,AE 交DC 于点O ,若AO =5cm ,则AB 的长为( )A .6cmB .7cmC .8cmD .9cm【答案】C .如图,△ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( D )A .2B .54C .53D .75如图,在矩形ABCD 中,点F 在AD 上,点E 在BC 上,把这个矩形沿EF 折叠后,使点D 恰好落在BC 边上的G 点处,若矩形面积为60,2AFG GE BG ∠==,则折痕EF 的长为( C )A .1B C. 2 D .如图,正方形ABCD 中,AD =4,点E 是对角线AC 上一点,连接DE ,过点E 作EF ⊥ED ,交AB 于点F ,连接DF ,交AC 于点G ,将△EFG 沿EF 翻折,得到△EFM ,连接DM ,交EF 于点N ,若点F 是AB 的中点,则△EMN 的周长是 .如图,在Rt ABC ∆中,90A ∠=︒,AB AC =,1BC =+,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MB C ∆为直角三角形,则BM 的长为 .【答案】1.如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).如图,在矩形ABCD 中,AB =3,AD =5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .【答案】35.如图,在边长为2的菱形ABCD 中,∠A =60°,点M 是AD 边的中点,连接MC ,将菱形ABCD 翻折,使点A 落在线段CM 上的点E 处,折痕交AB 于点N ,则线段EC 的长为 ﹣1 .在三角形纸片ABC 中,∠C =90°,∠B =30°,点D (不与B ,C 重合)是BC 上任意一点,将此三角形纸片按下列方式折叠,若EF 的长度为a ,则△DEF 的周长为 3a (用含a 的式子表示).如图,已知AD ∥BC ,AB ⊥BC ,AB =3,点E 为射线BC 上一个动点,连接AE ,将△ABE 沿AE 折叠,点B 落在点B ′处,过点B ′作AD 的垂线,分别交AD ,BC 于点M ,N .当点B ′为线段MN 的三等分点时,BE 的长为 或 .如图,1,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F .(1)求证:BDF △是等腰三角形;(2)如图2,过点D 作DG BE ∥,交BC 于点G ,连结FG 交BD 于点O .①判断四边形BFDG 的形状,并说明理由;②若6AB =,8AD =,求FG 的长.【答案】(1)证明见解析;(2)152.【解析】试题分析: (1)根据两直线平行内错角相等及折叠特性判断;(2)①根据已知矩形性质及第一问证得邻边相等判断;②根据折叠特性设未知边,构造勾股定理列方程求解.试题解析:(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF,∴△BDF是等腰三角形;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵FD∥BG,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=6,AD=8,∴BD=10.∴OB=12BD=5.假设DF=BF=x,∴AF=AD﹣DF=8﹣x.∴在直角△ABF中,AB2+A2=BF2,即62+(8﹣x)2=x2,解得x=25 4,即BF=25 4,∴FO==15 4,∴FG =2FO =152.如图1,将ABC ∆纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰BED ∆和等腰DHC ∆的底边上的高线EF ,HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将ABCD 纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段_____,_____;:ABCD AEFG S S = 形形______.(2)ABCD 纸片还可以按图3的方式折叠成一个叠合矩形EFGH ,若5EF =,12EH =,求AD 的长.(3)如图4,四边形ABCD 纸片满足,,,8,10AD BC AD BC AB BC AB CD <⊥== .小明把该纸片折叠,得到叠合正方形.请你帮助画出叠合正方形的示意图,并求出,AD BC 的长.【答案】(1)(1)AE ;GF ;1:2;(2)13;(3)按图1的折法,则AD =1,BC =7;按图2的折法,则AD =134 ,BC =374.【解析】试题分析:(1)由图2观察可得出答案为AE ,GF ,由折叠的轴对称性质可得出答案为1:2;(2)由EF 和EH 的长度根据勾股定理可求出FH 的长度,再由折叠的轴对称性质易证△AEH ≌△CGF ;再根据全等三角形的性质可得出AD 的长度;(3)由折叠的图可分别求出AD 和BC 的长度.(3)解:本题有以下两种基本折法,如图1,图2所示.按图1的折法,则AD=1,BC=7.按图2的折法,则AD=134,BC=374.