【期中试卷】湖北省孝感市2017_2018学年八年级数学10月月考试题(含答案)
- 格式:doc
- 大小:1.74 MB
- 文档页数:7
八年级数学阶段性检测试题一、选择题(本大题共10小题,每小题3分,共30分.•在每小题所给出的四个选项中,只有一项是符合题目要求的)1.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cmC.1cm,1cm,3cm D.3cm,4cm,9cm2.适合条件∠A=12∠B=13∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形3.已知等腰三角形的一个角为75°,则其顶角为()A.30°B.75°C.105°D.30°或75°4.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.85.下列命题正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半6. 下列说法中不正确的是()①全等三角形的对应边相等;②全等三角形的对应角相等;③全等三角形的周长相等;④周长相等的两个三角形全等;⑤全等三角形的面积相等;⑥面积相等的两个三角形全等.A.④⑤B.④⑥C.③⑥D.③④⑤⑥第7题7. 如图,线段AD 与BC 交于点O ,且AC=BD ,AD=BC , 则下面的结论中不正确的是( )A.△ABC ≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D8.已知等腰△ABC 的底边BC=8cm ,│AC-BC │=2cm ,则腰AC 的长为( )A .10cm 或6cmB .10cmC .6cmD .8cm 或6cm 9.如图9,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是(• ) A .∠A=∠1+∠2 B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠)10.如图,已知E 是正方形ABCD 的边CD 的中点,点F 在BC 上,且∠DAE=∠FAE那么,AF ,AD ,CF 三条线段的关系是--------( ) A .AF >AD+CF B .AF <AD+CF C .AD=AF-CF D .无法确定二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)11.如图,△ABC 中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使△ABD 与△ABC 全等,那么点D 的坐标是 _________ .第9题F第10题12.已知:如图,△OAD≌△OB C ,且∠O=70°,∠C=25°,则∠AEB=_度.13.三角形的三边长分别为5,1+2x ,8,则x 的取值范围是________. 14.如下图14:∠A+∠B+∠C+∠D+∠E+∠F 等于________. 15.如图15,已知∠1=20°,∠2=25°,∠A=55°,则∠BOC 的度数是_____.16.同的度数,设最小角的度数为100°,最大角度数为边形。
湖北孝感孝南区肖港初中等三校初二10月考数学卷(解析版)(初二)月考考试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】如图,EB=EC,AB=AC,则此图中全等三角形有()A.2对 B.3对 C.4对 D.5对【答案】B【解析】试题分析:根据三角形全等判定的条件可得:△ABE≌△ACE,△ABD≌△ACD,△BED≌△CED.考点:三角形全等的判定【题文】如图所示,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACD B.△BDE≌△CDE C.△ABE≌△ACE D.以上都不对【答案】C【解析】试题分析:根据AB=AC,BE=CE,AE=AE可以得出△ABE≌△ACE.考点:三角形全等的判定【题文】如图,已知△ABC≌△ADC,∠B=30°,∠DAC=25°,则∠ACB=()A.55° B.60° C.120° D.125°评卷人得分【答案】D【解析】试题分析:根据三角形全等可得:∠BAC=∠DAC=25°,根据三角形的内角和定理可得:∠ACB=180°-30°-25°=125°.考点:三角形全等的性质【题文】如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则么C的度数为()A. B. C. D.【答案】C【解析】试题分析:根据AD∥BC可得:∠EAD=∠B=30°,根据角平分线的性质可得:∠DAC=∠EAD=30°,根据平行线的性质可得:∠C=∠DAC=30°.考点:平行线的性质【题文】将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140° B.160° C.170° D.150°【答案】B【解析】试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°. 考点:角度的计算【题文】一个多边形从一个顶点出发共引7条对角线,那么这个多边形对角线的总数为()A.70B.35C.45D.50【答案】B【解析】试题分析:根据从一个顶点出发共引7条对角线可得:多边形的边数为10,则对角线的总条数==35.考点:多边形的对角线条数【题文】一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5B.5或6C. 5或7 D.5或6或7【答案】D【解析】试题分析:根据内角和为720°可得:多边形的边数为六边形,则原多边形的边数为5或6或7.考点:多边形的内角和【题文】平面直角坐标系中的点P(2﹣m,m)在第一象限,则m的取值范围在数轴上可表示为()A.B.{{1l【题文】如图,以三角形三个顶点为圆心画半径为2的圆,则阴影部分面积之和为()A.π B.2π C.3π D.4π【答案】D【解析】试题分析:根据三角形外角的性质可得:三角形的外角和为360°,则面积=π×=4π.考点:三角形外角的性质【题文】如图,AB∥DE,若∠B=40°,∠C=25°,则∠D=_______。
湖北省孝感市八年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018八下·邯郸开学考) 下列四个图形中是轴对称图形的是()。
A . 1个B . 2个C . 3个D . 4个2. (2分)如图,自行车的车身为三角结构,这是因为三角形具有()A . 对称性B . 稳定性C . 全等性D . 以上都是3. (2分)三角形第一边的长为m+n,第二,三边的长分别比第一边的长大m-3和2n,那么这个三角形的周长为()A . 2m+3n-3B . 2m+3n+3C . 3m+4n-3D . 4m+5n-34. (2分)如下图,△ABC≌△EFD,那么下列说法错误的是()A . FC=BDB . EF ABC . ACD ED . CD=ED5. (2分) (2016八上·富顺期中) 已知点A(2,﹣3)关于y轴对称的点的坐标为点B,则点B的坐标()A . (2,﹣3)B . (﹣2,﹣3)C . (2,3)D . (﹣2,3)6. (2分) (2017七下·龙华期末) 如图,△ABC中,D、E分别为AB、AC上两点,将△ABC沿直线DE折叠,使得点A落在△ABC右侧的A1处,则∠A、∠1、∠2之间满足的关系式是()A . ∠A=∠1-∠2B . ∠A= ∠1-∠2C . ∠A=∠1-2∠2D . 2∠A=∠1-∠27. (2分)如图,将边长为的正方形ABCD绕点A逆时针方向旋转30°后得到正方形,则图中阴影部分的面积为()A .B .C .D .8. (2分)梯形的四条边长分别为6,6,6,12,则这个梯形的面积为()A . 54B . 27C . 54D . 279. (2分)(2017·祁阳模拟) 下列命题:①若a<1,则(a﹣1) =﹣;②平行四边形既是中心对称图形又是轴对称图形;③ 的算术平方根是3;④如果方程ax2+2x+1=0有两个不相等的实数根,则实数a <1.其中正确的命题个数是()A . 1个B . 2个C . 3个D . 4个10. (2分) (2018八下·深圳月考) 如图,在4×4方格中,以AB为一边,第三个顶点也在格点上的等腰三角形可以作出()A . 7个B . 6个C . 4个D . 3个二、填空题 (共8题;共8分)11. (1分) (2015八上·卢龙期末) 如图,AF=DC,BC∥EF,只需补充一个条件________,就得△ABC≌△DEF.12. (1分)(2017·吉安模拟) 一个多边形的内角和比外角和的3倍多180°,则它的边数是________.13. (1分)已知五条线段的长分别为3,4,5,6,7,则从中任意选取其中三条线段作三角形.能够作出________个三角形.14. (1分)(2014·扬州) 如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=________.15. (1分)如图,下图中的两个四边形关于某直线对称,根据图形提供的条件,则x=________度,y=________.16. (1分)如图,在菱形ABCD中,AB=BD,点E,F分别在BC,CD边上,且CE=DF,BF与DE交于点G,若BG=2,DG=4,则CD长为________.17. (1分) (2018九上·黑龙江月考) 如图所示,△ABC为等边三角形,AD为BC边上的高,且AB=2,则正方形ADEF的面积为________.18. (1分) (2018七下·马山期末) 如图,将直线l1沿着AB的方向平移得到直线l2 ,若∠1=50°,则∠2=________.三、解答题 (共8题;共71分)19. (10分)如图,如下图均为2×2的正方形网格,每个小正方形的边长均为1.请分别在四个图中各画出一个与△ABC成轴对称、顶点在格点上,且位置不同的三角形.20. (10分) (2017八上·湖州期中) 如图,在△ABC中,D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)求∠AFC的度数;(2)求∠EDF的度数.21. (5分)已知:如图,在Rt△ABC中,∠B=30°,∠C=90°,BD=AD,BD=12.求DC的长.22. (5分) (2017七下·揭西期末) 如图,BE⊥AE于E,CF⊥AD于F,且BE=CF,那么BD与DC相等吗?请说明理由?23. (10分)(2014·盐城) 【问题情境】张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC 中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.(1) .小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.(2) .【变式探究】如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;(3) .【结论运用】如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF 上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;(4) .【迁移拓展】图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2 dm,AD=3dm,BD= dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.24. (10分) (2017八上·弥勒期末) 如图,已知在中,,为边的中点,过点作,垂足分别为.(1)求证:;(2)若, = ,求的周长.25. (10分)如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)若CD=5,求AC的长.(2)求证:AB=AC+CD.26. (11分)如图:已知y=ax2+bx+c与x轴交于A,B两点,A,B坐标分别是(﹣1,0)和(3,0)与y轴交于点C(0,3).(1)求抛物线解析式,并确定其对称轴;(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求符合条件的点P的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共71分)19-1、20-1、20-2、21-1、22-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、。
2017-2018学年湖北省孝感市孝南区八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.如果二次根式有意义,那么x的取值范围是()A. B. C. D.2.下列式子中,属于最简二次根式的是()A. B. C. D.3.下列计算正确的是()A. B. C. D.4.下列各组线段中,能组成直角三角形的是()A. 2,3,4B. 1,4,9C. 5,12,13D. 5,11,125.点(3,-1)到原点的距离为()A. B. 3 C. 1 D.6.如图,在△ABC中,D,E,F分别是AB,BC,CA的中点,以这些点为顶点,在图中能画平行四边形的个数是()A. 2B. 3C. 4D. 57.在下列给出的条件中,能判定四边形ABCD为平行四边形的是()A. ,B. ,C. ,D. ,8.已知:如图,在矩形ABCD中,DE⊥AC,∠ADE=∠CDE,那么∠BDC等于()A.B.C.D.9.如图,图中所有的三角形都是直角三角形,所有的四边形都是正方形,已知正方形A、B、C、D的面积分别为12、16、9、12,那么图中正方形E的面积为()A. 144B. 147C. 49D. 14810.观察下列式子:;;;…根据此规律,若,则a2+b2的值为()A. 110B. 164C. 179D. 181二、填空题(本大题共6小题,共18.0分)11.已知是整数,则满足条件的最小正整数n为______.12.“全等三角形的对应边相等”的逆命题是:______.13.若最简二次根式和是同类二次根式,则a的值是______.14.边长为4的等边三角形的面积是______.15.平行四边形ABCD的周长是18,三角形ABC的周长是14,则对角线AC的长是______.16.如图,在等腰直角三角形ABC中,∠ABC=90°,E是AB上一点,BE=2,AE=3BE,P是AC上一动点.则PB+PE的最小值是______.三、计算题(本大题共2小题,共18.0分)17.计算:(1)×(-π)0-|-3|(2)-4+÷18.已知:x=,y=-2,求代数式x2-3xy+y2的值四、解答题(本大题共6小题,共54.0分)19.如图,▱ABCD中,O为对角线AC和BD的交点,BE⊥AC,DF⊥AC,垂足分别为E、F.求证:OE=OF.20.如图,AM是△ABC的中线,∠C=90°,MN⊥AB于N,求证:AN2-BN2=AC221.如图,正方形网格中,每个小方格的边长为1,请完成:(1)从A点出发画线段AB、AC,以及线段BC使AB=,AC=2,BC=,且使B、C两点也在格点上;(2)请求出图中你所画的△ABC的面积.22.小明在解决问题:已知a=,求2a2-8a+1的值,他是这样分析与解答的:∵a===2-,∴a-2=-,∴(a-2)2=3,a2-4a+4=3∴a2-4a=-1.∴2a2-8a+1=2(a2-4a)+1=2(-1)+1=-1.请你根据小明的分析过程,解决如下问题:若a=,求4a2-8a-3的值.23.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:△AEF≌△DEC;(2)当△ABC满足什么条件时,四边形AFBD是矩形?请说明理由.24.将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3).动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点P从点A出发以相等的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).(1)求点B的坐标,并用含t的代数式表示OP,OQ;(2)当t=1时,如图1,将△OPQ沿PQ翻折,点O恰好落在CB边上的点D处,求点D的坐标;(3)在(2)的条件下,矩形对角线AC、BD交于M,取OM中点G,BM中点H,求证:当t=1时,四边形DGPH为平行四边形.答案和解析1.【答案】A【解析】解:二次根式有意义,则x的取值范围是:x≥3.故选:A.直接利用二次根式的定义分析得出答案.此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2.【答案】B【解析】解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.【答案】B【解析】解:A、原式=2+=3,所以A选项错误;B、原式==2,所以B选项正确;C、原式=3,所以C选项错误;D、原式=2,所以D选项错误.故选:B.根据二次根式的加减法对A、D进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的乘法法则对C进行判断.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.【答案】C【解析】解:A、∵22+32=42,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故选项错误;B、∵1+4<9,∴不能组成三角形,故选项错误;C、∵52+122=132,∴该三角形符合勾股定理的逆定理,故是直角三角形,故选项正确;D、∵52+102≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故选项错误.故选:C.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.【答案】D【解析】【分析】本题考查了两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=.直接利用两点间的距离公式计算即可.【解答】解:点(3,-1)到原点的距离==.故选D.6.【答案】B【解析】解:∵D、E、F分别是边AB,BC,CA的中点,∴DE、DF、EF都是△ABC的中位线,∴DE∥AC,DF∥BC,EF∥AB,∴四边形EDFC是平行四边形,四边形EBDF是平行四边形,四边形ADEF是平行四边形.故选:B.由于D、E、F分别是边AB,BC,CA的中点,易知DE、DF、EF都是△ABC的中位线,那么DE∥AC,DF∥BC,EF∥AB,根据平行四边形的定义,两两结合易证四边形EDFC是平行四边形;四边形EBDF是平行四边形;四边形ADEF是平行四边形.本题考查了平行四边形的判定、三角形中位线定理,解题的关键是熟练掌握三角形中位线定理的内容.7.【答案】C【解析】解:如图所示,根据平行四边形的判定,A、B、D条件均不能判定为平行四边形,C选项中,由于AB∥CD,∠A=∠C,所以∠B=∠D,所以只有C选项能判定.故选:C.根据平行四边形的判定进行判断即可得出结论.本题主要考查了平行四边形的判定,平行四边形的判定方法共有五种:1、四边形的两组对边分别平行;2、一组对边平行且相等;3、两组对边分别相等;4、对角线互相平分;5、两组对角分别相等.则四边形是平行四边形.8.【答案】D【解析】解:∵四边形ABCD是矩形,∴∠ADC=90°,OA=OD,∴∠ADB=∠DAC,∵DE⊥AC,∠ADE=∠CDE,∴∠ADE=∠ACD=22.5°°,∠CDE=67.5°,∴∠ADB=∠DAC=67.5°,∴∠BDC=90°-67.5°=22.5°,故选:D.根据矩形的性质得出∠ADC=90°,OA=OD,得出∠ADB=∠DAC,由已知条件得出∠ADE=∠ACD=22.5°°,∠CDE=67.5°,求出∠ADB=∠DAC=67.5°,即可得出结果.本题考查了矩形的性质、等腰三角形的性质;熟练掌握矩形的性质,弄清各角之间的数量关系是解决问题的关键.9.【答案】C【解析】【分析】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a、b,斜边长为c,那么a2+b2=c2.根据勾股定理的几何意义解答即可.【解答】解:根据勾股定理的几何意义,可知:S E=S F+S G=S A+S B+S C+S D=12+16+9+12=49.故选C.10.【答案】D【解析】解:由题意得,,解得:,∴a2+b2=92+102=181.故选:D.由1×2=2,2×3=6,3×4=12,…可得ab=90,还发现每个式子的两个因数是连续的整数,可得:a+1=b,解方程组可得a和b的值,代入所求式子可得结论.此题考查了数字类的变化规律题,还考查了二元二次方程组的解的问题,认真观察已知条件,总结规律是解题的关键.11.【答案】5【解析】解:∵==2,且是整数;∴2是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案是:5.因为是整数,且==2,则5n是完全平方数,满足条件的最小正整数n为5.此题主要考查了二次根式的定义,正确化简二次根式得出是解题关键.12.【答案】三对边相等的三角形是全等三角形【解析】解:∵命题“全等三角形的对应边相等”的题设是:如果两个三角形是全等三角形,结论是:这两个三角形的对应边相等.∴此命题的逆命题是:三对边相等的三角形是全等三角形.故答案为:三对边相等的三角形是全等三角形.根据互逆命题的定义进行解答即可.本题考查的是互逆命题的定义,根据命题的定义得出原命题的题设和结论是解答此类问题的关键.13.【答案】6【解析】解:由题意可知:3a-4=a+8,解得:a=6故答案为:6根据同类二次根式的概念即可求出答案.本题考查同类二次根式与最简二次根式,解题的关键是正确理解同类二次根式与最简二次根式的概念,本题属于基础题型.14.【答案】4【解析】解:如图,∵等边三角形三线合一,∴D为BC的中点,BD=DC=2,在Rt△ABD中,AB=4,BD=2,∴AD==2,∴等边△ABC的面积为BC•AD=×4×2=4.故答案为:4.根据等边三角形三线合一的性质可以求得高线AD的长度,根据BC和AD即可求得三角形的面积.