2019年高考数学(理科)二轮复习教案一第一讲集合、常用逻辑用语Word版含解析
- 格式:docx
- 大小:150.39 KB
- 文档页数:10
考前回扣一、集合、复数与常用逻辑用语知识方法1.集合的概念、关系及运算(1)集合中元素的特性:确定性、互异性、无序性,求解含参数的集合问题时要根据互异性进行检验.(2)集合与集合之间的关系:A⊆B,B⊆C⇒A⊆C,空集是任何集合的子集,含有n个元素的集合的子集数为2n,真子集数为2n-1,非空真子集数为2n-2.(3)集合的基本运算①交集:A∩B={x|x∈A,且x∈B}.②并集:A∪B={x|x∈A,或x∈B}.③补集:∁U A={x|x∈U,且x∉A}.重要结论:A∩B=A⇔A⊆B;A∪B=A⇔B⊆A.2.四种命题的关系(1)逆命题与否命题互为逆否命题;(2)互为逆否命题的两个命题同真假;(3)当判断原命题的真假比较困难时,可以转化为判断它的逆否命题的真假.3.充分、必要条件若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇔q,则p,q互为充要条件.4.简单的逻辑联结词命题p∨q,只要p,q有一真,即为真;命题p∧q,只有p,q均为真,才为真; p和p为真假对立的命题.5.全称命题与特称命题(1)全称命题p:∀x∈M,p(x),它的否定 p:∃x0∈M, p(x0).(2)特称命题p:∃x0∈M,p(x0),它的否定 p:∀x∈M, p(x).6.复数(1)复数的有关概念(2)运算法则加减法:(a+bi)±(c+di)=(a±c)+(b±d)i.乘法:(a+bi)(c+di)=(ac-bd)+(ad+bc)i.除法:==.易忘提醒1.求解集合运算时,要注意集合端点值的取舍,涉及含参数的集合运算时,要注意集合中元素的“互异性”.2.判断一些命题的真假时,如果不能直接判断,可以转化为判断其逆否命题的真假.3.否命题是既否定条件,又否定结论;而命题的否定是只否定命题的结论.在否定结论时,应将“且”改成“或”,将“或”改成“且”.4.A是B的充分不必要条件(A⇒B且B⇒/ A)与A的充分不必要条件是B(B⇒A,且A⇒/ B)两者的不同.5.只有当两个复数全是实数时,两复数才能比较大小,即当z1,z2∈C时,若z1,z2能比较大小,它们的虚部均为0.习题回扣(命题人推荐)1.(集合的运算)若集合M=x y=,N={y|y=},则M∩∁R N= .答案:{x|x<0}2.(复数的概念与运算)+1= .答案:3.(复数相等)若x,y∈R,且(x-3y)+(2x+3y)i=5+i,则x-y= .答案:34.(充要条件)两直线斜率相等是两直线平行的条件.答案:既不充分又不必要5.(命题真假判断)下列命题是真命题的序号是.①“空集是集合A的子集”的否定;②有些整数只有两个正因数;③∃x是无理数,x2也是无理数;④“任意两个等边三角形都是相似”的否定.答案:②③二、平面向量、框图与合情推理知识方法1.平面向量(1)平面向量的两个重要定理①向量共线定理:向量a(a≠0)与b共线当且仅当存在唯一一个实数λ,使b=λa.②平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2,其中e1,e2是一组基底.(2)两个非零向量平行、垂直的充要条件若两个非零向量a=(x1,y1),b=(x2,y2),则:①a∥b⇔a=λb(λ≠0)⇔x1y2-x2y1=0.②a⊥b⇔a·b=0⇔x1x2+y1y2=0.(3)平面向量的三个性质①若a=(x,y),则|a|==.②若A(x1,y1),B(x2,y2),则||=.③若a=(x1,y1),b=(x2,y2),θ为a与b的夹角,则cos θ==.(4)常用的重要结论:①若直线l的斜率为k,则(1,k)是直线l的一个方向向量;②若=λ+μ(λ,μ为常数),则A,B,C三点共线的充要条件是λ+μ=1.程序框图的三种基本逻辑结构(1)顺序结构:如图(1)所示;(2)条件结构:如图(2)和(3)所示;(3)循环结构:如图(4)和(5)所示.3.合情推理合情推理包括归纳推理和类比推理.归纳推理是由部分到整体,由个别到一般的推理;而类比推理是由特殊到特殊的推理.易忘提醒1.注意向量平行与三点共线的区别与联系,当两向量平行且有公共点时,才能得出三点共线;另外,利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.2.向量相等具有传递性,向量平行不具有传递性.如a∥b,b∥c,只有b≠0时,a∥c.3.a·b=0不能推出a=0或b=0,因为a·b=0时,有可能a⊥b.4.a·b>0是两个向量a,b夹角为锐角的必要不充分条件.5.利用循环结构表示算法,第一要准确地选择表示累计的变量,第二要注意在哪一步开始循环,满足什么条件不再执行循环体.6.直到型循环是先执行再判断,直到条件满足才结束循环;当型循环是先判断再执行,若满足条件则进入循环体,否则结束循环.7.合情推理的结论不一定是正确的,要确定其结论的正确性还需证明.习题回扣(命题人推荐)1.(程序框图)执行如图所示的程序框图,如果输入的t∈[-1,3],则输出的s属于( A )(A)[-3,4] (B)[-5,2](C)[-4,3] (D)[-2,5]2.(共线向量)设平面向量a=(1,2),b=(-2,y),若a∥b,则|2a-b|= .3.(数量积的应用)已知向量a,b满足|a|=1,|b|=4,且a·b=2,则a与b的夹角为.答案:4.(数量积的应用)设Ox,Oy是平面内相交成60°角的两条数轴,e1,e2分别是与x轴、y轴正方向同向的单位向量,若向量=xe1+ye2,则把有序数对(x,y)叫做向量在坐标系xOy下的坐标.假设=3e1+2e2,则||= .答案:5.(类比推理)设P是△ABC内一点,△ABC三边上的高分别为h A,h B,h C,P到三边的距离依次为l a,l b,l c,则有++=1;类比到空间,设P是四面体ABCD内一点,四顶点到对面的距离分别是h A,h B,h C,h D,P到这四个面的距离依次是l a,l b,l c,l d,则有.答案:+++=1三、不等式与线性规划、计数原理与二项式定理知识方法1.一元二次不等式的解法先化为一般形式ax2+bx+c>0(a≠0),再求相应一元二次方程ax2+bx+c=0(a≠0)的根,最后根据相应二次函数图象与x轴的位置关系,确定一元二次不等式的解集.2.线性规划(1)判断二元一次不等式表示的平面区域的方法.在直线Ax+By+C=0(A2+B2≠0)的某一侧任取一点(x0,y0),通过Ax0+By0+C的符号来确定Ax+By+C>0(或Ax+By+C<0)所表示的区域.(2)解不含实际背景的线性规划问题的一般步骤:①画出可行域;②根据线性目标函数的几何意义确定其取得最优解的点;③求出目标函数的最大值或者最小值.(3)求解实际生活中线性规划问题时,应根据条件确定可行域及目标函数,根据可行域及目标函数特征求最值.3.基本不等式(1)已知x,y∈(0,+∞),如果积xy是定值P,那么当x=y时,和x+y有最小值2;(2)已知x,y∈(0,+∞),如果和x+y是定值S,那么当x=y时积xy有最大值.4.排列与组合(1)分类加法计数原理和分步乘法计数原理如果每种方法都能将规定的事件完成,则要用分类加法计数原理将方法种数相加;如果需要通过若干步才能将规定的事件完成,则要用分步乘法计数原理将各步的方法种数相乘.公式①=n(n-1)(n-2)…(n-m+1)=②===①0!=1;=n!性质②=;=+5.二项式定理二项式定理(a+b)n=a n+a n-1b1+…+a n-k b k+…+b n(n∈N*)二项展开式T k+1=a n-k b k,它表示第k+1项的通项公式二项式系数二项展开式中各项的系数(k∈{0,1,2,…,n})(2)二项式系数的性质①0≤k≤n时,与的关系是=.②二项式系数先增后减中间项最大.当n为偶数时,第+1项的二项式系数最大,最大值为;当n为奇数时,第项和项的二项式系数最大,最大值为和.③各二项式系数和:+++…+=2n,+++…=+++…=2n-1.易忘提醒1.求解形如ax2+bx+c>0(a≠0)的一元二次不等式时,易忽视对系数a的讨论导致漏解或错解,应分a>0,a<0进行讨论.在填空题中不等式的解集一定要写成集合或区间的形式.2求解线性规划问题时应明确:“直线定界,特殊点定域”,定界时注意是否包含边界.3.求线性目标函数最值时,应将z=ax+by转化为y=-x+.要注意b>0或b<0对目标函数最值的影响,且应注意正切函数y=tan α在,π时,函数是增函数.4.使用基本不等式≥时应注意“一正、二定、三相等”的条件,在多次使用基本不等式求最值时,应注意取“等号”的条件是否一致.习题回扣(命题人推荐)1.(不等式的解法)函数y=的定义域为R,则m的取值范围是.答案:,+∞2.(线性规划)若x,y满足约束条件则z=2x+3y的最大值为. 答案:703.(基本不等式单调性法)(1)函数f(x)=的最小值为;(2)函数f(x)=的最小值为.答案:(1)2 (2)4.(不等式性质)已知则2x+y的取值范围是.答案:[1,5]四、函数图象与性质、函数与方程知识方法1.函数的三个性质(1)单调性对于函数y=f(x)定义域内某一区间D上的任意x1,x2,(x1-x2)[f(x1)-f(x2)]>0(<0)⇔f(x)在D 上是增(减)函数;对于函数y=f(x)定义域内某一区间D上的任意x1,x2,>0(<0)⇔f(x)在D上是增(减)函数.(2)奇偶性对于定义域(关于原点对称)内的任意x,f(x)+f(-x)=0⇔f(x)是奇函数;对于定义域(关于原点对称)内的任意x,f(x)-f(-x)=0⇔f(x)是偶函数.(3)周期性设函数y=f(x),x∈D.若T为f(x)的一个周期,则nT(n≠0,n∈Z)也是f(x)的周期.2.关于函数性质常见结论(1)常见抽象函数的周期.(设函数y=f(x),定义域为D)①若∀x∈D,且f(x+a)=-f(x),则T=2|a|;(a≠0,下同)②若∀x∈D,且f(x+a)=±,则T=2|a|;③若∀x∈D,且f(x+a)=f(x+b),则T=|b-a|(a≠b).(2)抽象函数对称性.(y=f(x),定义域为D)①若对∀x∈D,且f(a+x)=f(b-x),则函数f(x)的图象关于直线x=对称;特别地,当a=b,即f(a+x)=f(a-x)时,函数f(x)的图象关于直线x=a对称;②若对∀x∈D,f(a+x)=-f(b-x)(即f(x+a+b)=-f(-x)),则函数图象关于点,0中心对称,特别地,当a=b时,即f(a+x)=-f(a-x),则函数图象关于点(a,0)中心对称.(3)关于奇偶性结论①若奇函数y=f(x)在原点处有定义,则一定有f(0)=0;②若函数y=f(x)是偶函数,则f(x)=f(-x)=f(|x|);③奇函数在关于原点对称的区间有相同的单调性,偶函数在关于原点对称的区间单调性相反.3.关于指数与对数式的七个运算公式(1)a m·a n=a m+n;(2)(a m)n=a mn;(3)log a(MN)=log a M+log a N;(4)log a=log a M-log a N;(5)log a M n=nlog a M;(6)=N;(7)log a N=(a>0且a≠1,b>0且b≠1,M>0,N>0).4.指数函数与对数函数的图象和性质指数函数对数函数图象单调性0<a<1时,在R上单调递减;a>1时,在R上单调递增a>1时,在(0,+∞)上单调递增;0<a<1时,在(0,+∞)上单调递减函数值性质0<a<1当x>0时,0<y<1;当x<0时,y>1当x>1时,y<0,当0<x<1时,y>0 a>1当x>0时,y>1;当x<0时,0<y<1当x>1时,y>0;当0<x<1时,y<05.函数的零点(1)函数的零点及其与方程根的关系对于函数f(x),使f(x)=0的实数x叫做函数f(x)的零点,函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.(2)零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.易忘提醒1.判断函数奇偶性时,首先考虑函数定义域是否关于原点对称.2.函数有多个单调区间时,易错误地在多个单调区间之间添加符号“∪”和“或”,它们之间一般用“,”隔开或者用“和”字连接.3.底数含参数的指数、对数函数单调性,要分底数a>1和0<a<1两种情况讨论.4.