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为▲.【答案】16或如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为▲.【答案】245.如图,在矩形ABCD 中,AB =8,BC =12,点E 是BC 的中点,连接AE ,将△ABE 沿AE 折叠,点B 落在点F 处,连接FC ,则sin ∠ECF =( )A .B .C . D.【答案】D .如图,在矩形ABCD 中,AB 4AD 6==形,E 是AB 边的中点,F 是线段BC 边上的动点,将△EBF 沿EF 所在直线折叠得到△'EB F ,连接'B D ‘,则'B D ‘的最小值是( A )A . 2- B .6 C .2 D .4如图,D 是等边△ABC 边AB 上的一点,且AD :DB =1:2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE :CF =( B )[A .B .C .D .如图,在四边形ABCD 中,AD ∥BC ,∠C =90°,E 为CD 上一点,分别以EA ,EB 为折痕将两个角(∠D ,∠C )向内折叠,点C ,D 恰好落在AB 边的点F 处.若AD=2,BC =3,则EF 的长为 .如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC 上的点F处.若点D的坐标为(10,8),则点E的坐标为.【答案】(10,3)。
图形翻折1、如图,把直角三角形纸片沿着过点B 的直线BE 折叠,折痕交AC 于点E ,欲使直角顶点C 恰好落在斜边AB 的中点上,那么∠A 的度数必须是 .2、如图,在矩形ABCD 中,,6=AB 将矩形ABCD 折叠,使点B 与点D 重合,C 落在C '处,若21::=BE AE ,则折痕EF 的长为 .3、已知△ABC 中,AB=AC ,∠BAC=120°,点D 是边AC 上一点,连BD ,若沿直线BD 翻折,点A 恰好落在边BC 上,则AD :DC= .A CBEDC BAA ’4、如图,已知边长为6的等边三角形ABC 纸片,点E 在AC 边上,点F 在AB 边上,沿EF 折叠,使点A 落在BC 边上的点D 的位置,且ED ⊥BC,则CE 的长是( ). (A)31224- (B)24312- (C)18312- (D)31218-5、正方形纸片ABCD 中,边长为4,E 是BC 的中点,折叠正方形,使点A 与点E 重合,压平后,得折痕MN (如图)设梯形ADMN 的面积为1S ,梯形BCMN 的面积为2S ,那么1S :2S =6、如图2,把腰长为4的等腰直角三角形折叠两次后,得到一个小三角形的周长是.7、如图1,在梯形ABCD 中,AD ∥BC ,75,ABC ︒∠=将梯形沿直线EF 翻折,使B 点落在线段AD 上,记作'B 点,连结'B B 、交EF 于点O ,若'90B FC ︒∠=,则:EO FO = .A N C DBM 图2B 'OF ED C B A8、等边△OAB 在直角坐标系中的位置如图所示,折叠三角形使点B 与y 轴上的点C 重合,折痕为MN ,且CN 平行于x 轴,则∠CMN = 度.9、有一块矩形的纸片ABCD ,AB=9,AD=6,将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则△CEF 的面积为 .A B A D B D BFD CE C E C10、如图,有一矩形纸片ABCD ,AB =10,AD =6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于F ,那么△CEF 的面积是 。
ABOC(第12题) xyE D E D A B C D C B A B C A第12题图11、如图1,在等腰直角△ABC 中,AB =AC ,点D 在BC 上,060=∠ADB ,将△ADC 沿AD 翻折后点C落在点C /,则AB 与BC /的比值为________.12、△ABC 中,BC=2,∠ABC=30°,AD 是△ABC 的中线,把△ABD 沿AD 翻折到同一平面,点B 落在B′的位置,若AB′⊥BC ,则B′C=__________.13、在△ABC 的纸片中,∠B =20°,∠C =40°,AC =2,将△ABC 沿边BC 上的高所在直线折叠后B 、C 两点之间的距离为 .14、如图,长方形纸片ABCD 中,AD =9,AB =3,将其折叠,使其点D 与点B 重合,点C 至点C /,折痕为EF .求△BEF 的面积.C /F E DCBA15、如图,在直角梯形ABCD 中,AD//BC , DC ⊥BC ,E 为BC 边上的点,将直角梯形ABCD 沿对角线BD 折叠,使△ABD △与EBD 重合.若∠A=120°,AB=4cm ,求EC 的长.E DCB A16、如图,矩形AOBC ,以O 为坐标原点,OB 、OA 分别在x 轴、y 轴上,点A 的坐标为(0,3),点B 的坐标为(5,0),点E 是BC 边上一点,如把矩形AOBC 沿AE 翻折后,C 点恰好落在x 轴上点F 处.(1)求点F 的坐标;(2)求线段AF 所在直线的解析式.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是 [ D ]A .矩形B .三角形C .梯形D .菱形如图,折叠长方形的一边AD ,点D 落在BC 边的点F 处,已知AB=8cm, BC=10cm ,求AE 的长.yEB O A x CF.如图,在平面直角坐标系中,四边形ABCO 是正方形,点C 的坐标是(4,0)。