本题考查了勾股定理在直角三角形中的运用,考查了三角形面积的计算,考查了等边三角形各边长相等的性质,本题中根据勾股定理即可AD的长度是解题的关键.15.【答案】5【解析】解:∵平行四边形ABCD的周长是18,∴AB+BC=18÷2=9,∵三角形ABC的周长是14,∴AC=14-(AB+AC)=5,故答案为5.由平行四边形ABCD的周长是18,可得AB+BC=9,又因为三角形ABC的周长是14,所以AC=14-9=5.此题主要考查平行四边的性质:平行四边形的两组对边分别相等.16.【答案】10【解析】解:如图:作等腰直角三角形ABC关于AC的对称直角三角形ADC,连接DE,与AC交于点P,根据两点之间,线段最短得到ED就是PB+PE的最小值,∵等腰直角三角形ABC中,∠BAC=45°,∴∠DAC=45°,∴∠DAE=90°,∵B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AD=AB=8,∴DE===10.∴PB+PE的最小值为10.故答案为:10.由B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.本题考查了直角三角形的性质,勾股定理,轴对称-最短路线问题等知识点的理解和掌握,能求出PE+PB=DE的长是解此题的关键.17.【答案】解:(1)原式=3×1+-3=;(2)原式=3-2+=3-2+2=3.【解析】(1)利用零指数幂的意义、二次根式的性质和绝对值的意义计算;(2)先利用二次根式的除法法则运算,然后化简后合并即可.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【答案】解:∵x=,y=-2,∴x-y=-(-2)=-+2=2,xy=(-2)=5-2,则原式=(x-y)2-xy=22-(5-2)=4-5+2=-1+2.【解析】先根据x、y的值计算出x-y、xy的值,再代入原式=(x-y)2-xy计算可得.本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式.19.【答案】证明:OE=OF.理由如下:∵四边形ABCD是平行四边形,∴OB=OD.又∵BE⊥AC,DF⊥AC,∴∠OFD=∠OEB.又∠DOF=∠BOE,∴△BOE≌△DOF.∴OE=OF.【解析】根据平行四边形的性质得OB=OD,根据BE⊥AC,DF⊥AC得∠OFD=∠OEB,结合对顶角相等得△OFD≌△OEB,从而证明OE=OF.本题考查平行四边形的性质和全等三角形的判定,灵活运用平行四边形的性质是解题的关键.20.【答案】证明:∵MN⊥AB,∴在Rt△AMN和Rt△BMN中,AN2=AM2-MN2,NB2=BM2-MN2,∴AN2-BN2=AM2-BM2,在Rt△ACM中,AM2-CM2=AC2,∵AM是△ABC的中线,∴CM=BM,∴AN2-BN2=AM2-BM2=AM2-CM2=AC2.【解析】直接利用勾股定理得出AN2-BN2=AM2-BM2,进而得出答案.此题主要考查了勾股定理以及三角形中线的性质,正确应用勾股定理是解题关键.21.【答案】解:(1)如图所示,点B、点C即为所求;(2)如图所示,S△ABC=(1+2)×4×-2×1×-2×2×=6-1-2=3.【解析】(1)找出满足题意得B与C的位置,连接AB,AC,BC,如图所示;(2)三角形ABC的面积=上底为1、下底为2、高为4的梯形的面积-两个三角形的面积,求出即可.此题考查了作图-应用与设计、勾股定理,熟练掌握勾股定理是解本题的关键,学会利用数形结合的思想思考问题.22.【答案】解:a===+1,(a-1)2=2,a2-2a+1=2,a2-2a=1.4a2-8a-3=4(a2-2a)-3=4×1-3=1,4a2-8a-3的值是1.【解析】根据平方差公式,可分母有理化,根据整体代入,可得答案.本题考查了分母有理化的应用,能求出a的值和正确变形是解此题的关键.23.【答案】证明:(1)∵AF∥BC,∴∠AFE=∠DCE,∵点E为AD的中点,∴AE=DE,在△AEF和△DEC中,∴△AEF≌△DEC(AAS);(2)当△ABC满足:AB=AC时,四边形AFBD是矩形;∵△AEF≌△DEC,∴AF=CD,∵AF=BD,∴CD=BD;∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四边形AFBD是矩形.【解析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.24.【答案】(1)解:∵O(0,0),A(6,0),C(0,3),∴OA=6,OC=3,∵四边形OABC是矩形,∴AB=OC=3,BC=OA=6,∴B(6,3),∵动点Q从O点以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点P从点A出发以相等的速度沿AO向终点O运动.∴当点P的运动时间为t(秒)时,AP=t,OQ=+t,则OP=OA-AP=6-t;(2)当t=1时,OQ=,则CQ=CQ=OC-OQ=,由折叠可知:△OPQ≌△DPQ,∴OQ=DQ=,由勾股定理,得:CD=1,∴D(1,3);(3)如图所示,由(1),(2)知:当t=1时,CD=AP=1,OA=BC=6∴BC-CD=OA-AP,即BD=OP=5,∵四边形OABC是矩形,∴OM=MB,OA∥BC,∵G为OM中点,H为BM中点,∴OG=BH,∵OA∥BC,∴∠CBO=∠AOB,在△POG和△DBH中,∵ ,∴△POG≌△DBH(SAS),∴∠OGP=∠BHD,PG=DH,∴∠MGP=∠DHM,∴PG∥DH,∵PG=DH,∴四边形DGPH是平行四边形.故当t=1时四边形DGPH是平行四边形.【解析】(1)由O(0,0),A(6,0),C(0,3),可得:OA=6,OC=3,根据矩形的对边平行且相等,可得:AB=OC=3,BC=OA=6,进而可得点B的坐标为:(6,3),然后根据P点与Q点的运动速度与运动时间即可用含t的代数式表示OP,OQ;(2)由翻折的性质可知:△OPQ≌△DPQ,进而可得:DQ=OQ,然后由t=1时,DQ=OQ=,CQ=OC-OQ=,然后利用勾股定理可求CD的值,进而可求点D的坐标;(3)由(1),(2)知:当t=1时,CD=AP=1,OA=BC=6,进而可得:BD=OP=5,然后由矩形的性质可得:OG=BH,∠CBO=∠AOB,然后根据SAS证明△POG≌△DBH,进而可得PG∥DH,PG=DH,然后根据一组对边平行且相等的四边形是平行四边形,即可求证:当t=1时四边形DGPH是平行四边形.此题是四边形的综合题,主要考查了动点的问题、矩形的性质、平行四边的判定、全等三角形的判定与性质等知识,解(1)的关键是:明确矩形的对边相等;解(2)的关键是:由翻折的性质可知:△OPQ≌△DPQ;解(3)的关键是:根据SAS证明△POG≌△DBH.。
赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P 2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
DBC2017-2018学年湖北省孝感市汉川市八年级(上)期中数学试卷一、精心选一选(将唯一正确答案的代号填在题后的答题卡中10×3分=30分)1.(3分)如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2 B.4 C.6 D.82.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.3.(3分)正五边形的外角和为()A.540°B.360°C.180° D.72°4.(3分)下列平面图形中,不是轴对称图形的是()A. B. C.D.5.(3分)若点A(x,3)与点B(2,y)关于x轴对称,则()A.x=﹣2,y=3 B.x=2,y=3 C.x=﹣2,y=﹣3 D.x=2,y=﹣36.(3分)如图,△ABD≌△ACE,AB=9,AD=7,BD=8,则BE的长是()A.1 B.2 C.4 D.67.(3分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.68.(3分)下列条件中,不能判断两个三角形全等的方法有()A.两边和一个角分别相等的两个三角形B.两个角及其夹边分别相等的两个三角形C.三边分别相等的两个三角形D.斜边和一条直角边分别相等的两个直角三角形9.(3分)已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④10.(3分)如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE ⊥AC于E,与CD相交于点F,DH⊥BC于H交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正确的个数是()A.1个 B.2个 C.3个 D.4个二、细心填一填(本大题共6小题,每小题3分,共18分.)11.(3分)等腰三角形的一个底角为30°,则顶角的度数是度.12.(3分)如图:已知△ABC的∠B和∠C的外角平分线交于D,∠A=40°,那么∠D=度.13.(3分)如图,△ABC中,AB=AC=6,BC=4.依据尺规作图的痕迹,则△EBC 的周长为.14.(3分)一个多边形的内角和等于1260°,则它的对角线的条数为.15.(3分)如图,在平面直角坐标系中,已知两点A(1,2),B(﹣1,﹣2),若△ABC是以线段AB为一腰,对称轴平行于y轴的等腰三角形,则C点的坐标是.16.(3分)如图,四边形ABCD沿直线l对折后重合,如果AD∥BC,则下列结论:①AB∥CD;②AB=CD;③AB⊥BC;④AO=OC.其中正确的是.(只填序号)三、用心做一做(本大题共8小题,满分72分).17.(8分)如图,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O,BO=CO.求证:AO平分∠BAC.18.(8分)一个多边形的内角和比四边形的外角和多720°,并且这个多边形的各内角都相等.这个多边形是几边形?它的每一个内角等于多少度?19.(8分)如图,在平面直角坐标系中,每个小正方形的边长为1,直线m上各点的横坐标都为1.请按要求分别完成下列各小题:(1)画出△ABC关于直线m对称的△A1B1C1,写出A1,B1,C1的坐标;(2)若△ABC的内部一点P(x,y),则点P关于直线m对称的点P′的坐标是多少?20.(8分)如图,在△ABC中,AB=AC.(1)利用尺规作图作边BC的高AD,垂足为D(保留作图痕迹,不写作法);(2)求证:BD=CD.21.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.22.(10分)已知一个等腰三角形的两边长a、b满足方程组.(1)求a、b的值;(2)求这个等腰三角形的周长.23.(10分)如图,AC∥BD,E为CD的中点,AE⊥BE.(1)求证:AE平分∠BAC;(2)线段AB、AC、BD有怎样的数量关系?请写出你的结论并证明.24.(12分)在△ABC 中,AB=AC,D是直线BC上一点,以AD为一边作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图1,点D在线段BC的延长线上移动,若∠BAC=40°,求∠DCE的度数;(2)设∠BAC=m,∠DCE=n.①如图2,当点D在线段BC上移动时(不与点B,C 重合),m与n之间有什么数量关系?请说明理由.②如图3,当点D在线段CB的延长线上移动时,m与n之间有什么数量关系.(直接写出结论)2017-2018学年湖北省孝感市汉川市八年级(上)期中数学试卷参考答案与试题解析一、精心选一选(将唯一正确答案的代号填在题后的答题卡中10×3分=30分)1.(3分)如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2 B.4 C.6 D.8【解答】解:设第三边长为x,则由三角形三边关系定理得4﹣2<x<4+2,即2<x<6.因此,本题的第三边应满足2<x<6,把各项代入不等式符合的即为答案.2,6,8都不符合不等式2<x<6,只有4符合不等式.故选:B.2.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【解答】解:为△ABC中BC边上的高的是A选项.故选:A.3.(3分)正五边形的外角和为()A.540°B.360°C.180° D.72°【解答】解:任意多边形的外角和都是360°,故正五边形的外角和为360°.故选:B.4.(3分)下列平面图形中,不是轴对称图形的是()A. B. C.D.【解答】解::A、不是轴对称图形,本选项正确;B、是轴对称图形,本选项错误;C、是轴对称图形,本选项错误;D、是轴对称图形,本选项错误.故选:A.5.(3分)若点A(x,3)与点B(2,y)关于x轴对称,则()A.x=﹣2,y=3 B.x=2,y=3 C.x=﹣2,y=﹣3 D.x=2,y=﹣3【解答】解:∵点A(x,3)与点B(2,y)关于x轴对称,∴x=2,y=﹣3.故选:D.6.(3分)如图,△ABD≌△ACE,AB=9,AD=7,BD=8,则BE的长是()A.1 B.2 C.4 D.6【解答】解:∵△ABD≌△ACE,∴AE=AD=7,∵AB=9,∴BE=AB﹣AE=9﹣7=2,故选:B.7.(3分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S=AB•DE=×10•DE=15,△ABD解得DE=3.故选:A.8.(3分)下列条件中,不能判断两个三角形全等的方法有()A.两边和一个角分别相等的两个三角形B.两个角及其夹边分别相等的两个三角形C.三边分别相等的两个三角形D.斜边和一条直角边分别相等的两个直角三角形【解答】解;在A中,两个三角形满足的是SSA,不能判定两个三角形全等;在B中,两个三角形满足ASA,能判定两个三角形全等;在C中,两个三角形满足SSS,能判定两个三角形全等;在D中,两个三角形满足HL,能判定两个三角形全等;∴不能判断两个三角形全等的是A,故选:A.9.(3分)已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④【解答】解:选②AD=BE;③AF=BF,不能证明△ADF与△BEF全等,所以不能证明∠1=∠2,故不能判定△ABC是等腰三角形.故选:C.10.(3分)如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE ⊥AC于E,与CD相交于点F,DH⊥BC于H交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正确的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.故选:C.二、细心填一填(本大题共6小题,每小题3分,共18分.)11.(3分)等腰三角形的一个底角为30°,则顶角的度数是120度.【解答】解:因为其底角为30°,所以顶角=180°﹣30°×2=120°.故填120.12.(3分)如图:已知△ABC的∠B和∠C的外角平分线交于D,∠A=40°,那么∠D=70度.【解答】解:∵∠A=40°,∴△ABC的∠B和∠C的外角和为:180°﹣∠1+180°﹣∠2=360°﹣(∠1+∠2)=360°﹣(180°﹣40°)=360°﹣140°=220°.由于CD、BD的平分线交于点D,则∠4+∠5=×220°=110°,根据三角形内角和定理,∠D=180°﹣110°=70°.13.(3分)如图,△ABC中,AB=AC=6,BC=4.依据尺规作图的痕迹,则△EBC 的周长为10.【解答】解:∵AB=AC=6,DE垂直平分AB,∴AE=BE,△EBC的周长=BC+BC+EC=BC+AE+EC=BC+AC=4+6=10,故答案为10.14.(3分)一个多边形的内角和等于1260°,则它的对角线的条数为27.【解答】解:设此多边形的边数为n,则(n﹣2)•180°=1260°,解得n=9,此多边形的边数为9.则它的对角线的条数为:=27条.故答案为27.15.(3分)如图,在平面直角坐标系中,已知两点A(1,2),B(﹣1,﹣2),若△ABC是以线段AB为一腰,对称轴平行于y轴的等腰三角形,则C点的坐标是(3,﹣2)或(﹣3,2).【解答】解:分两种情况:①当A为顶角顶点时,根据题意得:等腰三角形的对称轴为x=1,∵点B的坐标为(﹣1,﹣2),∴点C的坐标为(3,﹣2);②当B为顶角顶点时,根据题意得:等腰三角形的对称轴为x=﹣1,∵点A的坐标为(1,2),∴点C的坐标为(﹣3,2).综上所述:C点的坐标为(3,﹣2)或(﹣3,2).故答案为:(3,﹣2)或(﹣3,2).16.(3分)如图,四边形ABCD沿直线l对折后重合,如果AD∥BC,则下列结论:①AB∥CD;②AB=CD;③AB⊥BC;④AO=OC.其中正确的是①②④.(只填序号)【解答】解:∵直线l是四边形ABCD的对称轴,AD∥BC;∴△AOD≌△BOC;∴AD=BC=CD,OC=AO,且四边形ABCD为平行四边形.故②④正确;∴③AC⊥BD,错误;又∵AD四边形ABCD是平行四边形;∴AB∥CD.故①正确.故答案为:①②④三、用心做一做(本大题共8小题,满分72分).17.(8分)如图,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O,BO=CO.求证:AO平分∠BAC.【解答】证明:∵CD⊥AB于D,BE⊥AC于E,∴∠ODB=∠DEC=90°.在△DBO和△CEO中,∴△DBO≌△CEO.∴OD=OE.∵OD⊥AB,OE⊥AC,OD=OE,∴AO平分∠BAC.18.(8分)一个多边形的内角和比四边形的外角和多720°,并且这个多边形的各内角都相等.这个多边形是几边形?它的每一个内角等于多少度?【解答】解:设这个多边形边数为n,则(n﹣2)•180=360+720,解得n=8,∴这个多边形是八边形,∵这个多边形的每个内角都相等,∴它每一个内角的度数为1080°÷8=135°.19.(8分)如图,在平面直角坐标系中,每个小正方形的边长为1,直线m上各点的横坐标都为1.请按要求分别完成下列各小题:(1)画出△ABC关于直线m对称的△A1B1C1,写出A1,B1,C1的坐标;(2)若△ABC的内部一点P(x,y),则点P关于直线m对称的点P′的坐标是多少?【解答】解:(1)如图所示:△A1B1C1,即为所求,A1(3,3),B1(6,5),C1(6,1);(2)∵△ABC的内部一点P(x,y),设点P关于直线m对称的点P′的横坐标为:a,则=1,故a=2﹣x,∴点P关于直线m对称的点P′的坐标是(2﹣x,y).20.(8分)如图,在△ABC中,AB=AC.(1)利用尺规作图作边BC的高AD,垂足为D(保留作图痕迹,不写作法);(2)求证:BD=CD.【解答】解:(1)如图线段AD即为所求.(2)∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ADB和Rt△ADC中,,∴Rt△ADB≌Rt△ADC.∴BD=DC.21.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.【解答】解:CF⊥DE,CF平分DE,理由是:∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∴△ACD≌△BEC(SAS),∴DC=CE,∵CF平分∠DCE,∴CF⊥DE.22.(10分)已知一个等腰三角形的两边长a、b满足方程组.(1)求a、b的值;(2)求这个等腰三角形的周长.【解答】解:(1)②×3+①得:10a=50,解得a=5.∴b=3.(2)当a为腰时,三角形的周长为5+5+3=13,当b为腰时,三角形的周长=3+3+5=11.23.(10分)如图,AC∥BD,E为CD的中点,AE⊥BE.(1)求证:AE平分∠BAC;(2)线段AB、AC、BD有怎样的数量关系?请写出你的结论并证明.【解答】解:(1)如图所示,延长AE交BD的延长线于F,∵AC∥BD,∴∠CAE=∠DFE,∵E为CD的中点,∴CE=DE,在△CAE和△DFE中,,∴△CAE≌△DFE(AAS),∴AC=DF,AE=FE,∵AE⊥BE,∴∠AEB=∠FEB=90°,在△AEB和△FEB中,,∴△AEB≌△FEB(SAS),∴∠BAE=∠F,∴∠CAE=∠BAE,∴AE平分∠BAC.(2)线段AB、AC、BD的数量关系为:AB=BD+AC.证明:由(1)可得,△AEB≌△FEB,∴AB=BF,即AB=BD+DF,由(1)可得,DF=AC,∴AB=BD+AC.24.(12分)在△ABC 中,AB=AC,D是直线BC上一点,以AD为一边作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图1,点D在线段BC的延长线上移动,若∠BAC=40°,求∠DCE的度数;(2)设∠BAC=m,∠DCE=n.①如图2,当点D在线段BC上移动时(不与点B,C 重合),m与n之间有什么数量关系?请说明理由.②如图3,当点D在线段CB的延长线上移动时,m与n之间有什么数量关系.(直接写出结论)【解答】解:(1)∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ACE=∠B,∵AB=AC,∠BAC=40°,∴∠ACE=∠B=70°,∴∠DCE=180°﹣70°﹣70°=40°;(2)①m+n=180°,理由:∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE,∴∠BCE=∠ACB+∠ACE=∠ACB+∠B,∵∠BAC+∠B+∠ACB=180°,∴∠BAC+∠BCE=180°,即m+n=180°;②m=n,理由:∵∠DAE=∠BAC,∴∠DAB=∠EAC,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,∴∠BAC=∠BCE,即m=n.。