函数的零点不是一个“点”,而是函数图象与x轴交点的横坐标.习题回扣(命题人推荐)1.(函数的定义域)函数f(x)=的定义域为.答案:(-∞,-2)∪(4,+∞)2.(函数的奇偶性)函数f(x)=x2+(a-1)x+b在定义域(-5,b+2)上是偶函数,则a+b= .答案:43.(指数函数的图象和性质)函数f(x)=3+(a-1)x-2(a>1且a≠2)必过定点.答案:(2,4)4.(对数的运算)(lg 5)2+lg 50·lg 2=.答案:15.(函数的零点)函数f(x)=3x-7+ln x的零点位于区间(n,n+1)(n∈N*)内,则n= . 答案:2五、导数的简单应用与定积分知识方法1.导数的几何意义(1)函数y=f(x)在x=x0处的导数f'(x0)就是曲线y=f(x)在点(x0,f(x0))处切线的斜率,即k=f'(x0).(2)曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)=f'(x0)(x-x0).2.函数的单调性(1)在某个区间(a,b)内,如果f'(x)>0(f'(x)<0),那么函数y=f(x)在这个区间内单调递增(单调递减).(2)利用导数求函数f(x)的单调区间的一般步骤①确定函数f(x)的定义域;②求导数f'(x);③在函数f(x)的定义域内解不等式f'(x)>0和f'(x)<0;④根据③的结果确定函数f(x)的单调区间.3.函数的极值设函数y=f(x)在点x0附近有定义,如果对x0附近所有的点x都有f(x)<f(x0),那么f(x0)是函数的一个极大值,记作y极大值=f(x0);如果对x0附近的所有的点都有f(x)>f(x0),那么f(x0)是函数的一个极小值,记作y极小值=f(x0).极大值与极小值统称为极值.4.函数的最值将函数y=f(x)在[a,b]内的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.5.定积分(1)定积分的性质①kf(x)dx=k f(x)dx;②[f1(x) ±f2(x)]dx=f1(x)dx±f2(x)dx;③f(x)dx=f(x)dx+f(x)dx.(其中a<c<b)(2)微积分基本定理一般地,如果f(x)是区间[a,b]上的连续函数,并且F'(x)=f(x),那么f(x)dx=F(b)-F(a).易忘提醒1.曲线y=f(x)“在点P(x0,y0)处的切线”与“过点P(x0,y0)的切线”是不同的.前者只有一条,后者则可能有多条.2.求复合函数y=f(ax+b)的导数时应注意复合函数求导法则,其导数为y'=af'(ax+b).3.利用导数研究函数的单调性,首先确定函数的定义域.4.已知单调性求参数时,应明确f'(x)>0在(a,b)上成立是f(x)在(a,b)上是增函数的充分条件.当f(x)在(a,b)上是增函数时,应有f'(x)≥0恒成立(其中满足f'(x)=0的x只有有限个),否则答案不全面.5.可导函数y=f(x)在x=x0处的导数f'(x0)=0是y=f(x)在x=x0处取得极值的必要不充分条件.6.求定积分时应明确定积分结果可负,但曲边形的面积非负.习题回扣(命题人推荐)1.(导数的运算)函数f(x)=xsin x的导数为f'(x)= .答案:sin x+xcos x2.(导数几何意义)曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则a+b= .答案:23.(函数的单调性与导数)函数f(x)=2x3-6x2+7的单调递增区间是.答案:(-∞,0),(2,+∞)4.(函数的极值与导数)函数f(x)=x3-4x+在x= 处取极大值,其值是.答案:-25.(定积分)x+dx= .答案:4+ln 3六、导数的综合应用知识方法1.利用导数解决与函数有关的方程根问题(1)利用导数研究高次式、分式、指数式、对数式方程根的个数问题的一般思路:①将问题转化为函数零点的个数问题,进而转化为函数图象交点的个数问题;②利用导数研究该函数在给定区间上的单调性、极值(最值)、端点值等;③画出函数的大致图象;④结合图象求解.(2)证明复杂方程在某区间上有且仅有一解的步骤:①在该区间上构造与方程相应的函数;②利用导数研究该函数在该区间上的单调性;③判断该函数在该区间端点处的函数值异号;④作出结论.2.利用导数证明不等式不等式的证明可转化为利用导数研究函数的单调性、极值和最值,再由单调性或最值来证明不等式,其中构造一个可导函数是用导数证明不等式的关键.易忘提醒在解决导数的综合问题时,应注意:(1)树立定义域优先的原则.(2)熟练掌握基本初等函数的求导公式和求导法则.(3)理解与不等式有关的导数综合问题化为函数最值问题的转化过程.(4)理解含参导数的综合问题中分类讨论思想的应用.(5)存在性问题与恒成立问题容易混淆,它们既有区别又有联系:若f(x)≤m恒成立,则f(x)max≤m;若f(x)≥m恒成立,则f(x)min≥m.若f(x)≤m有解,则f(x)min≤m;若f(x)≥m有解,则f(x)max≥m.七、三角函数的图象与性质、三角恒等变换知识方法1.三角函数定义及诱导公式(1)三角函数的定义设α是一个任意角,它的终边与单位圆交于点P(x,y),则sin α=y,cos α=x,tan α=.各象限角的三角函数值的符号;一全正,二正弦,三正切,四余弦.(2)诱导公式及记忆对于“±α,k∈Z的三角函数值”与“α角的三角函数值”的关系可按下面口诀记忆:奇变偶不变,符号看象限.2.“牢记”五组公式(1)同角三角函数关系式①平方关系:sin2α+cos2α=1;②商数关系:tan α=.(2)两角和与差的正弦、余弦、正切公式sin(α±β)=sin αcos β±cos αsin β;cos(α±β)=cos αcos β∓sin αsin β;tan(α±β)=.(3)二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α;cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;tan 2α=;cos2α=,sin2α=.(4)辅助角公式asin α+bcos α=sin(α+φ)tan φ=.(5)关于α与的正弦、正切、余弦公式①tan ===±.②sin α=,cos α=.3.“明确”三种三角函数图象、性质及两种图象变换(1)三种函数的图象和性质函数y=sin x y=cos x y=tan x图象单调性在-+2kπ,+2kπ(k∈Z)上在[-π+2kπ,2kπ](k∈Z)上单调递增;在[2kπ,π+2kπ](k∈Z)上单在-+kπ,+kπ(k单调递增;在+2kπ,+2kπ(k∈Z)上单调递减调递减∈Z)上单调递增对称性对称中心:(kπ,0)(k∈Z);对称轴:x=+kπ(k∈Z)对称中心:+kπ,0(k∈Z);对称轴:x=kπ(k∈Z)对称中心:,0(k∈Z);无对称轴(2)两种三角函数图象变换(以y=sin x变为y=sin (ωx+φ)(ωφ≠0)为例)①先平移后伸缩:y=sin x y=sin(x+φ)y=sin(ωx+φ) y=Asin(ωx+φ)(A>0,ω>0).②先伸缩后平移:y=sin x y=sinωx y=sin(ωx+φ)y=Asin(ωx+φ)(A>0,ω>0).易忘提醒1.使用诱导公式时,要根据“口诀”确定符号.2.研究形如y=Asin(ωx+φ)(ωφ≠0)的性质时,要将ωx+φ作为一个整体考虑,而当ω<0时,求y=Asin(ωx+φ)的单调性,应先利用诱导公式将x系数变为正数后再求其单调区间,要注意单调区间一定写成“区间”的形式,且角度制与弧度制不能混用,并且k∈Z.3.由函数y=Asin ωx(ω≠0)的图象得到y=Asin(ωx+φ)的图象时,平移长度是,而不是|φ|.4.三角函数平移时,若两三角函数名称不一致,需利用诱导公式化为同名函数后再平移.5.利用三角恒等变换公式研究给角求值或给值求角时,不要忽视角的范围.习题回扣(命题人推荐)1.(定义转化法)若α是第二象限角且cos =-cos ,则是第象限角.答案:三2.(转化法)若<α<π,则-= .答案:-2tan α3.(数形结合、定义法)函数y=|cos 2x|的最小正周期T= .答案:八、解三角形知识方法1.正弦定理===2R(2R为△ABC外接圆的直径).变形:a=2Rsin A,b=2Rsin B,c=2Rsin C.sin A=,sin B=,sin C=.a∶b∶c=sin A∶sin B∶sin C.2.余弦定理a2=b2+c2-2bccos A,b2=a2+c2-2accos B,c2=a2+b2-2abcos C.推论:cos A=,cos B=,cos C=.3.面积公式S△ABC=bcsin A=acsin B=absin C.4.常用结论(1)三角形内角和A+B+C=π;(2)a>b>c⇔A>B>C⇔sin A>sin B>sin C;(3)sin(A+B)=sin C,cos(A+B)=-cos C.易忘提醒1.根据正弦值求角时,应分类讨论.2.判断三角形形状时,应注意等式两边不要约分.3.已知两边及一边的对角,利用正、余弦定理求解时,解的情况可能不唯一.习题回扣(命题人推荐)1.(解三角形)在三角形ABC中,分别根据下列条件解三角形,其中有两个解的序号是.①a=30,b=40,A=30°②a=25,b=30,A=150°③a=8,b=16,A=30°④a=72,b=60,A=135°答案:①2.(实际应用)一只船以均匀的速度由A点向正北方向航行,如图,开始航行时,灯塔C在点A的北偏东30°方向,行驶60海里后,测灯塔C在点B的北偏东45°方向,则A到C的距离为海里.答案:(60+60)3.(公式变形)△ABC中,sin A∶sin B∶sin C=11∶8∶5,则cos B= .答案:4.(解三角形)△ABC中,角A,B,C所对边分别为a,b,c,若A=,a=1,b=,则B= .答案:或九、等差数列与等比数列知识方法1.等差数列(1)基本公式:通项公式、前n项和公式.(2)项的性质:m+n=p+q(m,n,p,q∈N*)时,a m+a n=a p+a q,当p=q时,a m+a n=2a p.(3)基本方法:①基本量方法;②定义法证明数列{a n}为等差数列,其他证明方法均为定义法的延伸;③函数方法处理等差数列的前n项和问题.2.等比数列(1)基本公式:通项公式、前n项和公式(分公比等于1和不等于1).(2)项的性质:m+n=p+q(m,n,p,q∈N*)时,a m a n=a p a q,当p=q时,a m a n=.(3)基本方法:①基本量方法;②定义法证明数列{a n}为等比数列,其他证明方法均为定义法的延伸.易忘提醒1.b2=ac是a,b,c为等比数列的必要不充分条件;2.当等比数列的公比不确定时,求前n项和要分公比等于1和不等于1分别进行计算.习题回扣(命题人推荐)1.(等差数列的判定)已知数列{a n}满足如下条件:①a n=an+b(a,b为常数);②2a n+1=a n+a n+2对∀n∈N*恒成立;③前n项和S n=2n2+3n+2.在上述条件中能够判定{a n}为等差数列的是.答案:①②2.(等差数列的基本运算)已知等差数列{a n}的前n项和为S n,若S10=310,S20=1 220,则S n= .答案:3n2+n3.(等比数列的基本运算)已知等比数列{a n}的前n项和为S n,若S5=10,S10=50,则S15= .答案:2104.(等比数列的判定)已知数列{a n},{b n}均为等比数列,则数列:①{a n+b n};②{ka n}(k为非零常数);③{a n b n};④;⑤{b3n-2}中一定为等比数列的是.答案:②③④⑤5.(等差、等比数列的综合)已知{a n}是公差为d的等差数列,其前n项和为S n;{b n}是公比为q的等比数列,其前n项和为T n.有下列结论:①=d;②=q m-n;③S k,S2k-S k,S3k-S2k为等差数列;④T k,T2k-T k,T3k-T2k为等比数列(其中m,n,k为正整数).其中正确结论的序号是.解析:④中,当k为偶数时,有T k=0的可能,如果k为奇数,则④的结论也正确.答案:①②③十、数列求和及简单应用知识方法1.a n,S n的关系a n=2.基本公式等差数列、等比数列求和公式.3.常用裂项公式(1)=-;(2)=-;(3)=-(n≥2);(4)=-等.4.