(1)直接写出A 、B 两点的坐标。
A ______________ B____________(2)若E 是BC 上一点且∠AEB=60°,沿AE 折叠正方形ABCO ,折叠后点B 落在平面内点F 处,请画出点F 并求出它的坐标。
(3)若E 是直线..BC 上任意一点,问是否存在这样的点E ,使正方形ABCO 沿AE 折叠后,点B 恰好落在x 轴上的某一点P 处?若存在,请写出此时点P 与点E 的坐标;若不存在,请说明理由。
如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,BC /交AD 于E ,AD =8,AB =4,则DE 的长为( ).A .3B .4C .5D .6解:∵四边形ABCD 是矩形,∴AD ∥BC ,即∠1=∠3, 由折叠知,∠1=∠2,C′D=CD=4、BC′=BC=8,∴∠2=∠3,即DE=BE , 设DE=x ,则EC′=8-x ,在Rt △DEC′中,DC'2+EC'2=DE 2∴42+(8-x )2=x 2解得:x=5, ∴DE 的长为5.A BC O Ex yA B DF EC三、图形翻折综合题1、如图,E 是正方形ABCD 的边AD 上的动点,F 是边BC 延长线上的一点,且BF =EF ,AB =12,设AE =x ,BF =y .(1)当△BEF 是等边三角形时,求BF 的长;(2)求y 与x 之间的函数解析式,并写出它的定义域;(3)把△ABE 沿着直线BE 翻折,点A 落在点A '处,试探索:△BF A '能否为等腰三角形?如果能,请求出AE 的长;如果不能,请说明理由.(1)当△BEF 是等边三角形时,∠ABE =30°.…………………………………(1分)∵AB =12,∴AE =34.………………………………………………………………(1分)∴BF =BE =38.…………………………………(1分)(2)作EG ⊥BF ,垂足为点G .……………………(1分)根据题意,得EG =AB =12,FG =y -x ,EF =y .…(1分)∴22212)(+-=x y y .…………………………(1分)A C DE F A C DE F∴所求的函数解析式为)120(21442<<+=x xx y .…………………………(1分,1分) (3)∵∠AEB =∠FBE =∠FEB ,∴点A '落在EF 上.…………………………………(1分) ∴AE E A =',∠F A B '=∠E A B '=∠A =90°.………………………………………(1分)∴要使△BF A '成为等腰三角形,必须使F A B A '='.而12=='AB B A ,E A BF E A EF F A '-='-=',∴12=-x y .……………………………………(1分) ∴1221442=-+x xx .整理,得0144242=-+x x . 解得21212±-=x . 经检验:21212±-=x 都原方程的根,但21212--=x 不符合题意,舍去.当AE =12212-时,△BF A '为等腰三角形.……………………………………(1分)即33163310332+-=x x y (2分) (2) 顶点P ()33,5-AP=AB=BP=6 (1分)∴ 0'60=∠PAP (1分)作AP G P ⊥'于G ,则x AG 21=,x G P 23'= A C DEF A '又y PE E P ==',y x EG --=216 在EG P Rt '∆中,222)216()23(y y x x =--+ (2分) ∴ )60(123662<<-+-=x xx x y (2分) (3)若x EP ⊥'轴 则x y 26=-x xx x 21236662=-+-- 36121-=x ,36122+=x (舍去) (1分) ∴ )0,3614('-P若x FP ⊥'轴 则x y 216=- x x x x 211236662=-+-- 6363-=x ,6364--=x (舍去) (1分) ∴ )0,436('-P若x EF ⊥轴, 显然不可能。
∴ )0,3614('-P 或 )0,436('-P (1分+1分)4、已知边长为3的正方形ABCD 中,点E 在射线BC 上,且BE=2CE ,连结AE 交射线DC 于点F ,若∆ABE 沿直线AE 翻折,点B 落在点1B 处.(1)如图6:若点E 在线段BC 上,求CF 的长;(2)求1sin DAB ∠的值;(3)如果题设中“BE=2CE ”改为“x CEBE =”,其它条件都不变,试写出∆ABE 翻折后与正方形ABCD 公共部分的面积y 与x 的关系式及定义域.(只要写出结论,不要解题过程)图 6A D C F E BA DC B 备用图(07嘉定第25题)25.