孝感市2017—2018学年度上学期期末学业水平测试八年级数学试卷一、精心选一选,相信自己的判断!1. 下列四个图形中,不是轴对称图形的是( ) A. B. C. D.【答案】A【解析】【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【详解】根据轴对称图形的概念可得:选项A 不是轴对称图形,是中心对称图形,选项B 、C 、D 均为轴对称图形.故选A.【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是图形两部分沿着轴对称后重合,属于基础题.2. 以下列长度(单位:cm )的三条线段为边,能组成三角形的是( )A. 3,4,8B. 4,5,9C. 4,4,4D. 1,2,3【答案】C【解析】 解:∵3+4=7<8,∴这三条线段不能构成三角形,故错误;∵4+5=9,∴这三条线段不能构成三角形,故错误;∵4+4=8>4,∴这三条线段能构成三角形,故正确;∵1+2=3,∴这三条线段不能构成三角形,故错误.故选C .点睛:此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3. 下列运算正确的是( )A 3412a a a ⋅=B. 842a a a ÷=C. 3(3)9a a =D. 326()a a = 【答案】D【解析】解:A .347a a a ⋅=,故A 错误;B .844a a a ÷=,故B 错误;C .33(3)27a a =,故C 错误;D .326()a a =,故D 正确.故选D .点睛:本题考查了幂的乘方和积的乘方以及同底数幂的乘法,掌握运算法则是解答本题的关键.4. 某种球形病毒的直径大约为0.000000102m ,这个数用科学记数法表示为( )A . 1.02×910-mB. 1.02×810-mC. 1.02×710-mD. 1.02×610-m【答案】C【解析】 解:0.000000102=1.02×10﹣7,故选C . 点睛:本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5. 下列变形是因式分解是( ) A. 211()x x x x +=+B. 24(2)(2)am a a m m -=+-C. 2221(2)(1)(1)a ab b a a b b b ++-=+++-D. 2224(2)x x x ++=+ 【答案】B【解析】解:A .211()x x x x+=+ ,右边不是整式的乘积的形式,不是因式分解,故A 错误;B .24(2)(2)am a a m m -=+-,正确;C .2221(2)(1)(1)a ab b a a b b b ++-=+++-,右边不是整式的乘积的形式,不是因式分解,故C 错误;D .2224(2)x x x ++=+,左右两边不相等,不是恒等变形,故C 错误.故选B .6. 如图,Rt △ABC 中,∠C =90°,斜边AB 的垂直平分线交AB 于点E ,交BC 于点D ,连接AD ,若∠B =35°,则∠CAD 的度数为( )A. 20°B. 25°C. 30°D. 35°【答案】A【解析】解:∵DE是线段AB的垂直平分线,∴BD=AD,∴∠B=∠BAD=35°.∵∠BAC=90°-∠B=90°-35°=55°,∴∠CAD=∠BAC-∠DAB=55°-35°=20°.故选A.7. 如图,Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,AB=12,CD=3,则△DAB的面积为()A. 12B. 18C. 20D. 24【答案】B【解析】解:过D作DE⊥AB于E.∵∠C=90°,BD平分∠ABC交AC于点D,∴DE=DC=3,∴△DAB的面积=12AB•ED=12×12×3=18.故选B.8. 若x-y+3=0,则x(x-4y)+y(2x+y)的值为()A. 9B. -9C. 3D. -3 【答案】A【解析】解:∵x-y+3=0,∴x-y=-3.原式=2242x xy xy y -++=2()x y -=2(3)-=9.故选A .9. 如图,在△ABC 中,∠C =90°,∠A =30°,AC =12,点D 为AB 的中点,点P 为AC 上一动点,则PB +PD 的最小值为( )A. 8B. 10C. 12D. 14【答案】C【解析】 解:作B 关于直线AC 的对称点E ,连接ED 交AC 于点P ,则BP +PD 最小.连接AE .∵B 、E 关于直线AC对称,∴AE =AB .∵AC ⊥BE ,∴∠EAC =∠BAC =30°,∴∠EAB =60°,∴△ABE 是等边三角形.∵D 是AB 的中点,∴ED ⊥AB ,∴AC 和ED 都是等边三角形EAB 的高,∴ED =AC =12.故选C .10. 某轮船在静水中的速度为u 千米/时,A 港、B 港之间的航行距离为S 千米,水流速度为v 千米/时.如果该轮船从A 港驶往B 港,接着返回A 港,航行所用时间为1t 小时,假设该轮船在静水中航行2S 千米所用时间为2t 小时,那么1t 与2t 的大小关系为( )A. 1t <2tB. 1t >2tC. 1t =2tD. 与u ,v 的值有关 【答案】B【解析】【详解】解:t 1=S S u v u v ++-=222S u u v ⋅-, t 2=2S u,t 1﹣t 2=222S u u v ⋅-﹣2S u= 2222()Sv u u v -, 因为u >v >0,所以t 1﹣t 2>0,即t 1>t 2.故选B .【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解决本题的关键是表示轮船顺水和逆水中的速度.二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11. 要使分式13x -有意义,x 应满足的条件是__________ 【答案】3x ≠【解析】【分析】本题主要考查分式有意义的条件:分母不能为0.【详解】解:∵x-3≠0,∴x≠3,故答案是:x≠3.【点睛】本题考查的是分式有意义的条件,当分母不为0时,分式有意义.12. 如图,若正五边形和正六边形有一边重合,则∠BAC =_____.【答案】132°【解析】解:∵正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,∴∠BAC =360°-108°-120°=132°.故答案为132°.13. 已知2m =a ,32n =b ,m ,n 是正整数,则用a ,b 的式子表示23m-10n =_________.【答案】32a b【解析】∵32n b =,∴52n b =,又∵2m a =, ∴3310310352322222(2)(2)m n m n m n a a b b -=÷=÷=÷=. 故答案为32a b. 点睛:本题的解题要点是灵活逆用“同底数幂的除法法则”和“幂的乘方法则”,即m n m n a a a -=÷,()mn m n a a =,把代数式变形即可求得所求式子的值.14. 如图,△ADB 、△EDC 都是等腰直角三角形,∠ADB =∠CDE =90°,点E 在DB 上,AE 的延长线与BC 交于点F ,若BC =5,AF =6,则EF =_________.【答案】1【解析】解:∵△ADB 、△EDC 都是等腰直角三角形,∴AD =DB ,ED =DC ,∠ADB =∠BDC ,∴△ADE ≌△BDC ,∴AE =BC .∵BC =5,AF =6,∴EF =AF -AE =AF -BC =6-5=1.故答案为1.15. 若x 2+mx+16是一个完全平方式,那么m 的值是__________【答案】-8,8.【解析】【分析】完全平方公式:(a±b )2=a 2±2ab+b 2,这里首末两项是x 和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍,故m=±8. 【详解】解:由于(x±4)2=x 2±8x+16=x 2+mx+16, ∴m=±8. 【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.16. 如图,AB =BC 且AB ⊥BC ,点P 为线段BC 上一点,P A ⊥PD 且P A =PD ,若∠A =22°,则∠D 的度数为_________.【答案】23°【解析】解:过D 作DE ⊥PC 于E .∵P A ⊥PD ,∴∠APB +∠DPE =90°.∵AB ⊥BC ,∴∠A +∠APB =90°,∴∠A =∠DPE =22°.在△ABP 和△PED 中,∵∠A =∠DPE ,∠B =∠E =90°,P A =PD ,∴△ABP ≌△PED ,∴AB =PE ,BP =DE .∵AB =BC ,∴BC =PE ,∴BP =CE .∵BP =DE ,∴CE =DE ,∴∠DCE =45°,∴∠PDC =∠DCE -∠DPC =45°-22°=23°.故答案为23°.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上) 17. 分解因式:(1)2228x y - (2)32816a a a -+【答案】(1)2(x+2y )(x-2y );(2)2(4)a a -【解析】试题分析:提公因式后再运用公式法分解即可.试题解析:解:(1)原式=222(4)x y -=2(x +2y )(x -2y );(2)原式=2(816)a a a -+=2(4)a a -.18. 解下列方程(1)3222x x x-=---;(2)214111x x x +-=--. 【答案】(1)13x =;(2)原方程无解. 【解析】试题分析:去分母化为整式方程求解即可,注意解分式方程要检验.试题解析:解:(1)方程两边同时乘以(x -2)得:3+x =-2x +4移项得:x +2x =4-3合并同类项得:3x =1 解得:13x =. 经检验,原方程的解为13x =. (2)方程两边同时乘以(x +1)(x -1)得:2(1)(1)41x x x ++-=-去括号得:222141x x x ++-=-移项、整理得:2x =2解得:x =1.经检验,x =1是原方程的增根.∴原方程无解.19. 化简:2[(23)(23)(4)(4)7]x y y x x y y x x y +-++-+÷.【答案】225y x -.【解析】试题分析:根据整式乘法和平方差公式计算,然后合并同类项,最后根据多项式除以单项式法则计算即可.试题解析:解:原式=22222[656167]x xy y y x x y --++-+÷=2[225]y xy y -÷=22y -5x . 20. 先化简,再求值:221445(1)112a a a a a a -+--÷+---,其中a =2018. 【答案】2【解析】试题分析:根据分式混合运算法则计算后,发现结果与a 无关.试题解析:解:原式=22(1)(1)51(2)2a a a a a a a -+--⨯+---=1522a a a a +-+--=2(与a 的值无关). 21. 如图,在△ABC 中,AB =AC .(1)请按如下步骤用直尺和圆规作图(保留作图痕迹并在图中标注字母):①作∠ABC的平分线交AC边于点D;②在BC的延长线上截取CE=CD;③连接DE.(2)求证:BD=DE.【答案】(1)答案见解析;(2)答案见解析.【解析】试题分析:(1)根据语句作出图形即可;(2)根据等边对等角得到∠ABC=∠ACB和∠CDE=∠CED.再由角平分线的性质得到∠ABC=2∠CBD.由三角形外角的性质得到∠ACB=∠CDE+∠CED=2∠CED,从而得到∠CBD=∠CED,再由等角对等边即可得到结论.试题解析:解:(1)如图所示:(2)∵AB=AC,∴∠ABC=∠ACB.∵CD=CE,∴∠CDE=∠CED.∵BD平分∠ABC,∴∠ABC=2∠CBD.又∵∠ACB=∠CDE+∠CED=2∠CED,∴∠CBD=∠CED,∴BD=DE.22. 如图,等边△ABC的边长为6,点D为AB上一点,DE⊥BC于点E,EF⊥AC于点F,连接DF.若△DEF也是等边三角形,求AD的长.【答案】2.【解析】试题分析:先由△ABC 是等边三角形和△DEF 是等边三角形,用AAS 证明△DEB ≌△EFC ,得到DB =EC ,在Rt △DEB 中,利用30度角所对直角边等于斜边的一半,即可得到BE 的长,进而得到BD 的长,即可得到结论.试题解析:解:∵△ABC 为等边三角形,∴∠B =∠C =60°. ∵△DEF 为等边三角形,∴DE =EF .∵DE ⊥BC ,EF ⊥AC ,∴∠DEB =∠EFC =90°.在△DEB 和△EFC 中,∵B C DEB EFC DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEB ≌△EFC (AAS ),∴DB =EC .在Rt △DEB 中,∠DEB =90°,∠BDE =90°-60°=30°,∴BE =12BD =12EC . ∴26BE EC BE BE +=+=,∴2BE =.∴4BD =,∴2AD =.23. 某一工程,在工程招标时,接到甲、乙两个工程队的投标书.甲工程队施工一天,需付工程款1万元;乙工程队施工一天,需付工程款0.6万元.根据甲、乙工程队的投标书测算,可有三种施工方案:(A )甲队单独完成这项工程,刚好如期完成;(B )乙队单独完成这项工程要比规定工期多用4天;(C )若甲、乙两队合做3天后,剩下的工程由乙队单独做,也正好如期完工.为了节省工程款,同时又能如期完工,你认为应选择哪一种方案?并说明理由.【答案】为了节省工程款,同时又能如期完工,应选C 方案.【解析】试题分析:设完成工程规定工期为x 天,根据等量关系:甲、乙两队合做3天后,剩下的工程由乙队单独做,也正好如期完工,列方程,求解即可得到甲、乙工程队单独完成所需的天数,然后求出每种方案所需的工程款,比较即可得出结论.试题解析:解:设完成工程规定工期为x 天,依题意得:1133()144x x x x -++=++ 解得:x =12.经检验,x =12符合原方程和题意,∴x +4=16.∴甲工程队单独完成需12天,乙工程队单独完成需16天.∵B 方案不能按时完成,∴要舍弃.A 方案的工程款为12×1=12(万元),C 方案的工程款为3×1+12×0.6=10.2(万元),∴应选C 方案.答:为了节省工程款,同时又能如期完工,应选C 方案.24. 在△OAB 中,OA =OB ,OA ⊥OB .在△OCD 中,OC =OD ,OC ⊥OD .(1)如图1,若A ,O ,D 三点同一条直线上,求证:S △AOC =S △BOD ;(2)如图2,若A ,O ,D 三点不在同一条直线上,△OAB 和△OCD 不重叠.则S △AOC =S △BOD 是否仍成立?若成立,请予以证明;若不成立,也请说明理由.(3)若A ,O ,D 三点不在同一条直线上,△OAB 和△OCD 有部分重叠,经过画图猜想,请直接写出 S △AOC 和S △BOD 的大小关系.【答案】(1)答案见解析;(2)S △AOC =S △BOD 仍成立;(3)S △AOC =S △BOD .【解析】试题分析:(1)由OA =OB ,OC =OD ,再结合三角形面积公式即可得到结论;(2)作DE ⊥OB 于E ,作CF ⊥OA 交AO 的延长线于F .通过证明△OED ≌△OFC ,得到DE =CF ,再由三角形面积公式即可得到结论;(3)类似(2)可得结论.试题解析:解:(1)∵A ,O ,D 三点在一条直线上,OA ⊥OB ,OC ⊥OD ,∴∠BOD =∠AOC =90°,∴S △AOC =12•OA•OC ,S △BOD =12•OB•OD . ∵OA =OB ,OC =OD ,∴S △AOC =S △BOD .(2)S △AOC =S △BOD 仍成立.证明如下:作DE⊥OB于E,作CF⊥OA交AO的延长线于F.∵∠BOF=∠COD=90°,∴∠BOD=∠COF.在△OED和△OFC中,90OED OFCEOD FOCOD OC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△OED≌△OFC(AAS),∴DE=CF,∴S△AOC=12•OA•CF,S△BOD=12•O B•DE,∴S△AOC=S△BOD.(3)S△AOC=S△BOD.衡石量书整理。
2017-2018学年八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.在二次根式中,字母x的取值范围是()A. B. C. D.2.若x=1是方程x2-ax+3=0的一个根,那么a值为()A. 4B. 5C.D.3.下列计算正确的是()A. B. C. D.4.A. 14,13B. 15,13C. 14,14D. 14,155.一个n边形的内角和等于它的外角和,则n=()A. 3B. 4C. 5D. 66.某厂一月份生产某机器100台,计划二、三月份共生产280台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A. B.C. D.7.如图O是边长为9的等边三角形ABC内的任意一点,且OD∥BC,交AB于点D,OF∥AB,交AC于点F,OE∥AC,交BC于点E,则OD+OE+OF的值为()A. 3B. 6C. 8D. 98.关于x的方程(a-6)x2-8x+6=0有实数根,则a的取值范围是()A. 且B. 且C.D. 且9.如图,在平面直角坐标系中,OABC的顶点A在x轴上,定点B的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC分割成面积相等的两部分,则直线的表达式()A. B. C. D.10.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF其中正确的是()A. ①②③B. ①②④C. ②③④D. ①②③④二、填空题(本大题共6小题,共24.0分)11.标本-1,-2,0,1,2,方差是______.12.若整数满足,则的值为________.13.若x=-2是关于x的方程x2-2ax+8=0的一个根,则方程的另一个根为______.14.已知m是一元二次方程x2-9x+1=0的解,则=______.15.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为______m.16.如图在△ABC中,∠BAC=30°,AB=AC=6,M为AC边上一动点(不与A,C重合),以MA、MB为一组邻边作平行四边形MADB,则平行四边形MADB的对角线MD的最小值是______.三、计算题(本大题共1小题,共8.0分)17.(1)已知x=2+,y=2-,求(+)(-)的值.(2)若的整数部分为a,小数部分为b,写出a,b的值并计算-ab的值.四、解答题(本大题共6小题,共58.0分)18.解方程:(1)2x2-x=0(2)(x-1)(2x+3)=1.19.某校初三对某班最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有______名同学参加这次测验;(2)这次测验成绩的中位数落在______分数段内;(3)若该校一共有800名初三学生参加这次测验,成绩80分以上(不含80分)为优秀,估计该校这次数学测验的优秀人数是多少人?20.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=AC•BD.(1)写出正确结论的序号;(2)证明所有正确的结论.21.银隆百货大楼服装柜在销售中发现:“COCOTREE”牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.(1)要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?(2)这次降价活动中,1200元是最高日利润吗?若是,请说明理由;若不是,请试求最高利润值.22.如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形.(1)请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)(2)如图2,请再说出两种画角平分线的方法(要求画出图形,并说明你使用的工具和依据)23.如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动,设动点运动时间为t秒.(1)求AD的长.(2)当P、C两点的距离为时,求t的值.(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在时刻t,使得S△PMD=S△ABC?若存在,请求出t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:二次根式中,字母x的取值范围是:x-3>0,解得:x>3.故选:B.直接利用二次根式的性质分析得出答案.此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2.【答案】A【解析】解:把x=1代入x2-ax+3=0得1-a+3=0,解得a=4.故选:A.根据一元二次方程的解的定义把x=1代入x2-ax+3=0中得到关于a的方程,然后解关于a的一次方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【答案】A【解析】解:A、-=2-=,故本选项正确.B、+≠,故本选项错误;C、×=,故本选项错误;D、÷==2,故本选项错误.故选:A.根据二次根式的加法及乘法法则进行计算,然后判断各选项即可得出答案.本题考查了二次根式的混合运算,难度不大,解答本题一定要掌握二次根式的混合运算的法则.4.【答案】A【解析】解:将这组数据按大小顺序,中间一个数为13,则这组数据的中位数是13;=(24+15+13+10+8)÷5=14.故选:A.根据中位数和平均数的定义求解即可.本题为统计题,考查平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.【答案】B【解析】解:由题可知(n-2)•180=360,所以n-2=2,n=4.故选:B.利用等量关系式以及多边形内角和公式解答.根据题意列出方程即可.本题主要考查的是多边形的内角和与外角和,熟练掌握多边形的内角和与外角和公式是解题的关键.6.【答案】B【解析】【分析】主要考查增长率问题,一般用"增长后的量=增长前的量×(1+增长率)",如果设二、三月份每月的平均增长率为x,根据“计划二、三月份共生产280台”,即可列出方程.本题可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.【解析】解:设二、三月份每月的平均增长率为x,则二月份生产机器为:100(1+x),三月份生产机器为:100(1+x)2;又知二、三月份共生产280台;所以,可列方程:100(1+x)+100(1+x)2=280.