基本递推关系(1)a n+1=a n+f(n)(叠加法);(2)=f(n)(叠乘法);(3)a n+1=ca n+d(c≠0,1,d≠0)(转化为a n+1+λ=c(a n+λ));(4)a n+1-qa n=p·q n+1(p≠0,q≠0,1)转化为-=p等.易忘提醒1.根据S n求通项时,不要忘记分类求解.2.裂项求和时注意验证裂项前后的等价性;错位相减求和时,不要忘记检验第一项与后面的项是否组成等比数列,不要忘记最后一项.习题回扣(命题人推荐)1.(由a n与S n的关系求a n)已知数列{a n}的前n项和S n=n2+n+1,则a n= .答案:2.(逆推数列求和)已知数列{a n}中,a1=1,a2=2,a n+2=a n+1+a n,则该数列的前6项之和是.答案:323.(转化为等比数列求和)已知数列{a n}满足a1=1,a n+1=4a n+3,则该数列的前n项和S n= .解析:a n+1+1=4(a n+1),a n=2×4n-1-1,所以S n=-n=·4n-n-.答案:·4n-n-4.(裂项相消法求和)数列的前2 017项的和是.答案:十一、空间几何体的三视图、表面积与体积知识方法1.棱柱、棱锥(1)棱柱的性质侧棱都相等,侧面是平行四边形;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形;直棱柱的侧棱长与高相等且侧面与对角面是矩形.(2)正棱锥的性质侧棱相等,侧面是全等的等腰三角形,斜高(侧面等腰三角形底边上的高)相等;棱锥的高、斜高和斜高在底面内的射影构成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也构成一个直角三角形;某侧面上的斜高、侧棱及底面边长的一半也构成一个直角三角形;侧棱在底面内的射影、斜高在底面内的射影及底面边长的一半也构成一个直角三角形.2.三视图(1)正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体得到的投影图.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高;(2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样.3.几何体的切接问题(1)解决球的内接长方体、正方体、正四棱柱等问题的关键是把握球的直径即是棱柱的体对角线.(2)解决柱、锥的内切球问题的关键是找准切点位置,化归为平面几何问题.4.柱体、锥体、台体和球的表面积与体积(不要求记忆)(1)表面积公式①圆柱的表面积S=2πr(r+l);②圆锥的表面积S=πr(r+l);③圆台的表面积S=π(r'2+r2+r'l+rl);④球的表面积S=4πR2.(2)体积公式①柱体的体积V=Sh;②锥体的体积V=Sh;③台体的体积V=(S'++S)h;④球的体积V=πR3.易忘提醒在有关体积、表面积的计算应用中注意等积法的应用.习题回扣(命题人推荐)1.(直观图的面积)一个水平放置的平面图形,其直观图的面积是,则原图形的面积是.答案:42.(多面体)构成多面体的面最少是.答案:四个3.(三视图求体积)某三棱锥的侧视图和俯视图如图所示,则该三棱锥的体积为.答案:44.(球的有关计算)如果两个球的体积之比为8∶27,那么这两个球的表面积之比为.答案:4∶95.(棱台的体积计算)已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为.答案:28十二、点、直线、平面之间的位置关系知识方法1.直线与平面平行的判定和性质(1)判定①判定定理:a∥b,b⊂α,a⊄α⇒a∥α.②面面平行的性质:α∥β,a⊂α⇒a∥β.③a⊥b,α⊥b,a⊄α,则a∥α.(2)性质:l∥α,l⊂β,α∩β=m⇒l∥m.2.直线和平面垂直的判定和性质(1)判定①判定定理:a⊥b,a⊥c,b,c⊂α,b∩c=O ⇒a⊥α.②a∥b,a⊥α⇒b⊥α.③l⊥α,α∥β⇒l⊥β.④α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.(2)性质①l⊥α,a⊂α⇒l⊥a.②l⊥α,m⊥α⇒l∥m.3.两个平面平行的判定和性质(1)判定①判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒β∥α.②l⊥α,l⊥β⇒α∥β.③α∥γ,α∥β⇒β∥γ.(2)性质:α∥β,γ∩α=a,γ∩β=b⇒a∥b.4.两个平面垂直的判定和性质(1)判定:a⊂α,a⊥β⇒α⊥β.(2)性质:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.易忘提醒1.平行问题的转化关系2.垂直关系的转化习题回扣(命题人推荐)1.(面面位置关系)三个平面两两相交有三条交线,这三条直线的位置关系是. 答案:交于一点或者互相平行2.(面面位置关系)如果α∥β,β⊥γ,那么α,γ的位置关系是.答案:α⊥γ3.(线面位置关系)如果α⊥γ,β⊥γ,α∩β=l,则l与γ的位置关系是.答案:l⊥γ4.(线面位置关系)已知直线a在平面β外,平面α∥平面β,a∥平面α,则直线a与平面β的位置关系是.答案:平行5.(面面平行的性质)如图,已知三个平面α,β,γ互相平行,a,b是异面直线,a与α,β,γ分别交于A,B,C三点,b与α,β,γ分别交于D,E,F三点,连接AF交平面β于G,连接CD交平面β于H,则四边形BGEH必为.答案:平行四边形十三、立体几何中的向量方法知识方法1.直线与平面、平面与平面的平行与垂直的向量方法设直线l的方向向量为a=(a1,b1,c1),平面α,β的法向量分别为μ=(a2,b2,c2),v=(a3,b3,c3).(1)线面平行l∥α⇔a⊥μ⇔a·μ=0⇔a1a2+b1b2+c1c2=0.(2)线面垂直l⊥α⇔a∥μ⇔a=kμ⇔a1=ka2,b1=kb2,c1=kc2.(3)面面平行α∥β⇔μ∥v⇔μ=λv⇔a2=λa3,b2=λb3,c2=λc3.(4)面面垂直α⊥β⇔μ⊥v⇔μ·v=0⇔a2a3+b2b3+c2c3=0.2. 空间角的计算(1)两条异面直线所成角的求法设直线a,b的方向向量为a,b,其夹角为θ,则cos φ=|cos θ|=(其中φ为异面直线a,b所成的角).(2)直线和平面所成角的求法如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α所成的角为φ,两向量e与n的夹角为θ,则有sin φ=|cos θ|=.(3)二面角的求法①利用向量求二面角的大小,可以不作出平面角,如图所示,<m,n>即为所求二面角αABβ的平面角.②对于易于建立空间直角坐标系的几何体,求二面角的大小时,可以利用这两个平面的法向量的夹角来求.如图所示,二面角αlβ,平面α的法向量为n1,平面β的法向量为n2,<n1,n2>=θ,则二面角αlβ的大小为θ或π-θ.易忘提醒异面直线所成角的范围是0,,线面角的范围是0,,二面角的范围是[0,π].习题回扣(命题人推荐)1.(直线的方向向量和平面的法向量)平面α的一个法向量n=(0,1,-1),如果直线l⊥平面α,则直线l的单位方向向量是.答案:±0,,-2.(平面的法向量)已知A(1,0,0),B(0,1,0),C(0,0,1),则平面ABC中的单位法向量是.答案:±,,3.(空间向量的计算)已知A(4,-7,1),B(6,2,z),若||=11,则z= .答案:7或-54.(向量法求线线角)在正方体ABCD A1B1C1D1中,E是C1D1的中点,则异面直线DE与AC所成的角的余弦值为.答案:5.(向量法求线面角)已知正三棱柱ABC A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于.答案:十四、直线与圆、圆锥曲线的概念、方程与性质知识方法1.直线:直线的倾斜角和斜率、直线方程的四种特殊形式、直线方程的一般形式、两直线平行关系和垂直关系的判断、点到直线的距离公式、两平行线间的距离公式.2.圆:圆的定义、标准方程和一般方程、一般的二元二次方程表示圆的充要条件、直线与圆。
专题01 集合、常用逻辑用语【2019年高考考纲解读】从近几年高考题来看,涉及本节知识点的高考题型是选择题或填空题.有时在大题的条件或结论中出现,所以在复习中不宜做过多过高的要求,只要灵活掌握小型综合题型就可以了.要掌握以函数的定义域、值域、不等式的解集为背景考查集合的交、并、补的基本运算;要能够利用集合之间的关系,利用充要性求解参数的值或取值范围;要掌握命题的四种形式及命题真假的判断;还得注意以新定义集合及集合的运算为背景考查集合关系及运算.要活用“定义法”解题,重视“数形结合”,定义是一切法则和性质的基础,是解题的基本出发点,注意方法的选择,抽象到直观的转化.要体会数学语言的简洁性与明确性,发展运用数学语言交流问题的能力.体会分类讨论思想、数形结合思想、函数方程思想等数学思想在解题中的运用.【网络构建】【重点、难点剖析】一、集合的概念及运算1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁U A)=∅,A∪(∁U A)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.2.集合运算中的常用方法(1)数轴法:若已知的集合是不等式的解集,用数轴法求解.(2)图象法:若已知的集合是点集,用图象法求解.(3)Venn图法:若已知的集合是抽象集合,用Venn图法求解.【方法技巧】解答集合问题的策略:(1)集合的化简是实施运算的前提,等价转换是顺利解题的关键.解决集合问题,要弄清集合中元素的本质属性,能化简的要化简;抓住集合中元素的三个性质,对互异性要注意检验;(2)求交集、并集、补集要充分发挥数轴或韦恩图的作用;(3)含参数的问题,要有分类讨论的意识.注意空集的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性.二、充分与必要条件的判断充分、必要条件与充要条件的含义若p、q中所涉及的问题与变量有关,p、q中相应变量的取值集合分别记为A,B,那么有以下结论:qA BB AB A【方法技巧】命题真假的判定方法:(1)一般命题p的真假由涉及到的相关知识辨别;(2)四种命题的真假的判断根据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无此规律;(3)p∨q、p∧q、┐p命题的真假根据p,q的真假与逻辑联结词的含义判定;(4)要判定一个全称命题是真命题,必须对限定集合M的每个元素x验证p(x)成立;但要判定全称命题是假命题,却只要举出集合M中的一个x=x0,使得p(x0)不成立即可(也就是通常所说的“举一个反例”).要判定一个特称命题是真命题,只要在限定集合M中能找到一个x=x0,使p(x0)成立即可;否则,这一存在性命题是假命题.三、命题真假的判定与命题的否定1.四种命题的关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.2.复合命题真假的判断方法含逻辑联结词的命题的真假判断:“p∨q”有真则真,其余为假;“p∧q”有假则假,其余为真;“綈p”与“p”真假相反.3.全称量词与存在量词(1)全称命题p:∀x∈M,p(x),它的否定綈p:∃x0∈M,綈p(x0).(2)特称命题p:∃x0∈M,p(x0),它的否定綈p:∀x∈M,綈p(x).【方法技巧】充分条件必要条件的判定方法:(1)定义法:分清条件和结论;找推式,判断“p⇒q”及“q ⇒ p”的真假;下结论,根据推式及定义下结论;(2)等价转化法:条件和结论带有否定词语的命题,常转化为其逆否命题来判断;(3)集合法:小范围可推出大范围,大范围不能推出小范围.【题型示例】题型一、集合的含义与表示、集合的运算例1、(2018·全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( ) A.9 B.8 C.5 D.4【解析】由题意可知A={(-1,0),(0,0),(1,0),(0,-1),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)},故集合A中共有9个元素,故选A.【答案】A【变式探究】解决集合问题的3个注意点(1)集合含义要明确:构成集合的元素及满足的性质.(2)空集要重视:已知两个集合的关系,求参数的取值,要注意对空集的讨论.