(1)解:∵AB ∥DF ∴CEBE CF AB =…………………1分 ∵BE=2CE ,AB=3 ∴CECE CF 23= ………………1分 ∴23=CF ……………………2分 (2)若点E 在线段BC 上,如图1设直线1AB 与DC 相交于点M由题意翻折得:∠1=∠2∵AB ∥DF∴∠1=∠F∴∠2=∠F∴AM=MF …………………………………………1分 设DM=x ,则CM=x -3 又23=CF ∴AM=MF=x -29 在Rt ∆ADM 中,222AM DM AD =+A DC F EB图1 A D C F E B B 1M12∴222)29(3x x -=+ ∴45=x …………………1分 ∴DM=45,AM=413 ∴1sin DAB ∠=AM DM =135…………………………1分 若点E 在边BC 的延长线上,如图2设直线1AB 与CD 延长线相交于点N 同理可得:AN=NF∵BE=2CE ∴BC=CE=AD∵AD ∥BE ∴FCDF CE AD = ∴DF=FC=23……1分 设DN=x ,则AN=NF=23+x 在Rt ∆ADN 中,222AN DN AD =+ ∴222)23(3+=+x x ∴49=x ………………1分 ∴DN=49,AN=415 1sin DAB ∠=AN DN =53………………………………1分 (3)若点E 在线段BC 上,229+=x x y ,定义域为0>x …………………2分 若点E 在边BC 的延长线上,x x y 299-=,定义域为1>x .…………2分5、如图,在Rt △ABC 中,∠C =90°,AC =12,BC =16,动点P 从点A 出发沿AC 边向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ 关于直线PQ 对称的图形是△PDQ .设运动时间为t (秒).(1)设四边形PCQD 的面积为y ,求y 与t 的函数关系式及自变量t 的取值范围;(2)是否存在时刻t ,使得PD ∥AB ?若存在,求出t 的值;若不存在,请说明理由; A DCBB 1N 图2EF(3)通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD ⊥AB ?若存在,请估计t 的值在括号中的哪个时间段内(0≤t ≤1;1<t ≤2;2<t ≤3;3<t ≤4);若不存在,请简要说明理由.(07奉贤第25题)25.(1)由题意知 CQ =4t ,PC =12-3t ,………………1分∴S △PCQ =t t CQ PC 246212+-=⋅. ∵△PCQ 与△PDQ 关于直线PQ 对称, ∴y=2S △PCQ t t 48122+-=.………………2分((04)t <<……………………………………1分(2)设存在时刻t ,使得PD ∥AB ,延长PD 交BC 于点M ,如图,……1分若PD ∥AB ,则∠QMD =∠B ,又∵∠QDM =∠C =90°,∴Rt △QMD ∽Rt △ABC , 从而ACQD AB QM =,……………2分 ∵QD =CQ =4t ,AC =12,第25题图 APQBDC 图2 AP CQB DMAB =221216+=20,∴QM =203t .…………………2分 若PD ∥AB ,则CP CM CA CB =,得20412331216t t t +-=,………………2分 解得t =1211.………………1分 ∴当t =1211秒时,PD ∥AB . (3)存在时刻t ,使得PD ⊥AB .时间段为:2<t ≤3.………………2分26.(2007.绵阳)当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知矩形ABCD ,我们按如下步骤操作可以得到一个特定的角:(1)以点A 所在直线为折痕,折叠纸片,使点B 落在AD 上,折痕与BC 交于E ;(2)将纸片展平后,再一次折叠纸片,以E 所在直线为折痕,使点A 落在BC 上,折痕EF 交AD 于F .则∠AFE =( )A .60︒B .67.5︒C .72︒D .75︒27.(2012•鸡西)如图所示,沿DE 折叠长方形ABCD 的一边,使点C 落在AB 边上的点F 处,若AD=8,且△AFD 的面积为60,则△DEC 的面积为 .解:∵四边形ABCD 是矩形,∴∠A=∠B=90°,BC=AD=8,CD=AB ,∵△AFD 的面积为60,即AD•AF=60,解得:AF=15,AB C∴DF==17,由折叠的性质,得:CD=CF=17,∴AB=17,∴BF=AB﹣AF=17﹣15=2,设CE=x,则EF=CE=x,BE=BC﹣CE=8﹣x,在Rt△BEF中,EF2=BF2+BE2,即x2=22+(8﹣x)2,解得:x=,即CE=,∴△DEC的面积为:CD•CE=×17×=.故答案为:.28.(2012•丽水)如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是.解:连接BO,∵∠BAC=50°,∠BAC的平分线与AB的中垂线交于点O,∴∠OAB=∠ABO=25°,∵等腰△ABC中,AB=AC,∠BAC=50°,∴∠ABC=∠ACB=65°,∴∠OBC=65°-25°=40°,∵,∴△ABO≌△ACO,∴BO=CO,∴∠OBC=∠OCB=40°,∵点C沿EF折叠后与点O重合,∴EO=EC,∠CEF=∠FEO,∴∠CEF=∠FEO==50°,故答案为:50°.29.。