故选B.7.【答案】D【解析】【分析】根据等边三角形,平行线的性质,和平行四边形的判定,并根据等腰梯形性质求解.本题考查了等边三角形的性质,关键是利用了:1、等腰三角形的性质和判定:三边相等,三角均为60度,有两角相等且为60度的三角形是等边三角形;2、平行四边形的判定的性质;3、等腰梯形的判定和性质.【解答】解:延长OD交AC于点G,∵OE∥CG,OG∥CE,∴四边形OGCE是平行四边形,有OE=CG,∠OGF=∠C=60°,∵OF∥AB,∴∠OFG=∠A=60°,∴OF=OG,∴△OGF是等边三角形,∴OF=FG,∵OD∥BC,∴∠ADO=∠B=60°∴梯形OFAD是等腰梯形,有OD=AF,即OD+OE+OF=AF+FG+CG=AC=9.8.【答案】C【解析】解:当a-6=0时,原方程为-8x+6=0,解得:x=,∴a=6符合题意;当a-6≠0时,有,解得:a≤且a≠6.综上所述,a的取值范围为:a≤.故选:C.分a-6=0和a-6≠0两种情况考虑:当a-6=0时,通过解一元一次方程可得出原方程有解,进而可得出a=6符合题意(此时已经可以确定答案了);当a-6≠0时,由二次项系数非零及根的判别式△≥0,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围.综上即可得出结论.本题考查了根的判别式、一元二次方程的定义以及解一元一次方程,分a-6=0和a-6≠0两种情况考虑是解题的关键.9.【答案】C【解析】解:∵点B的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l的函数解析式为y=kx+b,则,解得,所以直线l的解析式为y=x-1.根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.10.【答案】B【解析】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②符合题意;在∴△ABC≌△EAD(SAS);①符合题意;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,又∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;④符合题意.若AD与AF相等,即∠AFD=∠ADF=∠DEC即EC=CD=BE即BC=2CD,题中未限定这一条件∴③不符合题意;∴①②④符合题意,故选:B.由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABD等底(AB=CD)等高(AB与CD间的距离相等),得出S△FCD=S△ABD,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF.④正确.此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.11.【答案】2【解析】解:∵==0,∴方差S2=×[(1-0)2+(2-0)2+(0-0)2+(-1-0)2+(-2-0)2]=2.故答案为:2.先计算出平均数,再根据方差的公式计算.本题考查方差的定义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1-)2+(x2-)2+…+(x n-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.【答案】4【解析】解:∵2=,3=,∴整数n满足2<n<3,则n的值为=4.故答案为4.直接得出n最接近的二次根式,进而得出答案.此题主要考查了估算无理数的大小,正确将原数转化是解题关键.13.【答案】-4【解析】解:设方程的另一个根为x1,根据根与系数的关系有:-2x1=8,解得x1=-4.故答案为:-4.设出方程的另一个根,利用根与系数关系中的两根之积可以求出方程的另一个根.本题考查的是一元二次方程的解,知道方程的一个根,用根与系数关系中的两根的积可以求出方程的另一个根.14.【答案】17【解析】解:∵m是一元二次方程x2-9x+1=0的解,∴m2-9m+1=0,∴m2-7m=2m-1,m2+1=9m,∴=2m-1+=2(m+)-1,∵m2-9m+1=0,∴m≠0,在方程两边同时除以m,得m-9+=0,即m+=9,∴=2(m+)-1=2×9-1=17.故答案是:17.将x=m代入该方程,得m2-9m+1=0,通过变形得到m2-7m=2m-1,m2+1=9m;然后在方程m2-9m+1=0两边同时除以m,得到m+=9,代入即可求得所求代数式的值.此题主要考查了方程解的定义.此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.15.【答案】2【解析】解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,由已知得:(30-3x)•(24-2x)=480,整理得:x2-22x+40=0,解得:x1=2,x2=20,当x=20时,30-3x=-30,24-2x=-16,不符合题意舍去,即x=2.答:人行通道的宽度为2米.故答案为2.设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,根据矩形绿地的面积为480m2,即可列出关于x的一元二次方程,解方程即可得出x的值,经检验后得出x=20不符合题意,此题得解.本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.16.【答案】3【解析】解:如图,作BH⊥AC于H.在Rt△ABH中,∵AB=6,∠BHA=90°,∠BAH=30°,∴BH=AB=3,∵四边形ADBM是平行四边形,∴BD∥AC,∴当DM⊥AC时,DM的值最小,此时DM=BH=3,故答案为3.如图,作BH⊥AC于H.因为四边形ADBM是平行四边形,所以BD∥AC,所以当DM⊥AC时,DM的值最小,此时DM=BH.本题考查直角三角形30度角性质、等腰三角形的性质、平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:(1)原式=-==,∵x=2+,y=2-,∴x+y=4、y-x=-2、xy=1,则原式==-8;(2)∵2<<3,∴a=2、b=-2,∴-ab=-2(-2)=+2-2+4=6-.【解析】(1)将原式变形为,再根据x、y的值计算出y+x、y-x、xy的值,继而代入可得;(2)由题意得出a、b的值,代入计算可得.本题主要考查二次根式的化简求值,解题的关键是掌握二次根式混合运算顺序和运算法则.18.【答案】解:(1)2x2-x=0,x(2x-)=0,则x=0或2x-=0,解得x1=0,x2=;(2)(x-1)(2x+3)=1,2x2+x-4=0,解得:x1=,x2=.【解析】(1)提取公因式x,即可得到x(2x-)=0,再解两个一元一次方程即可;(2)先转化为一般式方程,然后利用因式分解法解方程.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.19.【答案】40;70.5~80.5【解析】解:(1)根据题意得:该班参加这次测验的学生共有:2+9+10+14+5=40(名);故答案为:40;(2)因为共有40个数,所以中位数是第20和21个数的平均数,所以这次测验成绩的中位数落在落70.5~80.5分数段内;故答案为:70.5~80.5;(3)根据题意得:该校这次数学测验的优秀人数是800×=380(人).(1)把各分段的人数加起来就是总数;(2)根据中位数的定义得出中位数就是第20个和第21个的平均数,从而得出答案;(3)先算出40人中80分以上的人的优秀率,再乘以总人数即可.本题考查了频数分布直方图,解题的关键是能读懂统计图,从图中获得必要的信息,用到的知识点是中位数、频数、频率.20.【答案】解:(1)正确结论是①④,(2)①在△ABC和△ADC中,∵ ,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC,故①结论正确;②∵△ABC≌△ADC,∴∠BAC=∠DAC,∵AB=AD,∴OB=OD,AC⊥BD,而AB与BC不一定相等,所以AO与OC不一定相等,故②结论不正确;③由②可知:AC平分四边形ABCD的∠BAD、∠BCD,而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;故③结论不正确;④∵AC⊥BD,∴四边形ABCD的面积S=S△ABD+S△BCD=BD•AO+BD•CO=BD•(AO+CO)=AC•BD.故④结论正确;【解析】①证明△ABC≌△ADC,可作判断;②③由于AB与BC不一定相等,则可知此两个选项不一定正确;④根据面积和求四边形的面积即可.本题考查了全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定方法是解题的关键,结论①可以利用等边对等角,由等量加等量和相等来解决.21.【答案】解:(1)设每件童装应降价x元,由题意得:(100-60-x)(20+2x)=1200,解得:x1=10,x2=20,因要减少库存,故取x=20,答:每件童装应定价80元.(2)1200不是最高利润,y=(100-60-x)(20+2x)=-2x 2+60x+800=-2(x-15)2+1250故当降价15元,即以85元销售时,最高利润值达1250元.【解析】(1)首先设每件降价x元,则每件实际盈利为(100-60-x)元,销售量为(20+2x)件,用每件盈利×销售量=每天盈利,列方程求解.为了扩大销售量,x应取较大值.(2)设每天销售这种童装利润为y,利用(1)中的关系列出函数关系式,利用配方法解决问题.此题考查了二次函数的应用以及一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售这种童装利润,进而列方程与函数关系解决实际问题.22.【答案】解:(1)如图2,OP为所作;(2)方法一:如图1,利用有刻度的直尺画出AB的中点M,则OM为∠AOB的平分线;方法二:如图3,利用圆规和直尺作∠AOB的平分线ON,【解析】(1)利用AB、EF,填空相交于点P,如图2,利用平行四边形的性质得到PA=PB,然后根据等腰三角形的性质可判断OP平分∠AOB;(2)方法一:如图1,利用有刻度的直尺和腰三角形的性质画图;方法二:如图3,利用圆规和直尺,根据基本作图作∠AOB的平分线ON.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的性质和等腰三角形的性质.23.【答案】解:(1)∵AB=AC=13,AD⊥BC,∴BD=CD=5cm,且∠ADB=90°,∴AD2=AC2-CD2∴AD=12cm.(2)AP=t,∴PD=12-t,在Rt△PDC中,PC=,CD=5,根据勾股定理得,PC2=CD2+PD2,∴29=52+(12-t)2,∴t=10或t=14(舍).即:t的值为10s;(3)假设存在t,使得S△PMD=S△ABC.∵BC=10,AD=12,∴S△ABC=BC×AD=60,①若点M在线段CD上,即0≤t<时,PD=12-t,DM=5-2t,由S△PMD=S△ABC,即(12-t)(5-2t)=,2t2-29t+43=0解得t1=(舍去),t2=②若点M在射线DB上,即<t<12.由S△PMD=S△ABC得(12-t)(2t-5)=,2t2-29t+77=0解得t=11或t=综上,存在t的值为s或 11s或s,使得S△PMD=S△ABC.【解析】(1)根据等腰三角形性质和勾股定理解答即可;(2)根据勾股定理建立方程求解即可;(3)根据题意列出PD、MD的表达式解方程组,由于M在D点左右两侧情况不同,所以进行分段讨论即可,注意约束条件.此题是三角形综合题,主要考查了等腰三角形的性质,勾股定理,三角形的面积公式,解本题的关键为利用三角形性质勾股定理以及分段讨论,在解方程时,注意解是否符合约束条件.。
2017-2018学年湖北省孝感市汉川市八年级(上)期中数学试卷一、精心选一选(将唯一正确答案的代号填在题后的答题卡中10×3分=30分)1.(3分)如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2 B.4 C.6 D.82.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.3.(3分)正五边形的外角和为()A.540°B.360°C.180° D.72°4.(3分)下列平面图形中,不是轴对称图形的是()A. B. C.D.5.(3分)若点A(x,3)与点B(2,y)关于x轴对称,则()A.x=﹣2,y=3 B.x=2,y=3 C.x=﹣2,y=﹣3 D.x=2,y=﹣36.(3分)如图,△ABD≌△ACE,AB=9,AD=7,BD=8,则BE的长是()A.1 B.2 C.4 D.67.(3分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.68.(3分)下列条件中,不能判断两个三角形全等的方法有()A.两边和一个角分别相等的两个三角形B.两个角及其夹边分别相等的两个三角形C.三边分别相等的两个三角形D.斜边和一条直角边分别相等的两个直角三角形9.(3分)已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④10.(3分)如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE ⊥AC于E,与CD相交于点F,DH⊥BC于H交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正确的个数是()A.1个 B.2个 C.3个 D.4个二、细心填一填(本大题共6小题,每小题3分,共18分.)11.(3分)等腰三角形的一个底角为30°,则顶角的度数是度.12.(3分)如图:已知△ABC的∠B和∠C的外角平分线交于D,∠A=40°,那么∠D=度.13.(3分)如图,△ABC中,AB=AC=6,BC=4.依据尺规作图的痕迹,则△EBC 的周长为.14.(3分)一个多边形的内角和等于1260°,则它的对角线的条数为.15.(3分)如图,在平面直角坐标系中,已知两点A(1,2),B(﹣1,﹣2),若△ABC是以线段AB为一腰,对称轴平行于y轴的等腰三角形,则C点的坐标是.16.(3分)如图,四边形ABCD沿直线l对折后重合,如果AD∥BC,则下列结论:①AB∥CD;②AB=CD;③AB⊥BC;④AO=OC.其中正确的是.(只填序号)三、用心做一做(本大题共8小题,满分72分).17.(8分)如图,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O,BO=CO.求证:AO平分∠BAC.18.(8分)一个多边形的内角和比四边形的外角和多720°,并且这个多边形的各内角都相等.这个多边形是几边形?它的每一个内角等于多少度?19.(8分)如图,在平面直角坐标系中,每个小正方形的边长为1,直线m上各点的横坐标都为1.请按要求分别完成下列各小题:(1)画出△ABC关于直线m对称的△A1B1C1,写出A1,B1,C1的坐标;(2)若△ABC的内部一点P(x,y),则点P关于直线m对称的点P′的坐标是多少?20.(8分)如图,在△ABC中,AB=AC.(1)利用尺规作图作边BC的高AD,垂足为D(保留作图痕迹,不写作法);(2)求证:BD=CD.21.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.22.(10分)已知一个等腰三角形的两边长a、b满足方程组.(1)求a、b的值;(2)求这个等腰三角形的周长.23.(10分)如图,AC∥BD,E为CD的中点,AE⊥BE.(1)求证:AE平分∠BAC;(2)线段AB、AC、BD有怎样的数量关系?请写出你的结论并证明.24.(12分)在△ABC 中,AB=AC,D是直线BC上一点,以AD为一边作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图1,点D在线段BC的延长线上移动,若∠BAC=40°,求∠DCE的度数;(2)设∠BAC=m,∠DCE=n.①如图2,当点D在线段BC上移动时(不与点B,C 重合),m与n之间有什么数量关系?请说明理由.②如图3,当点D在线段CB的延长线上移动时,m与n之间有什么数量关系.(直接写出结论)2017-2018学年湖北省孝感市汉川市八年级(上)期中数学试卷参考答案与试题解析一、精心选一选(将唯一正确答案的代号填在题后的答题卡中10×3分=30分)1.(3分)如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2 B.4 C.6 D.8【解答】解:设第三边长为x,则由三角形三边关系定理得4﹣2<x<4+2,即2<x<6.因此,本题的第三边应满足2<x<6,把各项代入不等式符合的即为答案.2,6,8都不符合不等式2<x<6,只有4符合不等式.故选:B.2.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【解答】解:为△ABC中BC边上的高的是A选项.故选:A.3.(3分)正五边形的外角和为()A.540°B.360°C.180° D.72°【解答】解:任意多边形的外角和都是360°,故正五边形的外角和为360°.故选:B.4.(3分)下列平面图形中,不是轴对称图形的是()A. B. C.D.【解答】解::A、不是轴对称图形,本选项正确;B、是轴对称图形,本选项错误;C、是轴对称图形,本选项错误;D、是轴对称图形,本选项错误.故选:A.5.(3分)若点A(x,3)与点B(2,y)关于x轴对称,则()A.x=﹣2,y=3 B.x=2,y=3 C.x=﹣2,y=﹣3 D.x=2,y=﹣3【解答】解:∵点A(x,3)与点B(2,y)关于x轴对称,∴x=2,y=﹣3.故选:D.6.(3分)如图,△ABD≌△ACE,AB=9,AD=7,BD=8,则BE的长是()A.1 B.2 C.4 D.6【解答】解:∵△ABD≌△ACE,∴AE=AD=7,∵AB=9,∴BE=AB﹣AE=9﹣7=2,故选:B.7.(3分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S=AB•DE=×10•DE=15,△ABD解得DE=3.故选:A.8.(3分)下列条件中,不能判断两个三角形全等的方法有()A.两边和一个角分别相等的两个三角形B.两个角及其夹边分别相等的两个三角形C.三边分别相等的两个三角形D.斜边和一条直角边分别相等的两个直角三角形【解答】解;在A中,两个三角形满足的是SSA,不能判定两个三角形全等;在B中,两个三角形满足ASA,能判定两个三角形全等;在C中,两个三角形满足SSS,能判定两个三角形全等;在D中,两个三角形满足HL,能判定两个三角形全等;∴不能判断两个三角形全等的是A,故选:A.9.(3分)已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④【解答】解:选②AD=BE;③AF=BF,不能证明△ADF与△BEF全等,所以不能证明∠1=∠2,故不能判定△ABC是等腰三角形.故选:C.10.(3分)如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE ⊥AC于E,与CD相交于点F,DH⊥BC于H交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正确的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.故选:C.二、细心填一填(本大题共6小题,每小题3分,共18分.)11.(3分)等腰三角形的一个底角为30°,则顶角的度数是120度.【解答】解:因为其底角为30°,所以顶角=180°﹣30°×2=120°.故填120.12.(3分)如图:已知△ABC的∠B和∠C的外角平分线交于D,∠A=40°,那么∠D=70度.【解答】解:∵∠A=40°,∴△ABC的∠B和∠C的外角和为:180°﹣∠1+180°﹣∠2=360°﹣(∠1+∠2)=360°﹣(180°﹣40°)=360°﹣140°=220°.由于CD、BD的平分线交于点D,则∠4+∠5=×220°=110°,根据三角形内角和定理,∠D=180°﹣110°=70°.13.(3分)如图,△ABC中,AB=AC=6,BC=4.依据尺规作图的痕迹,则△EBC 的周长为10.【解答】解:∵AB=AC=6,DE垂直平分AB,∴AE=BE,△EBC的周长=BC+BC+EC=BC+AE+EC=BC+AC=4+6=10,故答案为10.14.(3分)一个多边形的内角和等于1260°,则它的对角线的条数为27.【解答】解:设此多边形的边数为n,则(n﹣2)•180°=1260°,解得n=9,此多边形的边数为9.则它的对角线的条数为:=27条.故答案为27.15.(3分)如图,在平面直角坐标系中,已知两点A(1,2),B(﹣1,﹣2),若△ABC是以线段AB为一腰,对称轴平行于y轴的等腰三角形,则C点的坐标是(3,﹣2)或(﹣3,2).【解答】解:分两种情况:①当A为顶角顶点时,根据题意得:等腰三角形的对称轴为x=1,∵点B的坐标为(﹣1,﹣2),∴点C的坐标为(3,﹣2);②当B为顶角顶点时,根据题意得:等腰三角形的对称轴为x=﹣1,∵点A的坐标为(1,2),∴点C的坐标为(﹣3,2).综上所述:C点的坐标为(3,﹣2)或(﹣3,2).故答案为:(3,﹣2)或(﹣3,2).16.(3分)如图,四边形ABCD沿直线l对折后重合,如果AD∥BC,则下列结论:①AB∥CD;②AB=CD;③AB⊥BC;④AO=OC.其中正确的是①②④.(只填序号)【解答】解:∵直线l是四边形ABCD的对称轴,AD∥BC;∴△AOD≌△BOC;∴AD=BC=CD,OC=AO,且四边形ABCD为平行四边形.故②④正确;∴③AC⊥BD,错误;又∵AD四边形ABCD是平行四边形;∴AB∥CD.故①正确.故答案为:①②④三、用心做一做(本大题共8小题,满分72分).17.(8分)如图,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O,BO=CO.求证:AO平分∠BAC.【解答】证明:∵CD⊥AB于D,BE⊥AC于E,∴∠ODB=∠DEC=90°.在△DBO和△CEO中,∴△DBO≌△CEO.