(3)“端点”要取舍:要注意在利用两个集合的子集关系确定不等式组时,端点值的取舍问题,一定要代入检验,否则可能产生增解或漏解现象.【变式探究】[2018·全国卷Ⅰ]已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1或x>2}D.{x|x≤-1或x≥2}【命题意图】本题考查集合补集的运算、一元二次不等式的解法,考查学生的计算能力.【答案】B.【解析】∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1},∴∁R A={x|-1≤x≤2},故选B.【变式探究】[2018·全国卷Ⅱ]已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( ) A.9 B.8 C.5 D.4【命题意图】本题考查集合中元素的个数,考查了学生的理解能力与推理能力.【变式探究】(2018年浙江卷)已知全集U={1,2,3,4,5},A={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}【答案】C【解析】因为全集,,所以根据补集的定义得,故选C.【变式探究】(2018年天津卷)设全集为RD.【答案】B本题选择B选项.【变式探究】(2018年北京卷)设集合A. 对任意实数a对任意实数a,(2,1C. 当且仅当a<0时,(2,1(2,1【答案】D【解析】此命题的逆否命题为:故选D.【变式探究】(2018年江苏卷)已知集合,,那么________.【答案】{1,8}【解析】由题设和交集的定义可知:.【变式探究】(2018年北京卷)已知集合A={x||x|<2},B={–2,0,1,2},则A. {0,1}B. {–1,0,1}C. {–2,0,1,2}D. {–1,0,1,2}【答案】AA.【变式探究】(1)若A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},A∩B=B,则实数m的取值范围是________.【答案】[-1,+∞)题型二充分与必要条件的判断例2 、(2018年浙江卷)已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】因为,所以根据线面平行的判定定理得,由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.【变式探究】(2018A. 充分而不必要条件B. 必要而不重复条件C. 充要条件D. 既不充分也不必要条件【答案】A.本题选择A 选项.【变式探究】(2018·北京卷)设a ,b 均为单位向量,则“|a -3b |=|3a +b |”是“a ⊥b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】C【解析】|a -3b |=|3a +b |⇔|a -3b |2=|3a +b |2⇔a 2-6a ·b +9b 2=9a 2+6a ·b +b 2⇔2a 2+3a ·b -2b2=0,又∵|a |=|b |=1,∴a ·b =0⇔a ⊥b ,故选C .【方法技巧】充分、必要条件的3种判断方法(1)利用定义判断:直接判断“若p ,则q ”“若q ,则p ”的真假.在判断时,确定条件是什么,结论是什么.(2)从集合的角度判断:利用集合中包含思想判定.抓住“以小推大”的技巧,即小范围推得大范围,即可解决充分必要性的问题.(3)利用等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断真假. 【变式探究】 [2017·天津卷] 设θ∈R,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【命题意图】本题考查了充分条件与必要条件,考查三角函数的图象及性质,考查学生的计算能力及推理能力.【答案】A.【解析】当⎪⎪⎪⎪⎪⎪θ-π12<π12时,可解得0<θ<π6,即0<sin θ<12,故充分性成立;由sin θ<12可取θ=0,但此时不满足条件⎪⎪⎪⎪⎪⎪θ-π12<π12,故必要性不成立.故选A. 【变式探究】命题“∀x∈R,∃n∈N *,使得n≥x 2”的否定形式是( ) A .∀x∈R,∃n∈N *,使得n<x 2B .∀x∈R,∀n∈N *,使得n<x 2C .∃x∈R,∃n∈N *,使得n<x 2D .∃x∈R,∀n∈N *,使得n<x 2【答案】D.【解析】由全称命题的否定是特称命题,特称命题的否定是全称命题得,命题“∀x∈R,∃n∈N *,使得n≥x 2”的否定形式是“∃x∈R,∀n∈N *,使得n<x 2”.【变式探究】已知命题p :函数f(x)=2ax 2-x -1在(0,1)内恰有一个零点;命题q :函数y =x 2-a在(0,+∞)上是减函数.若p 且綈q 为真命题,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,2]C .(1,2]D .(-∞,1]∪(2,+∞) 【答案】C.【解析】由题意可得,对命题p ,令f(0)·f(1)<0, 即-1·(2a -2)<0,得a>1; 对命题q ,令2-a<0,即a>2, 则綈q 对应的a 的范围是(-∞,2]. 因为p 且綈q 为真命题,所以实数a 的取值范围是1<a≤2.故选C. 题型三 命题真假的判定与命题的否定 例3、[2017·全国卷Ⅰ]设有下面四个命题p 1:若复数z 满足1z ∈R ,则z ∈R ; p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2;p 4:若复数z ∈R ,则z ∈R .其中的真命题为( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3 D .p 2,p 4 【答案】B【解析】设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ). 对于p 1,若1z ∈R ,即1a +b i =a -b ia 2+b 2∈R ,则b =0⇒z =a +b i =a ∈R ,所以p 1为真命题.对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R ,则ab =0. 当a =0,b ≠0时,z =a +b i =b i∈ R ,所以p 2为假命题.对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i∈R ,则a 1b 2+a 2b 1=0.则z 1=z2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0⇒ a 1=a 2,b 1=-b 2,所以p 3为假命题.对于p 4,若z ∈R ,即a +b i∈R ,则b =0⇒z -=a -b i =a ∈R ,所以p 4为真命题,故选B. 【变式探究】下列命题正确的是( )A .命题“∃x ∈[0,1],使x 2-1≥0”的否定为“∀x ∈[0,1],都有x 2-1≤0” B .若命题p 为假命题,命题q 是真命题,则(綈p )∨(綈q )为假命题 C .命题“若a 与b 的夹角为锐角,则a ·b >0”及它的逆命题均为真命题D .命题“若x 2+x =0,则x =0或x =-1”的逆否命题为“若x ≠0且x ≠-1,则x 2+x ≠0” 【答案】D【方法技巧】解决命题的判定问题应注意的3点(1)判断四种命题真假有下面两个途径,一是先分别写出四种命题,再分别判断每个命题的真假;二是利用互为逆否命题是等价命题这一关系来判断它的逆否命题的真假.(2)要判定一个全称命题是真命题,必须对限定集合M 中的每个元素x 验证p (x )成立.要判定一个特称(存在性)命题是真命题,只要在限定集合M 中,至少能找到一个x =x 0,使p (x 0)成立即可.(3)含有量词的命题的否定,需从两方面进行:一是改写量词或量词符号;二是否定命题的结论,两者缺一不可.【变式探究】“∀x ∈R ,x 2-πx ≥0”的否定是( ) A .∀x ∈R ,x 2-πx <0B.∀x∈R,x2-πx≤0C.∃x0∈R,x20-πx0≤0D.∃x0∈R,x20-πx0<0【答案】D【解析】全称命题的否定是特称命题,所以“∀x∈R,x2-πx≥0”的否定是“∃x0∈R,x20-πx0<0”.故选D.【变式探究】命题“∀x∈[1,2],x2-3x+2≤0”的否定为( )A.∀x∈[1,2],x2-3x+2>0B.∀x∉[1,2],x2-3x+2>0C.∃x0∈[1,2],x20-3x0+2>0D.∃x0∉[1,2],x20-3x0+2>0【答案】C【解析】由全称命题的否定的定义知,命题“∀x∈[1,2],x2-3x+2≤0”的否定为“∃x0∈[1,2],x20-3x0+2>0”,故选C.。
第一单元 集合与常用逻辑用语第1课集__合[过双基]1.集合的含义及表示(1)集合的含义:研究对象叫做元素,一些元素组成的总体叫做集合.集合中元素的性质:确定性、无序性、互异性.(2)元素与集合的关系:①属于,记为∈;②不属于,记为∉. (3)集合的表示方法:列举法、描述法和图示法.(4)常用数集的记法:自然数集N ,正整数集N *或N +,整数集Z ,有理数集Q ,实数集R . 2.集合间的基本关系A B 或B A3.集合的基本运算(1)集合A 是其本身的子集,即A ⊆A ;(2)子集关系的传递性,即A ⊆B ,B ⊆C ⇒A ⊆C ;(3)A ∪A =A ∩A =A ,A ∪∅=A ,A ∩∅=∅,∁U U =∅,∁U ∅=U . [小题速通]1.(2018·江西临川一中期中)已知集合A ={2,0,1,8},B ={k |k ∈R ,k 2-2∈A ,k -2∉A },则集合B 中所有的元素之和为( )A .2B .-2C .0D. 2解析:选B 若k 2-2=2,则k =2或k =-2,当k =2时,k -2=0,不满足条件,当k =-2时,k -2=-4,满足条件;若k 2-2=0,则k =±2,显然满足条件;若k 2-2=1,则k =±3,显然满足条件;若k 2-2=8,则k =±10,显然满足条件.所以集合B 中的元素为-2,±2,±3,±10,所以集合B 中的元素之和为-2,故选B.2.(2018·河北武邑中学期中)集合A ={x |x 2-7x <0,x ∈N *},则B =⎩⎨⎧⎭⎬⎫y ⎪⎪6y∈N *,y ∈A 中元素的个数为( )A .1B .2C .3D .4解析:选D A ={x |x 2-7x <0,x ∈N *}={x |0<x <7,x ∈N *}={1,2,3,4,5,6},B =⎩⎨⎧⎭⎬⎫y ⎪⎪6y ∈N *,y ∈A ={1,2,3,6},则B 中元素的个数为4个. 3.(2017·黄冈三模)设集合U ={1,2,3,4},集合A ={x ∈N |x 2-5x +4<0},则∁U A 等于( ) A .{1,2} B .{1,4} C .{2,4}D .{1,3,4}解析:选B 因为集合U ={1,2,3,4},集合A ={x ∈N |x 2-5x +4<0}={x ∈N |1<x <4}={2,3},所以∁U A ={1,4}.4.(2017·天津高考)设集合A ={1,2,6},B ={2,4},C ={x ∈R |-1≤x ≤5},则(A ∪B )∩C =( )A .{2}B .{1,2,4}C .{1,2,4,6}D .{x ∈R |-1≤x ≤5}解析:选B A ∪B ={1,2,4,6},又C ={x ∈R |-1≤x ≤5},则(A ∪B )∩C ={1,2,4}. 5.(2017·衡水押题卷)已知集合A ={x |x 2-2x ≤0},B ={y |y =log 2(x +2),x ∈A },则A ∩B 为( )A .(0,1)B .[0,1]C .(1,2)D .[1,2]解析:选D 因为A ={x |0≤x ≤2},所以B ={y |y =log 2(x +2),x ∈A }={y |1≤y ≤2},所以A ∩B ={x |1≤x ≤2}.[清易错]1.在写集合的子集时,易忽视空集.2.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.3.在应用条件A ∪B =B ⇔A ∩B =A ⇔A ⊆B 时,易忽略A =∅的情况.1.