∴OD=OE.∵OD⊥AB,OE⊥AC,OD=OE,∴AO平分∠BAC.18.(8分)一个多边形的内角和比四边形的外角和多720°,并且这个多边形的各内角都相等.这个多边形是几边形?它的每一个内角等于多少度?【解答】解:设这个多边形边数为n,则(n﹣2)•180=360+720,解得n=8,∴这个多边形是八边形,∵这个多边形的每个内角都相等,∴它每一个内角的度数为1080°÷8=135°.19.(8分)如图,在平面直角坐标系中,每个小正方形的边长为1,直线m上各点的横坐标都为1.请按要求分别完成下列各小题:(1)画出△ABC关于直线m对称的△A1B1C1,写出A1,B1,C1的坐标;(2)若△ABC的内部一点P(x,y),则点P关于直线m对称的点P′的坐标是多少?【解答】解:(1)如图所示:△A1B1C1,即为所求,A1(3,3),B1(6,5),C1(6,1);(2)∵△ABC的内部一点P(x,y),设点P关于直线m对称的点P′的横坐标为:a,则=1,故a=2﹣x,∴点P关于直线m对称的点P′的坐标是(2﹣x,y).20.(8分)如图,在△ABC中,AB=AC.(1)利用尺规作图作边BC的高AD,垂足为D(保留作图痕迹,不写作法);(2)求证:BD=CD.【解答】解:(1)如图线段AD即为所求.(2)∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ADB和Rt△ADC中,,∴Rt△ADB≌Rt△ADC.∴BD=DC.21.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.【解答】解:CF⊥DE,CF平分DE,理由是:∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∴△ACD≌△BEC(SAS),∴DC=CE,∵CF平分∠DCE,∴CF⊥DE.22.(10分)已知一个等腰三角形的两边长a、b满足方程组.(1)求a、b的值;(2)求这个等腰三角形的周长.【解答】解:(1)②×3+①得:10a=50,解得a=5.∴b=3.(2)当a为腰时,三角形的周长为5+5+3=13,当b为腰时,三角形的周长=3+3+5=11.23.(10分)如图,AC∥BD,E为CD的中点,AE⊥BE.(1)求证:AE平分∠BAC;(2)线段AB、AC、BD有怎样的数量关系?请写出你的结论并证明.【解答】解:(1)如图所示,延长AE交BD的延长线于F,∵AC∥BD,∴∠CAE=∠DFE,∵E为CD的中点,∴CE=DE,在△CAE和△DFE中,,∴△CAE≌△DFE(AAS),∴AC=DF,AE=FE,∵AE⊥BE,∴∠AEB=∠FEB=90°,在△AEB和△FEB中,,∴△AEB≌△FEB(SAS),∴∠BAE=∠F,∴∠CAE=∠BAE,∴AE平分∠BAC.(2)线段AB、AC、BD的数量关系为:AB=BD+AC.证明:由(1)可得,△AEB≌△FEB,∴AB=BF,即AB=BD+DF,由(1)可得,DF=AC,∴AB=BD+AC.24.(12分)在△ABC 中,AB=AC,D是直线BC上一点,以AD为一边作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图1,点D在线段BC的延长线上移动,若∠BAC=40°,求∠DCE的度数;(2)设∠BAC=m,∠DCE=n.①如图2,当点D在线段BC上移动时(不与点B,C 重合),m与n之间有什么数量关系?请说明理由.②如图3,当点D在线段CB的延长线上移动时,m与n之间有什么数量关系.(直接写出结论)【解答】解:(1)∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ACE=∠B,∵AB=AC,∠BAC=40°,∴∠ACE=∠B=70°,∴∠DCE=180°﹣70°﹣70°=40°;(2)①m+n=180°,理由:∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE,∴∠BCE=∠ACB+∠ACE=∠ACB+∠B,∵∠BAC+∠B+∠ACB=180°,∴∠BAC+∠BCE=180°,即m+n=180°;②m=n,理由:∵∠DAE=∠BAC,∴∠DAB=∠EAC,∵在△ADB和△AEC 中,,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,∴∠BAC=∠BCE,即m=n.。
湖北省孝感市八年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·青岛模拟) 下列四个图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)如图,△ABC中,AB=AC,∠A=30°DE垂直平分AC,则∠DCB的度数为()A . 80°B . 75°C . 65°D . 45°3. (2分) (2018八上·兴隆期中) 下列图形具有稳定性的是()A .B .C .D .4. (2分) (2019七下·重庆期中) 有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行②两条直线被第三条直线所截,同旁内角互补③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直④在同一平面内,过一点有且只有一条直线与已知直线垂直。
其中真命题是()A . ①②B . ②③C . ①④D . ③④5. (2分) (2019八上·荣昌期中) 如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A . BC=EC,∠B=∠EB . BC=EC,AC=DCC . AC=DC,∠B=∠ED . ∠B=∠E,∠BCE=∠ACD6. (2分)下列性质中,等腰三角形具有而直角三角形不一定具有的是()A . 内角和等于180°B . 有一个角的平分线垂直于这个角的对边C . 有两个锐角的和等于90°D . 有两条边的平方和等于第三条边的平方7. (2分)(2020·防城港模拟) 下列叙述正确的是()A . 方差越大,说明数据就越稳定B . 在不等式两边同乘或同除以一个不为0的数时,不等号的方向不变C . 不在同一直线上的三点确定一个圆D . 两边及其一边的对角对应相等的两个三角形全等8. (2分)等腰三角形的一边长为3cm,周长为19cm,则该三角形的腰长为()A . 3cmB . 8cmC . 3cm或8cmD . 以上答案均不对9. (2分)如图,△ABC的两条角平分线BD、CE交于O,且∠A=60°,则下列结论中不正确的是()A . ∠BOC=120°B . BC=BE+CDC . OD=OED . OB=OC10. (2分) (2017八上·余杭期中) 如图,为等边的内部一点,,,,则等于()A .B .C .D .二、填空题 (共6题;共8分)11. (1分) (2019八上·秀洲月考) 把命题“对顶角相等”改写成“如果……,那么……”的形式:________.12. (1分)(2018·安顺模拟) 如图,AD和CB相交于点E,BE=DE,请添加一个条件,使△ABE≌△CDE(只添一个即可),你所添加的条件是________.13. (2分)(2019·毕节) 如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC与点D,连结AD,若∠B=40°,∠C=36°,则∠DAC的度数是________.14. (2分)(2020·阜阳模拟) 下面是“已知底边及底边上的高线作等腰三角形”的尺规作图过程.已知:线段.求作:等腰,使,边上的高为.作法:如图,(1)作线段;(2)作线段的垂直平分线交于点;(3)在射线上顺次截取线段,连接.所以即为所求作的等腰三角形.请回答:得到是等腰三角形的依据是:①________:②________.15. (1分)如图,在等边△ABC中,BD=CE,AD与BE相交于点F,则∠AFE=________.16. (1分) (2018八上·武汉月考) 如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为________度.三、解答题 (共7题;共28分)17. (1分) (2020七下·平阴期末) 如图,已知:∠A=∠D,∠1=∠2,下列条件中:①∠E=∠B;②EF=BC;③AB=EF;④AF=CD.能使△ABC≌△DEF的有________;(填序号)18. (2分)(2020·北辰模拟) 如图,在每个小正方形的边长为的网格中,点A,B,C在格点上,以点A 为圆心、AC为半径的半圆交AB于点 E.(1) BE的长为________;(2)请用无刻度的直尺,在如图所示的网格中,找一点P(点P,C 在AB两侧),使PA=5,PE与半圆相切. 简要说明点P的位置是如何找到的.19. (2分) (2019七下·成都期末) 林湾乡修建一条灌溉水渠,如图,水渠从A村沿北偏东65°方向到B 村,从B村沿北偏西25°方向到C村水渠从C村沿什么方向修建,可以保持与AB的方向一致?20. (5分) (2018八上·岳池期末) 如图,在△ABC中,∠ADB=100°,∠C=80°,∠BAD=∠DAC,BE平分∠ABC,求∠BED的度数.21. (2分)(2020·珠海模拟) 如图,已知矩形,对角线的垂直平分线分别交,和于点,,.,的延长线交于点,且,连接.(1)求证:(2)求证:平分.22. (10分) (2018八上·芜湖期中) 已知:如图所示,在△ABC中,∠BAC=60°,AD=AE , BE、CD交于点F ,且∠DFE=120°.在BE的延长线上截取ET=DC ,连接AT.(1)求证:∠ADC=∠AET;(2)求证:AT=AC;(3)设BC边上的中线AP与BE交于Q.求证:∠QAB=∠QBA.23. (6分)(2017·泰安模拟) △ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,∠EDF=∠B.(1)如图1,求证:DE•CD=DF•BE(2) D为BC中点如图2,连接EF.①求证:ED平分∠BEF;②若四边形AEDF为菱形,求∠BAC的度数及的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共28分)17-1、18-1、18-2、19-1、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、。
一、选择题(每小题3分,共36分) 1、下列说法正确的是( )A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形 2、在△ABC 和△A ′B ′C ′中,AB=A ′B ′,∠A=∠A ′,若证△ABC ≌△A ′B ′C ′还要从下列条件中补选一个,错误的选法是( ) A.∠B=∠B ′ B.∠C=∠C ′ C.BC=B ′C ′ D. AC=A ′C ′3、P 是∠AOB 平分线上一点,CD ⊥OP 于P ,并分别交OA 、OB 于CD , 则CD_____P 点到∠AOB 两边距离之和.( )A .大于B .小于C .等于D .不能确定 4、下列命题中真命题的个数有( )⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,A.3个B.2个C.1个D.0个5、如图,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条角平分线将△ABC 分 为三个三角形,则S △ABO ︰S △BCO ︰S △ACO 等于( )A .1︰1︰1B .1︰2︰3C .2︰3︰4D .3︰4︰56、如图,在△ABC 中,AD 是∠BAC 的平分线,DE ⊥AC 于E ,DF ⊥AB 于F ,且FB=CE ,则下列结论::①DE=DF ,②AE=AF ,③BD=CD ,④AD ⊥BC 。
其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个第8题7、如图:△ABC 中,∠C=90°,A C=BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB=6㎝, 则△DEB 的周长是( )A .6㎝B .4㎝C .10㎝D .以上都不对8、如图所示中的4×4的正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( ) A .245° B .300° C .315° D .330° 9、下列判断正确的是( )A .有两边和其中一边的对角对应相等的两个三角形全等B .有两边对应相等且有一角为30°的两个等腰三角形全等C .有一角和一边相等的两个直角三角形全等D .有两角和一边对应相等的两个三角形全等10、如图所示,在∠AOB 的两边截取AO=BO ,CO=DO ,连结AD 、BC 交于点P ,考察下列结论,其中正确的是( )F E D BA CF E D C B A OC B A①△AOD≌△BOC ②△APC≌△BPD ③点P在∠AOB的平分线上A.只有① B.只有② C.①② D.①②③11、如图,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去。
湖北省孝感市安陆市2017-2018学年八年级上学期数学期中考试试卷一、单选题1. 下面四个手机应用图标中是轴对称图形的是( )A . (A )B . (B )C . (C )D . (D )2. 已知图中的两个三角形全等,则 的大小为( ) A . B .C .D .3. 如图,三角形被木板遮住一部分,这个三角形是( )A . 锐角三角形B . 直角三角形C . 钝角三角形D . 以上都有可能4. 如图,∠ACB=90°,CD ⊥AB ,垂足为D ,下列结论错误的是( )A . 图中有三个直角三角形B . ∠1=∠2C . ∠1和∠B 都是∠A 的余角D . ∠2=∠A5. 已知n 边形从一个顶点出发可以作9条对角线,则n=( )A . 9B . 10C . 11D . 126. 如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P , P , P ,P 四个点中找出符合条件的点P ,则点P 有( )A . 1个B . 2个C . 3个D . 4个7.如图,点O 在△ABC 内,且到三边的距离相等,若∠A=60 ,则∠BOC 的大小为( )1234A .B .C .D . 608. 如图,在Rt△ABC中,∠BAC=90 ,AD⊥BC于D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=()A . 30B .C . 60D . 759. 如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,……,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A . 140米B . 150米C . 160米D . 240米10. 如图,在Rt△ABC中,∠ACB=90 ,∠BAC的平分线交BC于D,过点C作CG⊥AB于G,交AD于E,过点D作D F⊥AB于F.下列结论①∠CED= ;②;③∠ADF= ;④CE=DF.正确的是()A . ①②④B . ②③④C . ①③D . ①②③④二、填空题11. 三角形三边长分别为3,,7,则的取值范围是________.12. 一个正多边形的内角和为540 ,则这个正多边形的每个外角的度数为________.13. 如图,已知AB⊥BD,AB∥DE,AB=ED。
2017-2018学年八年级下期中数学试卷含答案一、选择题1.把函数y=﹣2x的图象向下平移1个单位,所得图象的函数解析式为()A.y=﹣2x+1 B.y=﹣2x﹣1 C.y=﹣2(x﹣1)D.y=﹣2(x+1)2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC3.下列各式从左到右的变形正确的是()A.=x+y B.=C.﹣=D.=4.已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A.5 B.1 C.3 D.不能确定5.在平面直角坐标系中,有A(0,1),B(﹣1,0),C(1,0)三点,若点D与A,B,C三点构成平行四边形,则点D的坐标不可能是()A.(0,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)6.甲、乙两人赛跑,所跑路程与时间的关系如图(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四条信息,其中错误的是()A.这是一次1500m赛跑B.甲、乙同时起跑C.甲、乙两人中先到达终点的是乙D.甲在这次赛跑中的速度为5m/s7.如图,双曲线y=﹣的一个分支为()A.① B.② C.③ D.④8.函数y=﹣ax+a与(a≠0)在同一坐标系中的图象可能是()A.B.C.D.二、填空题9.﹣(﹣1)2016﹣(﹣)0+(﹣)﹣2﹣|﹣3|+=.10.如图,在▱ABCD中,AE⊥BC,AF⊥CD,E,F为垂足,若∠EAF=59°,则∠B=度.11.纳米是一种长度单位,1纳米等于10亿分之一米,1根头发丝直径是62000纳米,则一根头发丝的直径用科学记数法表示为米.12.在函数y=(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),在函数值y1,y2,y3中最大的为.13.如图,点A是反比例函数的图象上的一点,过点A作▱ABCD,使点B、C在x轴上,点D在y轴上,则▱ABCD的面积为.14.如图,已知直线y=﹣2x+b与直线y=ax﹣1相交于点(2,﹣2),由图象可得不等式﹣2x+b>ax﹣1的解集是.15.如图,▱ABCD的周长为60cm,△AOB的周长比△BOC大8cm,则AB=,BC=.三、解答题16.(1)先化简,再求值:÷(﹣)+,其中x=2﹣1﹣20160(2)阅读理解【提出问题】已知===k,求分式的值.【分析问题】本题已知条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.【解决问题】设===k,则x=4k,y=3k,z=2k,将它们分别代入中并化简,可得分式的值为.【拓展应用】已知=﹣=,求分式的值.17.如图,在正方形ABCD中,E是BC延长线上一点,且AC=EC,求∠DAE的度数.18.已知直线y=2x+6,解答下列问题:(1)在直角坐标系中,画出该直线;(2)求直线与坐标轴所围成的三角形的面积;(3)根据图象直接写出,当x取什么值时,函数值y>0?19.某校准备在甲、乙两家公司为毕业班制作一批VCD光盘作为毕业留念.甲公司提出:每个光盘收材料费5元,另收设计和制作费1500元;乙公司提出:每个光盘收材料费8元,不收设计费.(1)请写出制作VCD光盘的个数x与甲公司的收费y1(元)的函数关系式;(2)请写出制作VCD光盘的个数x与乙公司的收费y2(元)的函数关系式;(3)如果学校派你去甲、乙两家公司订做纪念光盘,你会选择哪家公司.20.如图1,已知双曲线y=(k>0)与直线y=k′x交于A、B两点,点A在第一象限,试解答下列问题:(1)若点A的坐标为(3,1),则点B的坐标为;当x满足:时,≤k′x;(2)过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限,如图2所示.①四边形APBQ一定是;②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.21.如图,在▱ABCD中,DE平分∠ADC交AB于点G,交CB延长线于E,BF平分∠ABC交AD的延长线于F.(1)若AD=5,AB=8,求GB的长.(2)求证:∠E=∠F.22.甲、乙两人在某标准游泳池相邻泳道进行100米自由泳训练,如图是他们各自离出发点的距离y(米)与他们出发的时间x(秒)的函数图象.根据图象,解决如下问题.(注标准泳池单向泳道长50米,100米自由泳要求运动员在比赛中往返一次;返回时触壁转身的时间,本题忽略不计)(1)直接写出点A坐标,并求出线段OC的解析式;(2)他们何时相遇?相遇时距离出发点多远?(3)若甲、乙两人在各自游完50米后,返回时的速度相等;则快者到达终点时领先慢者多少米?23.我县万德隆商场有A、B两种商品的进价和售价如表:已知:用2400元购进A种商品的数量与用3000元购进B种商品的数量相同.(1)求m的值;(2)该商场计划同时购进的A、B两种商品共200件,其中购进A种商品x件,实际进货时,生产厂家对A 种商品的出厂价下调a(50<a<70)元出售,若商场保持同种商品的售价不变,商场售完这200件商品的总利润为y元.①求y关于x的函数关系式;②若限定A种商品最多购进120件最少购进100件,请你根据以上信息,设计出使该商场获得最大利润的进货方案.参考答案与试题解析一、选择题1.把函数y=﹣2x的图象向下平移1个单位,所得图象的函数解析式为()A.y=﹣2x+1 B.y=﹣2x﹣1 C.y=﹣2(x﹣1)D.y=﹣2(x+1)【考点】一次函数图象与几何变换.【分析】根据“上加下减”的平移原理,结合原函数解析式即可得出结论.【解答】解:根据“上加下减”的原理可得:函数y=﹣2x的图象向下平移1个单位后得出的图象的函数解析式为y=﹣2x﹣1.故选B.【点评】本题考查了一次函数图象与几何变换,解题的关键是根据平移原理找出平移后的函数解析式.本题属于基础题,难度不大,解决该题型题目时,依据“上加下减”的平移原理找出函数图象平移后的函数解析式是关键.2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形判定定理进行判断.【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.【点评】本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.3.下列各式从左到右的变形正确的是()A.=x+y B.=C .﹣=D.=【考点】分式的基本性质.【分析】根据分式的分子分母都乘以或除以同一个不为零的数或者同一个整式,分式的值不变.【解答】解:A、分子与分母除的数不是同一个数,故A错误;B、分子分母的一部分乘以10,故B错误;C、分子、分母、分式改变其中两个的符号,分式的值不变,故C错误;D、分子分母都乘以2,故D正确;故选:D.【点评】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的数或者同一个整式,分式的值不变.4.已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A.5 B.1 C.3 D.不能确定【考点】解分式方程;关于原点对称的点的坐标.【专题】计算题.【分析】根据P关于原点对称点在第一象限,得到P横纵坐标都小于0,求出a的范围,确定出a的值,代入方程计算即可求出解.【解答】解:∵点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,∴,解得:<a<2,即a=1,当a=1时,所求方程化为=2,去分母得:x+1=2x﹣2,解得:x=3,经检验x=3是分式方程的解,则方程的解为3.故选:C【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.5.在平面直角坐标系中,有A(0,1),B(﹣1,0),C(1,0)三点,若点D与A,B,C三点构成平行四边形,则点D的坐标不可能是()A.(0,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)【考点】平行四边形的判定;坐标与图形性质.【分析】根据两组对边分别平行的四边形是平行四边形可得到D点坐标的三种情况:①当AB∥CD,AD∥BC 时;②当AB∥CD,AC∥BD时;③当AD∥BC,AC∥BD时;分别求出D的坐标即可.【解答】解:如图所示∵两组对边分别平行的四边形是平行四边形∴可以分以下三种情况分别求出D点的坐标:如图所示:①当AB∥CD,AD∥BC时,D点的坐标为(2,1);②当AB∥CD,AC∥BD时,D点的坐标为(0,﹣1);③当AD∥BC,AC∥BD时,D点的坐标为(﹣2,1).故选:C.【点评】本题主要考查了平行四边形的判定,要求学生掌握平行四边形的判定并会灵活运用,注意分类讨论.6.甲、乙两人赛跑,所跑路程与时间的关系如图(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四条信息,其中错误的是()A.这是一次1500m赛跑B.甲、乙同时起跑C.甲、乙两人中先到达终点的是乙D.甲在这次赛跑中的速度为5m/s【考点】函数的图象.【专题】数形结合.【分析】根据函数图象对各选项分析判断后利用排除法求解.【解答】解:A、路程为1500m后不在增加,所以,这是一次1500m赛跑,正确,故本选项错误;B、加起跑后一段时间乙开始起跑,错误,故本选项正确;C、乙计时283秒到达终点,甲计时300秒到达终点,正确,故本选项错误;D、甲在这次赛跑中的速度为=5m/s,正确,故本选项错误.故选B.【点评】本题考查了函数图象,读函数的图象时首先要理解横、纵坐标表示的含义.7.如图,双曲线y=﹣的一个分支为()A.① B.② C.③ D.④【考点】反比例函数的图象.【分析】根据函数图象上图象经过的点的,利用待定系数法即可求得函数的解析式,即k的值,从而判断.【解答】解:A、反比例函数进过点(﹣3,4),代入函数解析式得k=﹣12,故选项正确;B、反比例函数进过点(﹣3,2),代入函数解析式得k=﹣6,故选项错误;C、反比例函数进过点(1,4),代入函数解析式得k=4,故选项错误;D、反比例函数进过点(2,4),代入函数解析式得k=8,故选项错误.故选A.【点评】本题考查了待定系数求函数的解析式,是一个基础题.8.函数y=﹣ax+a与(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【专题】压轴题.【分析】根据反比例函数与一次函数的图象特点解答即可.【解答】解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,(a≠0)在二、四象限,只有A符合;a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,(a≠0)在一、三象限,无选项符合.故选A.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由a的取值确定函数所在的象限.二、填空题9.﹣(﹣1)2016﹣(﹣)0+(﹣)﹣2﹣|﹣3|+=2+1.【考点】立方根;零指数幂;负整数指数幂.【专题】计算题.【分析】首先将二次根式、幂运算、绝对值、立方根进行化简求值,然后根据实数的运算法则进行运算即可.【解答】解:﹣(﹣1)2016﹣(﹣)0+(﹣)﹣2﹣|﹣3|+,=2﹣1﹣1+4﹣3+2,=2+1.故答案为:2+1.【点评】题目考查了二次根式化简、幂运算、绝对值的运算、立方根的运算等知识点,考察知识较多,对学生要求较高,解决本题的关键是掌握各种运算法则,题目难易程度整体适中,适合课后训练.10.如图,在▱ABCD中,AE⊥BC,AF⊥CD,E,F为垂足,若∠EAF=59°,则∠B=59度.【考点】平行四边形的性质.【分析】直接利用垂直的定义结合平行四边形的性质得出∠BAE的度数,进而得出答案.【解答】解:∵在▱ABCD中,AE⊥BC,AF⊥CD,∴∠AEB=∠AFC=90°,AB∥DC,∴∠BAF=90°,∵∠EAF=59°,∴∠BAE=31°,∴∠B=59°.故答案为:59.【点评】此题主要考查了平行四边形的性质,根据题意得出∠BAE的度数是解题关键.11.纳米是一种长度单位,1纳米等于10亿分之一米,1根头发丝直径是62000纳米,则一根头发丝的直径用科学记数法表示为 6.2×10﹣6米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:62000纳米=62000×10﹣10m=6.2×10﹣6m,故答案为:6.2×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.在函数y=(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),在函数值y1,y2,y3中最大的为y2.【考点】反比例函数图象上点的坐标特征.【分析】首先可判定函数y=(k为常数)的系数﹣k2﹣2<0,即可知此函数在二、四象限,然后画出图象,确定各点的位置,即可求得答案.【解答】解:∵函数y=(k为常数)的系数﹣k2﹣2<0,∴此函数在二、四象限,如图∴函数值y1,y2,y3中最大的为y2.故答案为:y2.【点评】此题考查了反比例函数图象上点的坐标特征.注意结合图象求解比较简单.13.如图,点A是反比例函数的图象上的一点,过点A作▱ABCD,使点B、C在x轴上,点D在y轴上,则▱ABCD的面积为6.【考点】反比例函数系数k的几何意义;平行四边形的性质.【专题】计算题.【分析】连结OA、CA,根据反比例函数y=(k≠0)中比例系数k的几何意义得到S△OAD=|k|=×6=3,再利用平行四边形的性质得BC∥AD,所以S△CAD=S△OAD=3,然后根据▱ABCD的面积=2S△CAD进行计算.【解答】解:连结OA、CA,如图,则S△OAD=|k|=×6=3,∵四边形ABCD为平行四边形,∴BC∥AD,∴S△CAD=S△OAD=3,∴▱ABCD的面积=2S△CAD=6.故答案为6.【点评】本题考查了反比例函数y=(k≠0)中比例系数k的几何意义:过反比例函数图象上任意一点分别作x轴、y轴的垂线,则垂线与坐标轴所围成的矩形的面积为|k|.也考查了平行四边形的性质.14.如图,已知直线y=﹣2x+b与直线y=ax﹣1相交于点(2,﹣2),由图象可得不等式﹣2x+b>ax﹣1的解集是x<2.【考点】一次函数与一元一次不等式.【分析】以交点(2,﹣2)为分界,交点的坐标,y=﹣2x+b的图象在直线y=ax﹣1的上边,故不等式的解集为x<2.【解答】解:根据图象可得不等式﹣2x+b>ax﹣1的解集是x<2,故答案为:x<2.【点评】此题主要考查了一次函数与一元一次不等式的关系,关键是正确从图象中得到信息.15.如图,▱ABCD的周长为60cm,△AOB的周长比△BOC大8cm,则AB=19cm,BC=11cm.【考点】平行四边形的性质.【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△AOB的周长比△BOC的周长多8cm,则AB比BC大8cm,继而可求出AB、BC的长度.【解答】解:∵▱ABCD的周长为60cm,∴BC+AB=30cm,①又∵△AOB的周长比△BOC的周长大8cm,∴AB﹣BC=8cm,②由①②得:AB=19cm,BC=11cm.故答案为:19cm,11cm.【点评】此题主要考查平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.三、解答题16.(1)先化简,再求值:÷(﹣)+,其中x=2﹣1﹣20160(2)阅读理解【提出问题】已知===k,求分式的值.【分析问题】本题已知条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.【解决问题】设===k ,则x=4k ,y=3k ,z=2k ,将它们分别代入中并化简,可得分式的值为 .【拓展应用】已知=﹣=,求分式的值.【考点】分式的化简求值;分式的值;零指数幂;负整数指数幂.【分析】(1)先根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可; (2)【解决问题】把x=4k ,y=3k ,z=2k 代入进行计算即可;【拓展应用】令=﹣==k ,则x=3k ,y=﹣2k ,z=4k ,再代入分式进行计算即可.【解答】解:(1)原式=÷+=÷+=÷+=•+=+= =,当x=2﹣1﹣20160=﹣1=﹣时,原式===.(2)【解决问题】把x=4k ,y=3k ,z=2k 代入得,原式===.故答案为:;【拓展应用】令=﹣==k ,则x=3k ,y=﹣2k ,z=4k ,原式====.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意,当条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.17.如图,在正方形ABCD中,E是BC延长线上一点,且AC=EC,求∠DAE的度数.【考点】正方形的性质.【分析】根据正方形的对角线平分一组对角可得∠DAC=∠ACB=45°,再根据等边对等角可得∠E=∠EAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EAC,再根据∠DAE=∠DAC﹣∠EAC代入数据进行计算即可得解.【解答】解:∵四边形ABCD为正方形,∴∠DAC=∠ACB=45°,∵AC=CE,∴∠E=∠EAC,∵2∠EAC=∠E+∠EAC=∠ACB=45°,∴∠EAC=22.5°,∴∠DAE=∠DAC﹣∠EAC=45°﹣22.5°=22.5°.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等边对等角的性质,三角形的外角性质,是基础题,熟记各性质是解题的关键.18.已知直线y=2x+6,解答下列问题:(1)在直角坐标系中,画出该直线;(2)求直线与坐标轴所围成的三角形的面积;(3)根据图象直接写出,当x取什么值时,函数值y>0?【考点】一次函数的图象;一次函数图象上点的坐标特征.【分析】(1)首先求出图象与坐标轴交点,进而画出图象;(2)直接利用(1)中所求,结合直角三角形面积求法得出答案;(3)利用函数图象得出不等式的解.【解答】解:(1)当x=0,则y=6;当y=0,则x=﹣3,如图所示:(2)直线与坐标轴所围成的三角形的面积为:×3×6=9;(3)如图所示:当x>﹣3时,函数值y>0.【点评】此题主要考查了一次函数图象以及三角形面积求法,正确求出一次函数与坐标轴交点是解题关键.19.某校准备在甲、乙两家公司为毕业班制作一批VCD光盘作为毕业留念.甲公司提出:每个光盘收材料费5元,另收设计和制作费1500元;乙公司提出:每个光盘收材料费8元,不收设计费.(1)请写出制作VCD光盘的个数x与甲公司的收费y1(元)的函数关系式;(2)请写出制作VCD光盘的个数x与乙公司的收费y2(元)的函数关系式;(3)如果学校派你去甲、乙两家公司订做纪念光盘,你会选择哪家公司.【考点】一次函数的应用.【专题】应用题.【分析】根据题意,y1与x是一次函数关系,y2与x成正比例,可直接写出它们的关系式y1=5x+1500,y2=8x;若要选择公司订做光盘,则要看学校订做纪念光盘的数量,当甲、乙两家公司的收费相等时,即y1=y2时可计算出订做的光盘数,再与学校订做的光盘数相比较,就可做出选择.【解答】解:(1)y1=5x+1500,(2)y2=8x;(3)当y1=y2时,即5x+1500=8x,解得x=500,当光盘为500个是同样合算,当光盘少于500个时选乙公司合算,当光盘多于500个时选甲公司合算.【点评】此题不难,关键要仔细审题,懂得计算两家公司收费相等时的光盘数,再与学校需订的数量相比较.20.如图1,已知双曲线y=(k>0)与直线y=k′x交于A、B两点,点A在第一象限,试解答下列问题:(1)若点A的坐标为(3,1),则点B的坐标为(﹣3,﹣1);当x满足:﹣3<x<0或x>3时,≤k′x;(2)过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限,如图2所示.①四边形APBQ一定是平行四边形;②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.【考点】反比例函数综合题.【分析】(1)根据双曲线关于原点对称求出点B的坐标,结合图象得到≤k′x时,x的取值范围;(2)①根据对角线互相平分的四边形是平行四边形证明即可;②过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,根据正方形的面积公式和三角形的面积公式计算即可.【解答】解:(1)∵双曲线y=关于原点对称,点A的坐标为(3,1),∴点B的坐标为(﹣3,﹣1),由图象可知,当﹣3<x<0或x>3时,≤k′x,故答案为:(﹣3,﹣1);﹣3<x<0或x>3;(2)①∵双曲线y=关于原点对称,∴OA=OB,OP=OQ,∴四边形APBQ一定是平行四边形,故答案为:平行四边形;②∵点A的坐标为(3,1),∴k=3×1=3,∴反比例函数的解析式为y=,∵点P的横坐标为1,∴点P的纵坐标为3,∴点P的坐标为(1,3),由双曲线关于原点对称可知,点Q的坐标为(﹣1,﹣3),点B的坐标为(﹣3,﹣1),如图2,过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,则四边形CDEF是矩形,CD=6,DE=6,DB=DP=4,CP=CA=2,则四边形APBQ的面积=矩形CDEF的面积﹣△ACP的面积﹣△PDB的面积﹣△BEQ的面积﹣△AFQ的面积=36﹣2﹣8﹣2﹣8=16.【点评】本题考查的是反比例函数的图形和性质、反比例函数图象上点的坐标特征、中心对称图形的概念和性 质以及平行四边形的判定,掌握双曲线是关于原点的中心对称图形、平行四边形的判定定理是解题的关键.21.如图,在▱ ABCD 中,DE 平分∠ADC 交 AB 于点 G,交 CB 延长线于 E,BF 平分∠ABC 交 AD 的延长线 于 F. (1)若 AD=5,AB=8,求 GB 的长. (2)求证:∠E=∠F.【考点】平行四边形的性质. 【分析】(1)直接利用平行四边形的性质结合角平分线的性质得出∠2=∠AGD,进而得出 AD=AG,得出答 案即可; (2)首先证明∠CDE=∠ABF,再证明 ED∥FB,然后再根据平行四边形的性质可得 AF∥CE,根据两组对边 分别平行的四边形是平行四边形可得四边形 BFDE 是平行四边形,进而得出答案. 【解答】(1)解:∵在▱ ABCD 中,DE 平分∠ADC 交 AB 于点 G,BF 平分∠ABC 交 AD 的延长线于 F, ∴∠1=∠2,∠3=∠4,AB∥DC, ∴∠2=∠AGD, ∴∠1=∠AGD, ∴AD=AG=5, ∵AB=8, ∴BG=8﹣5=3;(2)证明:∵四边形 ABCD 是平行四边形, ∴∠ADC=∠ABC,DC∥AB,AD∥BC, ∵DE 平分∠ADC, ∴∠CDE= ∠ADC, ∵BF 平分∠ABC, ∴∠ABF= ∠ABC, ∴∠CDE=∠ABF, ∵DC∥AB, ∴∠AGD=∠CDE, ∴∠AGD=∠FBA, ∴ED∥FB, ∵AF∥CE, ∴四边形 BFDE 是平行四边形, ∴∠E=∠F.【点评】此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形两组对边分别平行,两组对边分别 平行的四边形是平行四边形.22.甲、乙两人在某标准游泳池相邻泳道进行 100 米自由泳训练,如图是他们各自离出发点的距离 y(米)与 他们出发的时间 x(秒)的函数图象.根据图象,解决如下问题.(注标准泳池单向泳道长 50 米,100 米自由 泳要求运动员在比赛中往返一次;返回时触壁转身的时间,本题忽略不计) (1)直接写出点 A 坐标,并求出线段 OC 的解析式; (2)他们何时相遇?相遇时距离出发点多远? (3)若甲、乙两人在各自游完 50 米后,返回时的速度相等;则快者到达终点时领先慢者多少米?【考点】一次函数的应用. 【专题】综合题. 【分析】(1)由图得点 A(30,50),C(40,50),用待定系数法,即可求出解析式;(2) 用待定系数法可求出, 线段 AB 的解析式为 y2=﹣ x+100, (30≤x≤60) , 然后, 联立方程组,解出即可; (3)甲乙两人在各自游完 50 米后,在返程中的距离保持不变,把 x=30 与 40 分别代入 y1 和 y2,解出即可解 答; 【解答】解:(1)由图得点 A(30,50),C(40,50), 设线段 OC 的解析式为:y1=k1x, 把点 C(40,50)代入得,k1= , ∴线段 OC 的解析式为:y1= x(0≤x≤40);(2)设线段 AB 的解析式为 y2=k2x+b, 把点 A(30,50)、点 B(60,0)代入可知: ,解得,,∴线段 AB 的解析式为 y2=﹣ x+100,(30≤x≤60);解方程组,解得,,∴线段 OC 与线段 AB 的交点为(,),即出发秒后相遇,相遇时距离出发点米;(3)∵甲乙两人在各自游完 50 米后,在返程中的距离保持不变, 把 x=30 代入 y1= x,得 y1= 米, 米, = 米.把 x=40 代入 y2=﹣ x+100,得 y2= ∴快者到达终点时,领先慢者 50﹣【点评】本题主要考查了一次函数的应用,考查了学生获取信息的能力,读懂图是解答的关键.23.我县万德隆商场有 A、B 两种商品的进价和售价如表: 商品 A 价格 进价(元/件) 售价(元/件) m 160 m+20 240 B已知:用 2400 元购进 A 种商品的数量与用 3000 元购进 B 种商品的数量相同. (1)求 m 的值;(2)该商场计划同时购进的 A、B 两种商品共 200 件,其中购进 A 种商品 x 件,实际进货时,生产厂家对 A 种商品的出厂价下调 a(50<a<70)元出售,若商场保持同种商品的售价不变,商场售完这 200 件商品的总 利润为 y 元. ①求 y 关于 x 的函数关系式; ②若限定 A 种商品最多购进 120 件最少购进 100 件,请你根据以上信息,设计出使该商场获得最大利润的进 货方案. 【考点】一次函数的应用. 【分析】(1)根据等量关系:用 2400 元购进 A 种商品的数量与用 3000 元购进 B 种商品的数量相同,列出方 程即可解决问题. (2)①根据总利润=A 商品利润+B 商品利用计算即可解决问题. ②分 50<a<60,60<a<70,a=60 三种情形,根据一次函数的性质讨论即可解决问题. 【解答】解:(1)由题意 解得:m=88. ∴m=80. (2)①y=[160﹣(80﹣a)]x+(240﹣100)(200﹣x)=(a﹣60)x+28000.(0<x<200) ②∵y=(a﹣60)x+28000,100≤x≤120, ∴当 50<a<60 时,a﹣60<0,y 随 x 增大而减小, ∴x=100 时,y 有最大值, 此时进货方案是购买 100 件 A 种商品,100 件 B 种商品利润最大. 当 60<a<70 时,y 随 x 增大而增大, ∴x=120 时,y 有最大值, 此时进货方案是购买 120 件 A 种商品,80 件 B 种商品利润最大. 当 a=60 时, 利润是定值为 28000 元, 此时进货方案是购买 m 件 A 种商品, (200﹣m) 件 B 种商品 (100≤m≤120) . 【点评】本题考查一次函数的应用,一元一次不等式等知识,解题的关键是连接题意,学会利用不等式解决实 际问题,学会利用一次函数的性质解决实际问题中最值问题,属于中考常考题型. =。