(2018·西安质检)已知集合M ={1,2,3,4},则集合P ={x |x ∈M ,且2x ∉M }的子集的个数为( )A .8B .4C .3D .2解析:选B 由题意,得P ={3,4},所以集合P 的子集有22=4个,故选B.2.已知全集U ={2,3,a 2+2a -3},A ={|a +1|,2},∁U A ={a +3},则实数a 的值为________. 解析:∵∁U A ={a +3},∴a +3≠2且a +3≠|a +1|且a +3∈U , 由题意,得a +3=3或a +3=a 2+2a -3, 解得a =0或a =2或a =-3,又∵|a +1|≠2且A U ,∴a ≠0且a ≠-3,∴a =2. 答案:23.设集合A ={x |x 2-5x +6=0},集合B ={x |mx -1=0},若A ∩B =B ,则实数m 组成的集合是________.解析:由题意知A ={2,3},又A ∩B =B ,所以B ⊆A . 当m =0时,B =∅,显然成立;当m ≠0时,B =⎩⎨⎧⎭⎬⎫1m ⊆{2,3},所以1m =2或1m =3,即m =12或13.故m 组成的集合是⎩⎨⎧⎭⎬⎫0,12,13.答案:⎩⎨⎧⎭⎬⎫0,12,13[全国卷5年命题分析]考点 考查频度 考查角度集合的基本概念 5年5考 集合的表示、集合元素的性质集合间的基本关系 5年2考 子集概念集合的基本运算 5年12考交、并、补运算,多与不等式相结合集合的基本概念[典例] (1)设集合,b ∈B },则M 中的元素个数为( )A .3B .4C .5D .6(2)(2018·厦门模拟)已知P ={x |2<x <k ,x ∈N },若集合P 中恰有3个元素,则k 的取值范围为________.[解析] (1)∵a ∈A ,b ∈B ,∴x =a +b 为1+4=5,1+5=2+4=6,2+5=3+4=7,3+5=8,共4个元素.(2)因为P 中恰有3个元素,所以P ={3,4,5},故k 的取值范围为5<k ≤6. [答案] (1)B (2)(5,6] [方法技巧]与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是数集还是点集. (2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.[即时演练]1.(2018·莱州一中模拟)已知集合A ={x ∈N |x 2+2x -3≤0},B ={C |C ⊆A },则集合B 中元素的个数为( )A .2B .3C .4D .5解析:选C A ={x ∈N |(x +3)(x -1)≤0}={x ∈N |-3≤x ≤1}={0,1},共有22=4个子集,因此集合B 中元素的个数为4,选C.2.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.解析:由题意得m +2=3或2m 2+m =3,则m =1或m =-32,当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,而2m 2+m =3,故m =-32.答案:-32集合间的基本关系[典例] (1)a 的取值范围为( )A .(-∞,0)∪(2,+∞)B .(-∞,0]∪[3,+∞)C .[0,2]D .[0,3](2)已知集合A ={x |1≤x <5},B ={x |-a <x ≤a +3},若B ⊆(A ∩B ),则实数a 的取值范围为________.[解析] (1)∵C ⊆A ,∴⎩⎪⎨⎪⎧a ≥0,a +1≤3,解得0≤a ≤2,故实数a 的取值范围为[0,2].(2)因为B ⊆(A ∩B ),所以B ⊆A . ①当B =∅时,满足B ⊆A , 此时-a ≥a +3,即a ≤-32;②当B ≠∅时,要使B ⊆A ,则⎩⎪⎨⎪⎧-a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.由①②可知,实数a 的取值范围为(-∞,-1]. [答案] (1)C (2)(-∞,-1] [方法技巧]已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Ve nn 图帮助分析.[即时演练]1.设U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)x +m =0},若B ⊆A ,则m =________.解析:由已知得A ={x |x =-2或x =-1}, B ={x |x =-1或x =-m }. 因为B ⊆A ,当-m =-1,即m =1时,满足题意;当-m=-2,即m=2时,满足题意,故m=1或2.答案:1或22.已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,实数a的取值范围是(c,+∞),则c=________.解析:由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B=(-∞,a),由于A⊆B,如图所示,则a>4,即c=4.答案:41.(2017·山东高考)设函数y=4-x2的定义域为A,函数y=l n(1-x)的定义域为B,则A∩B=()A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:选D由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.2.(2017·浙江高考)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=()A.(-1,2) B.(0,1)C.(-1,0) D.(1,2)解析:选A根据集合的并集的定义,得P∪Q=(-1,2).角度二:交、并、补的混合运算3.设全集U=R,集合A={x|x>0},B={x|x2-x-2<0},则A∩(∁U B)=()A.(0,2] B.(-1,2]C.[-1,2]D.[2,+∞)解析:选D 因为A ={x |x >0},B ={x |-1<x <2}, 所以∁U B ={x |x ≤-1或x ≥2}, 所以A ∩(∁U B )={x |x ≥2}.4.若全集U =R ,集合A ={x |1<2x <4},B ={x |x -1≥0},则A ∪(∁U B )=________. 解析:A ={x |0<x <2},B ={x |x ≥1},则∁U B ={x |x <1},所以A ∪(∁U B )={x |x <2}. 答案:{x |x <2}角度三:集合运算中的参数范围5.(2017·上海高考)设集合A ={x ||x -2|≤3},B ={x |x <t },若A ∩B =∅,则实数t 的取值范围是________.解析:因为集合A ={x |-1≤x ≤5},B ={x |x <t },且A ∩B =∅,所以t ≤-1,即实数t 的取值范围是(-∞,-1].答案:(-∞,-1] 角度四:集合的新定义问题6.设M ,P 是两个非空集合,定义M 与P 的差集为:M -P ={x |x ∈M ,且x ∉P },则M -(M -P )=( )A .PB .M ∩PC .M ∪PD .M解析:选B 设全集U ,由题意可得M -P =M ∩(∁U P ),所以M -(M -P )=M ∩P .7.对于集合M ,定义函数f M (x )=⎩⎪⎨⎪⎧-1,x ∈M ,1,x ∉M ,对于两个集合A ,B ,定义集合A ΔB={x |f A (x )·f B (x )=-1}.已知A ={2,4,6,8,10},B ={1,2,4,8,12},则用列举法写出集合A ΔB 的结果为________.解析:由题意知当x ∈A 且x ∉B 或x ∈B 且x ∉A 时,有f A (x )·f B (x )=-1成立,所以A ΔB ={1,6,10,12}.答案:{1,6,10,12} [方法技巧]解集合运算问题4个注意点(1)看元素构成集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键. (2)对集合化简有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决.(3)应用数形常用的数形结合形式有数轴和Ve nn 图.(4)创新性问题以集合为依托,对集合的定义、运算、性质进行创新考查,但最终化为原来的集合知识和相应数学知识来解决.1.(2017·全国卷Ⅰ)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0} B.A∪B=RC.A∪B={x|x>1} D.A∩B=∅解析:选A∵集合A={x|x<1},B={x|x<0},∴A∩B={x|x<0},A∪B={x|x<1},故选A.2.(2016·全国卷Ⅱ)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=() A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}解析:选C因为B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},A={1,2,3},所以A∪B={0,1,2,3}.3.(2015·全国卷Ⅱ)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=()A.(-1,3) B.(-1,0)C.(0,2) D.(2,3)解析:选A将集合A与集合B在数轴上画出(如图).由图可知A∪B=(-1,3),故选A.4.(2014·全国卷Ⅱ)已知集合A={-2,0,2},B={ x|x2-x-2=0},则A∩B=() A.∅B.{2}C.{0} D.{-2}解析:选B因为B={x|x2-x-2=0}={-1,2},A={-2,0,2},所以A∩B={2},故选B.5.(2013·全国卷Ⅰ)已知集合A={x|x2-2x>0},B={x|-5<x<5},则()A.A∩B=∅B.A∪B=RC.B⊆A D.A⊆B解析:选B因为集合A={x|x>2或x<0},所以A∪B={x|x>2或x<0}∪{x|-5<x <5}=R,故选B.一、选择题1.(2017·北京高考)若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( ) A .{x |-2<x <-1} B .{x |-2<x <3} C .{x |-1<x <1}D .{x |1<x <3}解析:选A 由集合交集的定义可得A ∩B ={x |-2<x <-1}.2.设集合A ={x |x 2-9<0},B ={x |2x ∈N },则A ∩B 中元素的个数为( ) A .3 B .4 C .5D .6解析:选D 因为A ={x |-3<x <3},B ={x |2x ∈N },所以由2x ∈N 可得A ∩B =⎩⎨⎧⎭⎬⎫0,12,1,32,2,52,其元素的个数是6.3.(2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:选B 因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.4.设集合A ={x |x 2-2x -3<0},B ={x |x >0},则A ∪B =( ) A .(-1,+∞) B .(-∞,3) C .(0,3)D .(-1,3)解析:选A 因为集合A ={x |x 2-2x -3<0}={x |-1<x <3},B ={x |x >0},所以A ∪B ={x |x >-1}.5.(2017·全国卷Ⅱ)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( ) A .{1,-3} B .{1,0} C .{1,3}D .{1,5}解析:选C 因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3}.6.设集合A ={-1,0,1},集合B ={0,1,2,3},定义A *B ={(x ,y )|x ∈A ∩B ,y ∈A ∪B },则A *B 中元素的个数是( )A .7B .10C .25D .52解析:选B 因为A ={-1,0,1},B ={0,1,2,3}, 所以A ∩B ={0,1},A ∪B ={-1,0,1,2,3}. 