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.2.下列各数中,最小的数是()A.0B.﹣2C.1D.﹣3.下列计算错误的是()A.+=B.×=C.÷=3D.(2)2=84.正方形面积为36,则对角线的长为()A.6B.C.9D.5.直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3B.4C.5D.66.下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:7.矩形具有而平行四边形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等8.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4D.39.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是()A.135°B.120°C.60°D.45°10.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.若式子有意义,则x的取值范围是.12.将一张等腰直角三角形纸片沿如图所示的中位线剪开,两块纸片可以拼出不同形状的四边形,请你写出其中两种不同的四边形名称.13.一个多边形的内角和与外角和的比是4:1,则它的边数是.14.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是.15.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为.16.如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2019的坐标为.三.解答题(共9小题,满分86分)17.计算(1)先化简,再求值+÷,其中a=+1.(2)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.18.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD 交于点G、H.求证:AG=CH.19.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB =3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?20.如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.21.(1)定义:直角三角形两直角边的平方和等于斜边的平方.如:直角三角形的直角边分别为3、4,则斜边的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接写出BC2=.(2)应用:已知正方形ABCD的边长为4,点P为AD边上的一点,AP=AD,请利用“两点之间线段最短”这一原理,在线段AC上画出一点M,使MP+MD最小,并直接写出最小值的平方为.22.在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:3+2=2+2+1=()2+2+1=(+1)2;5+2=2+2+3=()2+2××+()2=(+)2(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:①4+2;②6+4(2)若a+4=(m+n)2,且a,m,n都是正整数,试求a的值.23.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.24.如图,已知矩形纸片ABCD,AD=2,AB=4,将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB、CD交于点G、F,AE与FG交于点O.(1)如图1,求证:A、G、E、F四点围成的四边形是菱形;(2)如图2,点N是线段BC的中点,且ON=OD,求折痕FG的长.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的定义逐一判断即可得.【解答】解:A、==,此选项不符合题意;B、是最简二次根式,符合题意;C、==,此选项不符合题意;D、=3,次选县不符合题意;故选:B.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.下列各数中,最小的数是()A.0B.﹣2C.1D.﹣【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.【解答】解:最小的数是﹣2,故选:B.【点评】此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.3.下列计算错误的是()A.+=B.×=C.÷=3D.(2)2=8【分析】根据二次根式的运算法则逐一计算即可得出答案.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、×==,此选项正确;C、÷===3,此选项正确;D、(2)2=8,此选项正确;故选:A.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.正方形面积为36,则对角线的长为()A.6B.C.9D.【分析】根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.【解答】解:设对角线长是x.则有x2=36,解得:x=6.故选:B.【点评】本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.5.直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3B.4C.5D.6【分析】利用勾股定理求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵直角三角形两条直角边长分别是6和8,∴斜边==10,∴斜边上的中线长=×10=5.故选:C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.6.下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:【分析】根据勾股定理的逆定理、三角形的内角和为180度进行判定即可.【解答】解:A、正确,因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形;B、错误,因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形.C、正确,因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形;D、正确,12+()2=22符合勾股定理的逆定理,故成立;故选:B.【点评】此题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.7.矩形具有而平行四边形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:B.【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.8.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4D.3【分析】根据线段垂直平分线的性质得到BE=AE,可得AE+EC=BC=2,即可得到结论【解答】解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质等知识点,主要考查运用性质进行推理的能力.9.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是()A.135°B.120°C.60°D.45°【分析】易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.【解答】解:∵四边形ABCD是正方形.∴AB=AD,∠BAF=∠DAF.∴△ABF与△ADF全等.∴∠AFD=∠AFB.∵CB=CE,∴∠CBE=∠CEB.∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°.∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故选:B.【点评】此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.10.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A.B.C.D.【分析】连接CD,判断出四边形CEDF是矩形,再根据矩形的对角线相等可得EF=CD,然后根据垂线段最短可得CD⊥AB时线段EF的长最小,进而解答即可.【解答】解:如图,连接CD,∵DE⊥BC,DF⊥AC,∠ACB=90°,∴四边形CEDF是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时线段EF的长最小,∵AC=3,BC=4,∴AB=,∵四边形CEDF是矩形,∴CD=EF=,故选:D.【点评】本题考查了矩形的判定与性质,垂线段最短的性质,熟记性质与判定方法并确定出EF 最短时的位置是解题的关键.二.填空题(共6小题,满分24分,每小题4分)11.若式子有意义,则x的取值范围是1≤x≤2.【分析】直接根据二次根式的意义建立不等式组即可得出结论.【解答】解:根据二次根式的意义,得,∴1≤x≤2,故答案为1≤x≤2.【点评】此题主要考查了二次根式的意义,解不等式组,建立不等式组是解本题的关键.12.将一张等腰直角三角形纸片沿如图所示的中位线剪开,两块纸片可以拼出不同形状的四边形,请你写出其中两种不同的四边形名称矩形,平行四边形,等腰梯形等.【分析】根据题意画出图形便可直观解答.【解答】解:如图:可拼成以上三种图形:等腰梯形、矩形、平行四边形或等腰梯形、平行四边形.【点评】解答此类题目的关键是根据题意画出图形再解答.13.一个多边形的内角和与外角和的比是4:1,则它的边数是10.【分析】多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1440,解得:n=10.则此多边形的边数是10.故答案为:10.【点评】本题考查了多边形内角和定理和外角和定理:多边形内角和为(n﹣2)•180°,外角和为360°.14.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是S1+S2=S3.【分析】分别计算大圆的面积S3,两个小圆的面积S1,S2,根据直角三角形中大圆小圆直径(2r3)2=(2r 1)2+(2r 2)2的关系,可以求得S 1+S 2=S 3.【解答】解:设大圆的半径是r 3,则S 3=πr 32;设两个小圆的半径分别是r 1和r 2,则S 1=πr 12,S 2=πr 22.由勾股定理,知(2r 3)2=(2r 1)2+(2r 2)2,得r 32=r 12+r 22.所以S 1+S 2=S 3.故答案为S 1+S 2=S 3.【点评】本题考查了勾股定理的正确运算,在直角三角形中直角边与斜边的关系,本题中巧妙地运用勾股定理求得:(2r 3)2=(2r 1)2+(2r 2)2是解题的关键.15.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为 52 .【分析】根据菱形的对角线互相垂直平分,可知AO 和BO 的长,再根据勾股定理即可求得AB 的值,由菱形的四个边相等,继而求出菱形的周长.【解答】解:已知AC =10,BD =24,菱形对角线互相垂直平分,∴AO =5,BO =12cm ,∴AB ==13,∴BC =CD =AD =AB =13,∴菱形的周长为4×13=52.故答案是:52.【点评】本题考查了菱形对角线互相垂直平分的性质,考查了菱形各边长相等的性质,考查了勾股定理在直角三角形中的运用,根据勾股定理求AB 的值是解题的关键.16.如图,已知A 1(1,0)、A 2(1,1)、A 3(﹣1,1)、A 4(﹣1,﹣1)、A 5(2,﹣1)、….则点A 2019的坐标为 (﹣505,505) .的坐标为(﹣n,n)(n为正【分析】观察图形,由第二象限点的坐标的变化可得出“点A4n﹣1整数)”,再结合2019=4×505﹣1,即可求出点A2019的坐标.【解答】解:观察图形,可知:点A3的坐标为(﹣1,1),点A7的坐标为(﹣2,2),点A11的坐标为(﹣3,3),…,的坐标为(﹣n,n)(n为正整数).∴点A4n﹣1又∵2019=4×505﹣1,∴点A2019的坐标为(﹣505,505).故答案为:(﹣505,505).的坐标【点评】本题考查了规律型:点的坐标,根据点的坐标的变化,找出变化规律“点A4n﹣1为(﹣n,n)(n为正整数)”是解题的关键.三.解答题(共9小题,满分86分)17.计算(1)先化简,再求值+÷,其中a=+1.(2)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.【分析】(1)先根据分式的混合运算顺序和运算法则计算可得;(2)根据x的值,可以求得题目中所求式子的值.【解答】解:(1)原式=+•=+=,当a=+1时,原式==1+;(2)∵x=2﹣,∴x2=(2﹣)2=7﹣4,∴(7+4)x2+(2+)x+=(7+4)(7﹣4)+(2+)(2﹣)+=1+1+=2+.【点评】本题考查分式与二次根式的化简求值,解答本题的关键是明确分式与二次根式化简求值的方法.18.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD 交于点G、H.求证:AG=CH.【分析】利用平行四边形的性质得出AF=EC,再利用全等三角形的判定与性质得出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,AD∥BC,∴∠E=∠F,∵BE=DF,∴AF=EC,在△AGF和△CHE中,∴△AGF≌△CHE(ASA),∴AG=CH.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,正确掌握平行线的性质是解题关键.19.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB =3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?【分析】仔细分析题目,需要求得四边形的面积才能求得结果.连接BD ,在直角三角形ABD 中可求得BD 的长,由BD 、CD 、BC 的长度关系可得三角形DBC 为一直角三角形,DC 为斜边;由此看,四边形ABCD 由Rt △ABD 和Rt △DBC 构成,则容易求解.【解答】解:连接BD ,在Rt △ABD 中,BD 2=AB 2+AD 2=32+42=52,在△CBD 中,CD 2=132,BC 2=122,而122+52=132,即BC 2+BD 2=CD 2,∴∠DBC =90°,S 四边形ABCD =S △BAD +S △DBC =•AD •AB +DB •BC ,=×4×3+×12×5=36.所以需费用36×200=7200(元).【点评】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.20.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,BE ∥AC ,CE ∥DB .求证:四边形OBEC 是矩形.【分析】先证四边形OCED 是平行四边形,然后根据菱形的对角线互相垂直,得到∠BOC =90°,根据矩形的定义即可判定四边形OCDE是矩形.【解答】证明:∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形,又∵四边形ABCD是菱形,且AC、BD是对角线,∴AC⊥BD,∴∠BOC=90°,∴平行四边形OBEC是矩形.【点评】此题综合考查了菱形的性质与矩形的判定方法.矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.21.(1)定义:直角三角形两直角边的平方和等于斜边的平方.如:直角三角形的直角边分别为3、4,则斜边的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接写出BC2=36.(2)应用:已知正方形ABCD的边长为4,点P为AD边上的一点,AP=AD,请利用“两点之间线段最短”这一原理,在线段AC上画出一点M,使MP+MD最小,并直接写出最小值的平方为17.【分析】(1)根据直角三角形两直角边的平方和等于斜边的平方计算即可;(2)如图,连接BM,PB.因为PM+MD=PM+BM≥PB,推出PM+DM的最小值为PB的长,由此即可解决问题;【解答】解:(1)在Rt△ABC中,∵∠ACB=90°,AC=8,AB=10,∴BC2=AB2﹣AC2=100﹣64=36,故答案为36(2)如图,连接BM,PB.∵四边形ABCD是正方形,∴∠BAP=90°,B、D关于AC对称,∴MD=MB,∴PM+MD=PM+BM≥PB,∴PM+DM的最小值为PB的长,在Rt△ABP中,PB2=AB2+PA2=42+12=17,故答案为17.【点评】本题考查轴对称、正方形的性质、直角三角形的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.22.在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:3+2=2+2+1=()2+2+1=(+1)2;5+2=2+2+3=()2+2××+()2=(+)2(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:①4+2;②6+4(2)若a+4=(m+n)2,且a,m,n都是正整数,试求a的值.【分析】(1)根据完全平方公式求出即可;(2)先根据完全平方公式展开,再求出m、n的值,再求出a即可.【解答】解:(1)4+2=3+2+1=()2+2×+12=(+1)2;6+4=4+4+2=22+2×2×+()2=(2+)2;(2)∵a+4=(m+n)2,∴a+4=m2+2mn+3n2,∴a=m2+3n2,2mn=4,∴mn=2,∵m,n都是正整数,∴m=2,n=1或m=1,n=2;当m=2,n=1时,a=22+3×12=7;当m=1,n=2时,a=12+3×22=13;即a的值是7或13.【点评】本题考查了完全平方公式和求代数式的值、二次根式的混合运算,能熟记完全平方公式是解此题的关键,还培养了学生的阅读能力和计算能力.23.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.【分析】(1)根据正方形的面积为10可得正方形边长为,画一个边长为正方形即可;(2)①画一个边长为,2,的直角三角形即可;②画一个边长为,,的直角三角形即可;【解答】解:(1)如图①所示:(2)如图②③所示.【点评】此题主要考查了利用勾股定理画图,关键是计算出所画图形的边长是直角边长为多少的直角三角形的斜边长.24.如图,已知矩形纸片ABCD,AD=2,AB=4,将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB、CD交于点G、F,AE与FG交于点O.(1)如图1,求证:A、G、E、F四点围成的四边形是菱形;(2)如图2,点N是线段BC的中点,且ON=OD,求折痕FG的长.【分析】(1)根据折叠的性质判断出AG=GE,∠AGF=∠EGF,再由CD∥AB得出∠EFG=∠AGF,从而判断出EF=AG,得出四边形AGEF是平行四边形,继而结合AG=GE,可得出结论.(2)连接ON,得出ON是梯形ABCE的中位线,在RT△ADE中,利用勾股定理可解出x,继而可得出折痕FG的长度.【解答】(1)证明:由折叠的性质可得,GA=GE,∠AGF=∠EGF,∵DC∥AB,∴∠EFG=∠AGF,∴∠EFG=∠EGF,∴EF=EG=AG,∴四边形AGEF是平行四边形(EF∥AG,EF=AG),又∵AG=GE,∴四边形AGEF是菱形.(2)解:连接ON,∵O,N分别是AE,CB的中点,故ON是梯形ABCE的中位线,设CE=x,则ED=4﹣x,2ON=CE+AB=x+4,在Rt△AED中,AE=2OE=2ON=x+4,AD2+DE2=AE2,∴22+(4﹣x)2=(4+x)2,得x=,OE==,∵△FEO∽△AED,∴=,解得:FO=,∴FG=2FO=.故折痕FG的长是.【点评】此题考查了翻折变换的知识,涉及了菱形的判定、含30°角的直角三角形的性质,关键在于得出△FEO∽△AED,求出=.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH=FH.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【解答】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【点评】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.。
湖北省孝感市2017-2018学年八年级数学10月月考试题一、选择题(本大题共10小题,每小题3分,满分30分)1.已知三条线段长度的比值,则能构成三角形的是()A.1:3:4 B.1:2:3 C.2:7:4 D.3:5:4(a?b?c)(a?c)?0c,a,b,那么△ABC为(的三边长分别为,且) 2.△ABC A.不等边三角形 B.等边三角形 C.等腰三角形 D.锐角三角形3.如图AD⊥BC于点D,那么图中以AD为高的三角形有个()A.3 B.4 C.5 D.6a的度数是(.如图所示,∠) 4 A.10° B.20° C.30° D.40°5.如图,△ABC中,∠A=50°,点D,E分别在AB,AC上,则∠1+∠2的大小为()A.130°B.230°C.180°D.310°题)(第4 (第3题)题)(第5.把一张多边形的纸片剪去其中某个角,剩下的部分是一个四边形,则这张纸片原来的形6 )状不可能是是(.四边形 D.三角形A.六边形 B.五边形 C为两个顶点作位置不同的三角形,使ED7.如图所示,△ABC是不等边三角形,DE=BC,以、所作三角形与△ABC全等,这样的三角形最多可以画出() A.8个 B个.4个 D2.6个C.的度数EDFBE=CD于点E,,若∠AFD=145°,则∠ABDFD8.如图,BD=CF,⊥BC于点,DE⊥为() C.35° D.65° A.45°B.55°折叠得到的,图中(包含实线和虚线)共有全ABCD沿BD9.如图,△BDC'是将长方形纸片)等三角形(对 C .4对 D.5 3 B 2A.对.对7(第题)题)9(第题)8(第10.如图所示,AD是△ABC的中线,E、F分别是AD和AD延长线上的点,且DE=DF,连接?,其CDE△BF∥CE;④△BDF面积相等;③BF、CE,下列说法:①CE=BF;②△ABD和△ACD )中正确的有(个.2 A.1个 B 个.4.3个 D C题)10(第 18分)二、填空题(每题3分,共 ABC的三边长分别为11.△??b?a?c?a?bc cb,,a._________,则°角的三角板的一条12.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45 直角边重合,则∠1的度数为_________度.题)15(第题)14(第题)12(第如果一个多边形每个内角都等于13.108°,那么这个多边形是边形。