由x ∈A ∩B ,可知x 可取0,1;由y ∈A ∪B ,可知y 可取-1,0,1,2,3. 所以元素(x ,y )的所有结果如下表所示:所以A *B 中的元素共有10个.7.(2017·吉林一模)设集合A ={0,1},集合B ={x |x >a },若A ∩B 中只有一个元素,则实数a 的取值范围是( )A .(-∞,1)B .[0,1)C .[1,+∞)D .(-∞,1]解析:选B 由题意知,集合A ={0,1},集合B ={x |x >a },画出数轴(如图所示).若A ∩B 中只有一个元素,则0≤a <1,故选B.8.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },如果P ={x |log 2x <1},Q ={x ||x -2|<1},那么P -Q =( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}解析:选B 由log 2x <1,得0<x <2, 所以P ={x |0<x <2}. 由|x -2|<1,得1<x <3, 所以Q ={x |1<x <3}.由题意,得P -Q ={x |0<x ≤1}. 二、填空题9.(2018·辽宁师大附中调研)若集合A ={x |(a -1)x 2+3x -2=0}有且仅有两个子集,则实数a 的值为________.解析:由题意知,集合A 有且仅有两个子集,则集合A 中只有一个元素.当a -1=0,即a =1时,A =⎩⎨⎧⎭⎬⎫23,满足题意;当a -1≠0,即a ≠1时,要使集合A 中只有一个元素,需Δ=9+8(a -1)=0,解得a =-18.综上可知,实数a 的值为1或-18.答案:1或-1810.已知集合A ={x |1≤x ≤3},B ={x |x -1≥1}.若A ∩B 是集合{x |x ≥a }的子集,则实数a 的取值范围为________.解析:∵由x -1≥1,得x ≥2,∴B ={x |x ≥2}.∵A ={x |1≤x ≤3},∴A ∩B ={x |2≤x ≤3}.若集合A ∩B ={x |2≤x ≤3}是集合{x |x ≥a }的子集,则a ≤2.答案:(-∞,2]11.(2018·贵阳监测)已知全集U ={a 1,a 2,a 3,a 4},集合A 是全集U 的恰有两个元素的子集,且满足下列三个条件:①若a 1∈A ,则a 2∈A ;②若a 3∉A ,则a 2∉A ;③若a 3∈A ,则a 4∉A .则集合A =________.(用列举法表示)解析:假设a 1∈A ,则a 2∈A ,由若a 3∉A ,则a 2∉A 可知,a 3∈A ,故假设不成立;假设a 4∈A ,则a 3∉A ,a 2∉A ,a 1∉A ,故假设不成立.故集合A ={a 2,a 3}.答案:{a 2,a 3}12.(2016·北京高考)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店①第一天售出但第二天未售出的商品有________种;②这三天售出的商品最少有________种.解析:设三天都售出的商品有x 种,第一天售出,第二天未售出,且第三天售出的商品有y 种,则三天售出商品的种类关系如图所示.由图可知:①第一天售出但第二天未售出的商品有19-(3-x )-x =16(种).②这三天售出的商品有(16-y )+y +x +(3-x )+(6+x )+(4-x )+(14-y )=43-y (种).由于⎩⎪⎨⎪⎧ 16-y ≥0,y ≥0,14-y ≥0,所以0≤y ≤14.所以(43-y )mi n =43-14=29.答案:①16 ②29三、解答题13.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }.(1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围.解:(1)因为m =1时,B ={x |1≤x <4},所以A ∪B ={x |-1<x <4}.(2)∁R A ={x |x ≤-1或x >3}.当B =∅时,则m ≥1+3m ,得m ≤-12,满足B ⊆∁R A ,当B ≠∅时,要使B ⊆∁R A ,须满足⎩⎪⎨⎪⎧ m <1+3m ,1+3m ≤-1或⎩⎪⎨⎪⎧m <1+3m ,m >3,解得m >3. 综上所述,m 的取值范围是⎝⎛⎦⎤-∞,-12∪(3,+∞). 14.记函数f (x )=2-x +3x +1的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1)的定义域为B .(1)求A ;(2)若B ⊆A ,求实数a 的取值范围.解:(1)由2-x +3x +1≥0,得x -1x +1≥0, 解得x <-1或x ≥1,即A =(-∞,-1)∪[1,+∞).(2)由(x -a -1)(2a -x )>0,得(x -a -1)(x -2a )<0,∵a <1,∴a +1>2a ,∴B =(2a ,a +1),∵B ⊆A ,∴2a ≥1或a +1≤-1,即a ≥12或a ≤-2, ∵a <1,∴12≤a <1或a ≤-2, ∴实数a 的取值范围是(-∞,-2]∪⎣⎡⎭⎫12,1.1.已知定义域均为{x |0≤x ≤2}的函数f (x )=x e x -1与g (x )=ax +3-3a (a >0),设函数f (x )与g (x )的值域分别为A 与B ,若A ⊆B ,则a 的取值范围是( )A .[2,+∞)B .[1,2]C .[0,2]D .[1,+∞) 解析:选B 因为f ′(x )=1-x e x -1,所以f (x )=x ex -1在[0,1)上是增函数,在(1,2]上是减函数, 又因为f (1)=1,f (0)=0,f (2)=2e,所以A ={x |0≤x ≤1}; 由题意易得B =[3-3a,3-a ],因为[0,1]⊆[3-3a,3-a ],所以3-3a ≤0且3-a ≥1,解得1≤a ≤2.2.设集合A ={(x 1,x 2,x 3,x 4)|x i ∈{-1,0,1},i =1,2,3,4},那么集合A 中满足条件“x 21+x 22+x 23+x 24≤4”的元素个数为( )A .60B .65C .80D .81解析:选D 由题意知,每一个元素都有3种取法,所以元素的个数为34=81.第2课命题及其关系__充分条件与必要条件[过双基]1.命题2.(1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充要条件[1.命题“若a >b ,则ac >bc ”的逆否命题是( )A .若a >b ,则ac ≤bcB .若ac ≤bc ,则a ≤bC .若ac >bc ,则a >bD .若a ≤b ,则ac ≤bc解析:选B由逆否命题的定义可知,答案为B.2.已知命题p:对于x∈R,恒有2x+2-x≥2成立;命题q:奇函数f(x)的图象必过原点,则下列结论正确的是()A.p∧q为真B.(綈p)∨q为真C.p∧(綈q)为真D.(綈p)∧q为真解析:选C由指数函数与基本不等式可知,命题p是真命题;当函数f(x)=1x时,是奇函数但不过原点,则可知命题q是假命题,所以p∧(綈q)是真命题,故选C.3.已知p:x>1或x<-3,q:x>a,若q是p的充分不必要条件,则a的取值范围是() A.[1,+∞) B.(-∞,1]C.[-3,+∞) D.(-∞,-3)解析:选A法一:设P={x|x>1或x<-3},Q={x|x>a},因为q是p的充分不必要条件,所以Q P,因此a≥1.法二:令a=-3,则q:x>-3,则由命题q推不出命题p,此时q不是p的充分条件,排除B、C;同理,取a=-4,排除D,选A.4.已知命题p:x≠π6+2kπ,k∈Z;命题q:si n x≠12,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B令x=5π6,则si n x=12,即p⇒/ q;当si n x≠12时,x≠π6+2kπ或5π6+2kπ,k∈Z,即q⇒p,因此p是q的必要不充分条件.[清易错]1.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A是B的充分不必要条件(A⇒B且B⇒/A)与A的充分不必要条件是B(B⇒A 且A⇒/B)两者的不同.1.“若x,y∈R且x2+y2=0,则x,y全为0”的否命题是()A.若x,y∈R且x2+y2≠0,则x,y全不为0B.若x,y∈R且x2+y2≠0,则x,y不全为0C.若x,y∈R且x,y全为0,则x2+y2=0D.若x,y∈R且xy≠0,则x2+y2=0解析:选B原命题的条件:x,y∈R且x2+y2=0,结论:x,y全为0.否命题是否定条件和结论.即否命题:“若x ,y ∈R 且x 2+y 2≠0,则x ,y 不全为0”.2.设a ,b ∈R ,函数f (x )=ax +b (0≤x ≤1),则f (x )>0恒成立是a +2b >0成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 充分性:因为f (x )>0恒成立,所以⎩⎪⎨⎪⎧f (0)=b >0,f (1)=a +b >0,则a +2b >0,即充分性成立; 必要性:令a =-3,b =2,则a +2b >0成立,但是,f (1)=a +b >0不成立,即f (x )>0不恒成立,则必要性不成立.所以答案为A.[全国卷5年命题分析]考点考查频度 考查角度 四种命题的相互关系及真假判断5年1考 与复数有关的命题的真假判断 充分条件、必要条件未考查命题的相互关系及真假性 [典例] 0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定(2)原命题为“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”,关于其逆命题、否命题、逆否命题真假性的依次判断正确的是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假[解析] (1)命题p :“正数a 的平方不等于0”可写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.(2)原命题是:“若a n +1<a n ,n ∈N *,则{a n }为递减数列”为真命题,则其逆否命题为真,逆命题是:“若{a n }为递减数列,n ∈N *,则a n +1<a n ”为真命题,所以否命题也为真命题.[答案] (1)B (2)A[方法技巧]命题的关系及真假判断(1)在判断命题之间的关系时,首先要分清命题的条件与结论,再分析每个命题的条件与结论之间的关系,要注意四种命题关系的相对性.(2)判断命题真假的方法:一是联系已有的数学公式、定理、结论进行正面直接判断;二是利用原命题和其逆否命题的等价关系进行判断.[即时演练]1.已知命题α:如果x <3,那么x <5;命题β:如果x ≥3,那么x ≥5;命题γ:如果x ≥5,那么x ≥3.关于这三个命题之间的关系,下列三种说法正确的是( )①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A .①③B .②C .②③D .①②③解析:选A 命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定,然后交换条件与结论所得,因此①正确,②错误,③正确.2.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A .3B .2C .1D .0解析:选C 易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题,故它的逆命题、否命题、逆否命题三个命题中,真命题只有一个. 充分、必要条件的判定[典例] (1)(2017·浙江高考)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2)设α:1≤x ≤3,β:m +1≤x ≤2m +4,m ∈R ,若α是β的充分条件,则m 的取值范围是________.[解析] (1)因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.(2)若α是β的充分条件,则α对应的集合是β对应集合的子集,则⎩⎪⎨⎪⎧m +1≤1,2m +4≥3,解得-12≤m ≤0. [答案] (1)C (2)⎣⎡⎦⎤-12,0 [方法技巧]充要条件的3种判断方法即设A ={x |p (x )},B ={x |q (x )}:若A ⊆B ,则p 是q 的充分条件或q 是p 的必要条件;若A B ,则p 是q 的充分不必要条件,若A =B ,则p 是q 的充要条件[1.(2016·四川高考)设p :实数x ,y 满足x >1且y >1,q :实数x ,y 满足x +y >2,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A ∵⎩⎪⎨⎪⎧x >1,y >1,∴x +y >2,即p ⇒q . 而当x =0,y =3时,有x +y =3>2,但不满足x >1且y >1,即q ⇒/ p .故p 是q 的充分不必要条件.2.已知m ,n ∈R ,则“mn <0”是“抛物线mx 2+ny =0的焦点在y 轴正半轴上”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 若“mn <0”,则x 2=-n m y 中的-n m>0,所以“抛物线mx 2+ny =0的焦点在y 轴正半轴上”成立,是充分条件;反之,若“抛物线mx 2+ny =0的焦点在y 轴正半轴上”,则x 2=-n m y 中的-n m >0,即mn <0,则“mn <0”成立,故是充要条件.+1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.[解析] 由2x 2-3x +1≤0,得12≤x ≤1, ∴条件p 对应的集合P =⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤1. 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,∴条件q 对应的集合为Q ={x |a ≤x ≤a +1}.法一:用“直接法”解题綈p 对应的集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x >1或x <12, 綈q 对应的集合B ={x |x >a +1或x <a }.∵綈p 是綈q 的必要不充分条件,即B A ,∴⎩⎪⎨⎪⎧ a <12,a +1≥1或⎩⎪⎨⎪⎧ a ≤12,a +1>1,∴0≤a ≤12. 即实数a 的取值范围是⎣⎡⎦⎤0,12. 法二:用“等价转化法”解题∵綈p 是綈q 的必要不充分条件,∴根据原命题与逆否命题等价,得p 是q 的充分不必要条件.∴p ⇒q ,即P Q ⇔⎩⎪⎨⎪⎧ a <12,a +1≥1或⎩⎪⎨⎪⎧a ≤12,a +1>1,解得0≤a ≤12.即实数a 的取值范围是⎣⎡⎦⎤0,12. [答案] ⎣⎡⎦⎤0,12 [方法技巧]根据充分、必要条件求参数范围的2个注意点(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.[即时演练]1.(2018·安阳调研)已知p :x ∈A ={x |x 2-2x -3≤0,x ∈R },q :x ∈B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }.若p 是綈q 的充分条件,则实数m 的取值范围是________.解析:∵A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2},∴∁R B ={x |x <m -2或x >m +2}.∵p 是綈q 的充分条件,∴A ⊆∁R B ,∴m -2>3或m +2<-1,∴m >5或m <-3.答案:(-∞,-3)∪(5,+∞)2.若“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为________.解析:由x 2>1,得x <-1,或x >1,又“x 2>1”是“x <a ”的必要不充分条件,知由“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,即a 的最大值为-1.答案:-11.(2014·全国卷Ⅱ)函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0;q :x =x 0是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:选C 当f ′(x 0)=0时,x =x 0不一定是f (x )的极值点,比如,y =x 3在x =0时,f ′(0)=0,但在x =0的左右两侧f ′(x )的符号相同,因而x =0不是y =x 3的极值点.由极值的定义知,x =x 0是f (x )的极值点必有f ′(x 0)=0.综上知,p 是q 的必要条件,但不是充分条件.2.(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“si n θ<12”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A 法一:由⎪⎪⎪⎪θ-π12<π12,得0<θ<π6, 故si n θ<12.由si n θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪θ-π12<π12”. 故“⎪⎪⎪⎪θ-π12<π12”是“si n θ<12”的充分而不必要条件. 法二:⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒si n θ<12,而当si n θ<12时,取θ=-π6,⎪⎪⎪⎪-π6-π12=π4>π12. 故“⎪⎪⎪⎪θ-π12<π12”是“si n θ<12”的充分而不必要条件. 3.(2016·北京高考)设a ,b 是向量,则“| a |=|b |”是“|a +b |=|a -b |”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选D 若|a |=|b |成立,则以a ,b 为邻边的平行四边形为菱形.a +b ,a -b 表示的是该菱形的对角线,而菱形的两条对角线长度不一定相等,所以|a +b |=|a -b |不一定成立,从而不是充分条件;反之,若|a +b |=|a -b |成立,则以a ,b 为邻边的平行四边形为矩形,而矩形的邻边长度不一定相等,所以|a |=|b |不一定成立,从而不是必要条件.故“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件.4.(2015·陕西高考)“sin α=cos α”是“cos 2α=0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A cos 2α=0等价于cos 2α-sin 2α=0,即cos α=±sin α.由cos α=sin α可得到cos 2α=0,反之不成立,故选A.5.(2015·重庆高考)“x >1”是“log 12(x +2)<0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件解析:选B ∵x >1⇒log 12 (x +2)<0,log 12(x +2)<0⇒x +2>1⇒x >-1,∴“x >1”是“log 12(x +2)<0”的充分而不必要条件.一、选择题1.命题“若α=π4,则tan α=1”的逆否命题是( ) A .若α≠π4,则tan α≠1 B .若α=π4,则tan α≠1 C .若tan α≠1,则α=π4 D .若tan α≠1,则α≠π4解析:选D 逆否命题是将原命题中的条件与结论都否定后再交换位置即可.所以逆否命题为:若tan α≠1,则α≠π4. 2.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C.否命题真D.逆否命题真解析:选D对于原命题:“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x|ax2+bx+c<0}≠∅,则抛物线y=ax2+bx+c的开口向下”是一个假命题,因为当不等式ax2+bx+c<0的解集非空时,可以有a>0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.3.“直线y=x+b与圆x2+y2=1相交”是“0<b<1”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:选C由直线y=x+b与圆x2+y2=1相交可得|b|2<1,所以-2<b<2,因此,“直线y=x+b与圆x2+y2=1相交”⇒/ “0<b<1”,但“0<b<1”⇒“直线y=x+b与圆x2+y2=1相交”.故选C.4.命题p:“∀x>e,a-ln x<0”为真命题的一个充分不必要条件是()A.a≤1 B.a<1C.a≥1 D.a>1解析:选B由题意知∀x>e,a<ln x恒成立,因为ln x>1,所以a≤1,故答案为B.5.a2+b2=1是a si nθ+b cos θ≤1恒成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A因为a2+b2=1,所以设a=cos α,b=sin α,则a sin θ+b cos θ=si n(α+θ)≤1恒成立;当a sin θ+b cos θ≤1恒成立时,只需a sin θ+b cos θ=a2+b2sin(θ+φ)≤a2+b2≤1即可,所以a2+b2≤1,故不满足必要性.6.若向量a=(x-1,x),b=(x+2,x-4),则“a⊥b”是“x=2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B若“a⊥b”,则a·b=(x-1,x)·(x+2,x-4)=(x-1)(x+2)+x(x-4)=2x2-3x-2=0,则x=2或x=-12;若“x=2”,则a·b=0,即“a⊥b”,所以“a⊥b”是“x=2”的必要不充分条件.7.在△ABC中,“sin A-sin B=cos B-cos A”是“A=B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B在△ABC中,当A=B时,sin A-sin B=cos B-cos A显然成立,即必要性成立;当sin A-sin B=cos B-cos A时,则sin A+cos A=sin B+cos B,两边平方可得sin 2A =sin 2B ,则A =B 或A +B =π2,即充分性不成立.则在△ABC 中,“sin A -sin B =cos B -cos A ”是“A =B ”的必要不充分条件.8.设m ,n 是两条直线,α,β是两个平面,则下列命题中不正确的是( ) A .当n ⊥α时,“n ⊥β”是“α∥β”的充要条件 B .当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件 C .当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件 D .当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件解析:选C 由垂直于同一条直线的两个平面平行可知,A 正确;显然,当m ⊂α时,“m ⊥β”⇒“α⊥β”;当m ⊂α时,“α⊥β”⇒/ “m ⊥β”,故B 正确;当m ⊂α时,“m ∥n ”⇒/ “n ∥α”, n 也可能在平面α内,故C 错误;当m ⊂α时,“n ⊥α”⇒“m ⊥n ”,反之不成立,故D 正确.二、填空题9.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.解析:其中原命题和逆否命题为真命题,逆命题和否命题为假命题. 答案:210.下列命题正确的序号是________.①命题“若a >b ,则2a >2b ”的否命题是真命题;②命题“a ,b 都是偶数,则a +b 是偶数”的逆否命题是真命题; ③若p 是q 的充分不必要条件,则綈p 是綈q 的必要不充分条件; ④方程ax 2+x +a =0有唯一解的充要条件是a =±12.