孝感市八校联谊2017年联考试卷八年级数学一、 选择题(本题共10小题,每小题3分,共30分)1.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是( )A. B. C. D.2.下列运算正确的是( )A .-2(a+b)=-2a+2bB .(2b 2)3=8b 5C .3a 2•2a 3=6a 5D . a 6-a 4=a 2 3.若一个多边形的内角和与它的外角和相等,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形4.长为10,7,5,3的四根木条,选其中三根首尾顺次相连接组成三角形,选法有( )A .1种B .2种C .3种D .4种5.如图,已知AB=AD,添加一个条件后,仍然不能判定△ABC ≌△ADC 的是( )A. CB=CDB. ∠BAC=∠DACC. ∠BCA=∠DCAD. ∠B=∠D=90°A第5题图 第6题图 第7题图6.如图,在等边△ABC 中,BD 平分∠ABC 交AC 于点D ,过点D 作DE ⊥BC 于点E ,且CE=2,则AB 的长为( ) A .8B .4C .6D .7.57.如图,由4个小正方形组成的田字格中,△ABC 的顶点都是小正方形的顶点,在田字格上画与△ABC 成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形的个数有(不包含△ABC 本身)( )A. 4个B.3个C.2个D.1个8.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD=CD ,AB=CB ,在探究筝形的性质时,得到如下结论:①△ABD ≌△CBD ;②AC ⊥BD ;③四边形ABCD 的面积=21AC•BD,其中正确的结论有( ) A.○1○2 B. ○1○3 C.○2○3 D.○1○2○39.如图,∠D=∠C=90°,E是DC的中点,AE平分∠DAB,∠DEA=28°,则∠ABE的度数是()A.62 B.31 C.28 D.25B第8题图第9题图第10题图10.如图△ABC与△CDE都是等边三角形,且∠EBD=65°,则∠AEB的度数是( )A. 115°B.120°C.125°D.130°二、填空题(本题共6小题,每小题3分,共18分)11.计算(2m2n2)2•3m2n3的结果是.12.如图,三角形纸片ABC,AB=11cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为 cm.13.写出点M(-5,3)关于x轴对称的点N的坐标.第12题图14.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中阴影部分的面积S是F第14题图第15题图第16题图15.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于D点.若BD平分∠ABC,则∠A= °.16.如图,△ABC中,线段BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC= °.三、解答题(共72分)17.(6分)如图,将六边形纸片ABCDEF沿虚线剪去一个角(∠BCD)后,得到∠1+∠2+∠3+∠4+∠5=400°,求∠BGD的度数.18.(6分)如图,点E,C在BF上,BE=CF,AB=DF,∠B=∠F.求证:∠A=∠D.19.计算:⑴ 6mn 2·(2-13mn 4)+(-12mn 3)2;(3分)⑵ (1+a)(1-a)+(a -2)2(3分)⑶ (x +2y)2-(x -2y)2-(x +2y)(x -2y)-4y 2,其中x =-2,y =12. (4分)20.(8分)已知等腰三角形的三边长分别为a+1,2a ,5a -2,求这个等腰三角形的周长.21.(9分)如图所示,△ABC 的顶点分别为A (-4, 5),B (﹣3, 2),C (4,-1).⑴作出△ABC 关于x 轴对称的图形△A 1B 1C 1; ⑵写出A 1、B 1、C 1的坐标;⑶若AC=10,求△ABC 的AC 边上的高.22.(10分) 如图,△ABC 中, ∠BAC=∠ADB,BE 平分∠ABC 交AD 于点E,H 为BC 上一点,且BH=BA 交AC 于点F,连接FH. ⑴求证:AE=FH;⑵作EG//BC 交AC 于点G 若AG=5,AC=8,求FG 的长.B23.(11分)⑴已知:如图1,等腰直角三角形ABC 中,∠B =90°,AD 是∠BAC 的外角平分线,交CB 边的延长线于点D .求证:BD=AB+AC⑵对于任意三角形ABC ,∠ABC=2∠C ,AD 是∠BAC 的外角平分线,交CB 边的延长线于点D ,如图2,请你写出线段AC 、AB 、BD 之间的数量关系并加以证明.DD图1 图224.(12分)如图,△ABC 中,∠ABC=∠ACB ,点D 在BC 所在的直线上,点E 在射线AC 上,且AD=AE ,连接DE .⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE 的度数; ⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD 的度数;⑶当点D 在直线BC 上(不与点B 、C 重合)运动时,试探究∠BAD 与∠CDE 的数量关系,并说明理由.八年级数学参考答案:一、选择题:二、填空题:11、12m6n7 12、10 13、(-5,-3) 14、18 15、36°16、96°三、解答题:17、220° 18、略19、(1)12mn2-74m2n6 (2)-4a+5 (3)-x2+8xy -1220、(1)当a+1=2a时,得a=1,三边长分别为2,2,3;周长为7(2)当a+1=5a-2时,得a=34,三边长分别为773,,442;周长为5.(3)当5a-2=2a时,得a=23,三边长分别为43,43,53;周长为133.21、(1)略。
孝感市八年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2018·龙岗模拟) 观察下列图形,其中既是轴对称又是中心对称图形的是 )A .B .C .D .2. (2分)不能使两个直角三角形全等的条件是()A . 斜边、直角边对应相等B . 两直角边对应相等C . 一锐角和斜边对应相等D . 两锐角对应相等3. (2分)如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=;②四边形CGMH是矩形;③△EGM≌△MHA;④S△ABC+S△CDE≥S△ACE;⑤图中的相似三角形有10对.正确结论是()A . ①②③④B . ①②③⑤C . ①③④D . ①③⑤4. (2分) (2015八上·武汉期中) 三角形中,若一个角等于其他两个角的差,则这个三角形是()A . 钝角三角形B . 直角三角形C . 锐角三角形D . 等腰三角形5. (2分)(2020·淄博) 如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A . a2+b2=5c2B . a2+b2=4c2C . a2+b2=3c2D . a2+b2=2c26. (2分) (2017八上·东台月考) 如图,将一正方形纸片沿图(1)、( 2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是()A .B .C .D .7. (2分) (2019九上·萧山开学考) 如图所示,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN.若AB=14,AC=20,则MN的长为()A . 2B . 2.5C . 3D . 3.58. (2分) (2019八上·农安月考) 如图,已知△ABC为直角三角形,∠B=90°,若沿图中虚线剪去∠B ,则∠1+∠2=()A . 90°B . 135°C . 270°D . 315°二、填空题 (共8题;共8分)9. (1分) (2019八上·徐汇月考) 已知等腰△ABC的两边是关于x的方程x²-3mx+9m=0的两根,第三边的长是4,则m=________.10. (1分)(2018·武汉) 以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是________.11. (1分)(2020·潍坊) 如图,在中,,,垂直平分,垂足为Q,交于点P.按以下步骤作图:①以点A为圆心,以适当的长为半径作弧,分别交边于点D,E;②分别以点D,E为圆心,以大于的长为半径作弧,两弧相交于点F;⑤作射线.若与的夹角为,则________°.12. (1分)将一副三角板如图放置,使点A在DE上,BC∥DE ,则∠AFC的度数为________ .13. (1分)(2018·泰安) 如图,在矩形中,,,将矩形沿折叠,点落在处,若的延长线恰好过点,则的值为________.14. (1分)如图,已知,则≌________,≌________.15. (1分) (2018八上·江汉期中) 如果等腰三角形的两边长分别为3和7,那么它的周长为________.16. (1分) (2020八上·莲湖期末) 如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,CD= ,AD与BE交于点F,连接CF,则AD的长为 ________。
2017-2018学年度上学期八年级十月月考数学试题一、选择题(本大题共9小题,每小题3分,共27分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.以下列各组线段为边,能组成三角形的是( ).A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cmC.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm2.下列说法错误的是( ).A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线3.如果多边形的内角和是外角和的k倍,那么这个多边形的边数是( ).A.k B.2k+1C.2k+2 D.2k-24.四边形没有稳定性,当四边形形状改变时,发生变化的是( ).A.四边形的边长B.四边形的周长C.四边形的某些角的大小D.四边形的内角和5.如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有( )对.A.4 B.5C.6 D.76.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=90°-∠B,④∠A =∠B-∠C中,能确定△ABC是直角三角形的条件有().A.1个B.2个C.3个D.4个7.如果三角形的一个外角小于和它相邻的内角,那么这个三角形为( ).A.钝角三角形B.锐角三角形C.直角三角形D.以上都不对8.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是().A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)9.一个角的两边分别垂直于另一个角的两边,那么这两个角之间的关系是( ).A.相等B.互补C.相等或互补D.无法确定二、填空题(本大题共9小题,每小题3分,共27分.把答案填在题中横线上)10.造房子时,屋顶常用三角形结构,从数学角度来看,是应用了__________,而活动挂架则用了四边形的__________.11.已知a,b,c是三角形的三边长,化简:|a-b+c|-|a-b-c|=__________.12.等腰三角形的周长为20 cm,一边长为6 cm,则底边长为__________.13.如图,∠ABD与∠ACE是△ABC的两个外角,若∠A=70°,则∠ABD+∠ACE=__________.14.四边形ABCD的外角之比为1∶2∶3∶4,那么∠A∶∠B∶∠C∶∠D=__________.15.如果一个多边形的内角和等于它的外角和的3倍,那么这个多边形是__________边形.16.如图,∠A+∠B+∠C+∠D+∠E+∠F=__________.17.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=__________.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了__________米.三、解答题(本大题共4小题,共46分)19.(本题满分10分)一个正多边形的一个外角等于它的一个内角的13,这个正多边形是几边形?20.(本题满分12分)如图所示,直线AD和BC相交于点O,AB∥CD,∠AOC=95°,∠B=50°,求∠A和∠D.21.(本题满分12分)如图,经测量,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向,求∠C的度数.22.(本题满分12分)如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R的扇形草坪(图中阴影部分).(1)图①中草坪的面积为__________;(2)图②中草坪的面积为__________;(3)图③中草坪的面积为__________;(4)如果多边形的边数为n,其余条件不变,那么,你认为草坪的面积为__________.26.如图1,在△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE的异侧,BD⊥AE 于点D,CE⊥AE于点E.(1)求证:BD=DE+CE;(2)若直线AE绕点A旋转到图2位置时(BD<CE),其余条件不变,问BD与DE,CE的关系如何,请证明;(3)若直线AE绕点A旋转到图3时(BD>CE),其余条件不变,BD与DE,CE的关系怎样?请直接写出结果,不须证明.(4)归纳(1),(2),(3),请用简捷的语言表述BD与DE,CE的关系.参考答案一、选择题1.:A.2. A.3 B.4.:C.5. A.6. D.7. B.8. D.9. D.10. C.二、填空题(本大题共8个小题,每小题3分,共24分)11:中线.12:三角形的稳定性.13.:20.14.120°.15.∠B=∠C或AE=AD.16①②.17.67°.18. 360(n﹣2)度.三、解答题(本大题共8小题,共66分)19.证明:如图,∵BC∥DE,∴∠ABC=∠BDE.在△ABC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.20..解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9.21.解:由题意得△DEC≌△DEC',∴∠CED=∠DEC',∵∠C′EB=40°,∴∠CED=∠DEC'=,∴∠EDC′=90°﹣70°=20°.22.解:(1)∵在△ABC中,AE是∠BAC的平分线,且∠B=40°,∠C=60°,∴∠BAE=∠EAC=(180°﹣∠B﹣∠C)=(180°﹣40°﹣60°)=40°.在△ACD中,∠ADC=90°,∠C=60°,∴∠DAC=180°﹣90°﹣60°=30°,∠EAD=∠EAC﹣∠DAC=40°﹣30°=10°.(2)以AD为高的所有三角形:△ABC、△ABD、△ACE、△ABE、△ADF和△ACD.23.(1)解:△ADC≌△ABE,△CDF≌△EBF;(2)证法一:连接CE,∵Rt△ABC≌Rt△ADE,∴AC=AE.∴∠ACE=∠AEC(等边对等角).又∵Rt△ABC≌Rt△ADE,∴∠ACB=∠AED.∴∠ACE﹣∠ACB=∠AEC﹣∠AED.即∠BCE=∠DEC.∴CF=EF.24.解:(1)证明:延长BO交AC于点D,∴∠BOC>∠ODC,又∠ODC>∠A,∴∠BOC>∠A;(2)AB+AC>OB+OC,∵AB+AD>OB+OD,OD+CD>OC,∴AB+AD+CD>OB+OC,即:AB+AC>OB+OC.25.解:(1)∵n边形的内角和是(n﹣2)•180°,∴内角和一定是180度的倍数,∵2014÷180=11…34,∴内角和为2014°不可能;(2)依题意有(x﹣2)•180°<2014°,解得x<13.因而多边形的边数是13,故小华求的是十三边形的内角和;(2)13边形的内角和是(13﹣2)×180°=1980°,2014°﹣1980°=34°,因此这个外角的度数为34°.26.(1)证明:在△ABD和△CAE中,∵∠CAD+∠BAD=90°,∠BAD+∠ABD=90°,∴∠CAD=∠ABD.又∠ADB=∠AEC=90°,AB=AC,∴△ABD≌△CAE.(AAS)∴BD=AE,AD=CE.又AE=AD+DE,∴AE=DE+CE,即BD=DE+CE.(2)BD=DE﹣CE.证明:∵∠BAC=90°,∴∠BAD+∠CAE=90°.又∵BD⊥DE,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE.又AB=AC,∠ADB=∠CEA=90°,∴△ADB≌△CEA.∴BD=AE,AD=CE.∵DE=AD+AE,∴DE=CE+BD,即 BD=DE﹣CE.(3)同理:BD=DE﹣CE.(4)当点BD、CE在AE异侧时,BD=DE+CE;当点BD、CE在AE同侧时,BD=DE﹣CE.。
湖北省孝感市2017-2018学年八年级数学10月月考试题
一、选择题(本大题共10小题,每小题3分,满分30分) 1.已知三条线段长度的比值,则能构成三角形的是( ) A .1:3:4 B .1:2:3 C .2:7:4 D .3:5:4
2.△ABC 的三边长分别为,,a b c ,且0))((=-++c a c b a ,那么△ABC 为( ) A.不等边三角形
B.等边三角形
C.等腰三角形
D.锐角三角形
3.如图AD ⊥BC 于点D ,那么图中以AD 为高的三角形有 个( ) A .3 B .4 C .5 D .6 4.如图所示,∠a 的度数是( )
A.10°
B.20°
C.30°
D.40°
5.如图,△ABC 中,∠A=50°,点D ,E 分别在AB ,AC 上,则∠1+∠2的大小为( )
A.130°
B.230°
C.180°
D.310°
6.把一张多边形的纸片剪去其中某个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是是( )
A .六边形
B .五边形
C .四边形
D .三角形
7.如图所示,△ABC 是不等边三角形,DE=BC,以D 、E 为两个顶点作位置不同的三角形,使所作三角形与△ABC 全等,这样的三角形最多可以画出( ) A .8个 B .6个 C .4个 D .2个
8.如图,BD=CF ,FD ⊥BC 于点D ,DE ⊥AB 于点E ,BE=CD ,若∠A FD=145°,则∠EDF 的度数为( )
A.45°
B.55°
C.35°
D.65° 9.如图,△BDC ’是将长方形纸片ABCD 沿BD 折叠得到的,图中(包含实线和虚线)共有全等三角形( )
A .2对
B .3对
C .4对
D .5对
(第3题)
(第4题)
(第5题)
(第7题)
(第8题)
(第9题)
10.如图所示,AD 是△ABC 的中线,E 、F 分别是AD 和AD 延长线上的点,且DE=DF ,连接BF 、CE ,下列说法:①CE=BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≅△CDE ,其中正确的有( )
A .1个
B .2个
C .3个
D .4个 二、填空题(每题3分,共18分)
11.△ABC 的三边长分别为,,a b c ,则=-----c a b c b a _________.
12.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为_________度.
13.如果一个多边形每个内角都等于108°,那么这个多边形是 边形。
14.如图所示,BD 、AC 相交于点O ,若OA=OD ,用“SAS ”证明△AOB ≅△DOC,还需 . 15.在生活中我们常常会看见如图所示的情况,在电线杆上拉两条钢绳来加固电线杆,这是利用了三角形的 .
16.等腰三角形的两边长分别为3cm 和4cm ,则其周长为 .
(第10题)
(第12题)
(第14题)
(第15题)
(第17题)
三、解答题(共计72分)
17.(8分)如图,在△ABC 中,∠BCA 是钝角,完成下列画图, 并用适当的符号表示. (1)三角形的高AD ; (2)三角形的高BE.
18.(8分)若一个三角形的三边长分别为x ,12-x ,35-x ,求x 的取值范围.
19.(8分)如图所示,△BDC 中,AB=8cm ,AC=6cm ,AD 为BC 边上的中线,求中线AD 的取值范围.
20.(8分)如图所示,AB ⊥DC 于B ,且BD=AB ,BE=BC ,延长DE ,交AC 于点F. 求证:DE=AC ,且DE ⊥AC.
21.(10分)如图,△ACB 中,∠ACB=90°,∠1=∠B. (1)试说明CD 是△ABC 的高;
(2)如果AC=8,BC=6,AB=10,求CD 的长.
(第19题) (第20题)
(第21题)
22.(8分)一个多边形中,每个内角都相等,并且每个外角都等于它的相邻内角的4
1
,求这个多边形的边数及内角和?
23.(10分)如图,已知Rt △ABC Rt △ADE,∠ABC=∠ADE=90°,BC 与DE 相交于点F ,连接CD 、EB.
(1)图中还有几对全等三角形?请你一一列举; (2)求证:CF=EF.
24.(12分)在△ABC 中,∠A=40°(每空1分,证明6分).
(1)如图1,若两内角∠ABC ,∠ACB 的角平分线交于点P ,则∠P= ,∠A 与∠P 之间的数量关系是 ;
(2)如图2,若内角∠ABC ,外角∠ACE 的角平分线交于点P ,则∠P= ,∠A 与∠P 之间的数量关系是 ;
(3)如图3,若两外角∠EBC ,∠FCB 的角平分线交于点P ,则∠P= ,∠A 与∠P
之间
(第23题)
的数量关系是 .
(选择其中一种数量关系加以证明)
(第24题)
2017-2018八年级10月月考试题
数学参考答案
1--5 DCDAB 6--10 ACBCD
11、a b 22 12、75 13、五
14、OB=OC 15、稳定性 16、10cm 或11cm 17、(画图略) 18、
19、 20、
21、 22、
解:设这个多边形的一个外角的度数为x ,由)180(4
1
0x x -=
得到036=x 360÷36=10,0
01440180)210(=⨯-,此多边形为十边形,内角和为0
1440
23、
24、。