解析:①否命题“若2a ≤2b ,则a ≤b ”,由指数函数的单调性可知,该命题正确;②由互为逆否命题真假相同可知,该命题为真命题;由互为逆否命题可知,③是真命题;④方程ax 2+x +a =0有唯一解,则a =0或⎩⎪⎨⎪⎧Δ=1-4a 2=0,a ≠0,求解可得a =0或a =±12,故④是假命题.答案:①②③11.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析:A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2. 答案:(2,+∞) 12.给出下列四个结论: ①若am 2<bm 2,则a <b ;②已知变量x 和y 满足关系y =-0.1x +1,若变量y 与z 正相关,则x 与z 负相关; ③“已知直线m ,n 和平面α,β,若m ⊥n ,m ⊥α,n ∥β,则α⊥β”为真命题; ④m =3是直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直的充分不必要条件. 其中正确的结论是________(填序号).解析:由不等式的性质可知,①正确;由变量间相关关系可知,当变量y 和z 是正相关时,x 与z 负相关,故②正确;③由已知条件,不能判断α与β的位置关系,故③错误;④当m =3时,直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直;当直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直时,(m +3)m -6m =0,则m =3或m =0,即m =3是直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直的充分不必要条件,则④正确.答案:①②④ 三、解答题13.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.解:(1)逆命题:已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a 2<4b ,则关于x 的不等式x 2+ax +b ≤0没有非空解集,为真命题.14.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716, ∵x ∈⎣⎡⎦⎤34,2,∴716≤y ≤2, ∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2, ∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件,∴A ⊆B ,∴1-m 2≤716, 解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞.1.下列四个命题中,①命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”; ②“x =4”是“x 2-3x -4=0”的充分条件;③命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题;④命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0且n ≠0”;⑤对空间任意一点O ,若满足OP ―→=34OA ―→+18OB ―→+18OC ―→,则P ,A ,B ,C 四点一定共面.其中真命题的为________.(填序号)解析:①命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”,故①正确;②x =4⇒x 2-3x -4=0;由x 2-3x -4=0,解得x =-1或x =4. ∴“x =4”是“x 2-3x -4=0”的充分不必要条件,故②正确;③命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为“若方程x 2+x -m =0有实根,则m >0”,是假命题,如m =0时,方程x 2+x -m =0有实根,故③错误;④命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”,故④错误;⑤∵34+18+18=1,∴对空间任意一点O ,若满足OP ―→=34OA ―→+18OB ―→+18OC ―→,则P ,A ,B ,C 四点一定共面,故⑤正确.答案:①②⑤2.已知p :-x 2+4x +12≥0,q :x 2-2x +1-m 2≤0(m >0). (1)若p 是q 的充分不必要条件,则实数m 的取值范围为________; (2)若“綈p ”是“綈q ”的充分条件,则实数m 的取值范围为________. 解析:由题知,p 为真时,-2≤x ≤6,q 为真时,1-m ≤x ≤1+m , 令P ={x |-2≤x ≤6},Q ={x |1-m ≤x ≤1+m }. (1)∵p 是q 的充分不必要条件,∴P Q ,∴⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >6或⎩⎪⎨⎪⎧1-m <-2,1+m ≥6,解得m ≥5, ∴实数m 的取值范围是[5,+∞).(2)∵“綈p ”是“綈q ”的充分条件,∴“p ”是“q ”的必要条件, ∴Q ⊆P ,∴⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤6,m >0,解得0<m ≤3,∴实数m 的取值范围是(0,3]. 答案:(1)[5,+∞) (2)(0,3]第3课简单的逻辑联结词、全称量词与存在量词[过双基]1.命题p ∧q ,p ∨q ,綈p 的真假判断2.全称量词与存在量词3.全称命题和特称命题否定∃x0∈M,綈p(x0)∀x∈M,綈p(x)[1.已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(綈q);④(綈p)∨q中,真命题的是()A.①③B.①④C.②③D.②④解析:选C当x>y时,-x<-y,故命题p为真命题,从而綈p为假命题.当x>y时,x2>y2不一定成立,故命题q为假命题,从而綈q为真命题.故①p∧q为假命题;②p∨q为真命题;③p∧(綈q)为真命题;④(綈p)∨q为假命题.2.若命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则在下列命题中真命题的是()A.p∧(綈q) B.(綈p)∧(綈q)C.(綈p)∧q D.p∧q解析:选A由指数函数的性质可知,命题p是真命题,则命题綈p是假命题;显然,“x>1”是“x>2”的必要不充分条件,即命题q是假命题,命题綈q是真命题.所以命题p∧(綈q)是真命题.3.命题“∀x∈R,x2+x+1≥0”的否定为()A.∃x0∈R,x20+x0+1≥0 B.∃x0∈R,x20+x0+1<0C.∀x∈R,x2+x+1≤0 D.∀x∈R,x2+x+1<0解析:选B原命题∀x∈R,x2+x+1≥0为全称命题,所以原命题的否定为:∃x0∈R,x20+x0+1<0.4.若命题p:∃x0,y0∈Z,x20+y20=2 018,则綈p为()A.∀x,y∈Z,x2+y2≠2 018B.∃x0,y0∈Z,x20+y20≠2 018C.∀x,y∈Z,x2+y2=2 018D.不存在x,y∈Z,x2+y2=2 018解析:选A原命题为特称命题,故其否定为全称命题,即綈p:∀x,y∈Z,x2+y2≠2018.[清易错]1.对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再。
第一章集合与常用逻辑用语第一节集__合1.集合的相关概念(1)集合元素的三个特性:确定性、无序性、互异性.(2)元素与集合的两种关系:属于,记为∈;不属于,记为∉.(3)集合的三种表示方法:列举法、描述法、图示法.(4)五个特定的集合:集合自然数集正整数集整数集有理数集实数集符号N N*或N+Z Q R2.集合间的基本关系表示关系文字语言符号语言记法基本关系子集集合A的元素都是集合B的元素x∈A⇒x∈BA⊆B或B⊇A真子集集合A是集合B的子集,且集合B中至少有一个元素不属于AA⊆B,且∃x0∈B,x0∉AA B或B A相等集合A,B的元素完全相同A⊆B,B⊆AA=B空集不含任何元素的集合.空集是任何集合A的子集,是任何非空集合B的真子集∀x,x∉∅,∅⊆A,∅B(B≠∅)∅3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B若全集为U,则集合A的补集为∁U A图形表示意义{x|x∈A,或x∈B} {x|x∈A,且x∈B} {x|x∈U,且x∉A}(1)并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.(2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.(3)补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A;∁U(A∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B).1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若{x2,1}={0,1},则x=0,1.( )(2){x|x≤1}={t|t≤1}.( )(3){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.( )(4)任何一个集合都至少有两个子集.( )(5)若A B,则A⊆B且A≠B.( )(6)对于任意两个集合A,B,关系(A∩B)⊆(A∪B)恒成立.( )(7)若A∩B=A∩C,则B=C.( )答案:(1)×(2)√(3)×(4)×(5)√(6)√(7)×2.(2017·全国卷Ⅱ)设集合A={1,2,3},B={2,3,4},则A∪B=( )A.{1,2,3,4} B.{1,2,3}C.{2,3,4} D.{1,3,4}解析:选A 由题意得A∪B={1,2,3,4}.3.(2017·北京高考)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=( ) A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}解析:选A 由集合交集的定义可得A∩B={x|-2<x<-1}.4.(2017·北京高考)已知全集U=R,集合A={x|x<-2或x>2},则∁U A=( ) A.(-2,2) B.(-∞,-2)∪(2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:选C 由已知可得,集合A的补集∁U A=[-2,2].5.已知集合A={0,1,x2-5x},若-4∈A,则实数x的值为________.解析:∵-4∈A,∴x2-5x=-4,∴x =1或x =4. 答案:1或46.已知集合P ={2,3,4,5,6},Q ={3,4,5,7},若M =P ∩Q ,则M 的子集个数为________. 解析:由题意可知,M ={3,4,5},故M 的子集个数为23=8. 答案:8考点一 集合的基本概念基础送分型考点——自主练透 [考什么·怎么考]集合元素的三大特性是理解集合概念的关键,一般涉及元素与集合之间的关系及根据集合中元素的特性特别是集合中元素的互异性,来确定集合元素的个数或求参数值,属于基础题.22中元素的个数为( )A .3B .2C .1D .0解析:选B 因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.2.(2018·南昌模拟)已知集合M ={1,2},N ={3,4,5},P ={x |x =a +b ,a ∈M ,b ∈N },则集合P 的元素个数为( )A .3B .4C .5D .6解析:选B 因为a ∈M ,b ∈N ,所以a =1或2,b =3或4或5.当a =1时,若b =3,则x =4;若b =4,则x =5;若b =5,则x =6.同理,当a =2时,若b =3,则x =5;若b =4,则x =6;若b =5,则x =7,由集合中元素的特性知P ={4,5,6,7},则P 中的元素共有4个.3.若集合A ={x ∈R|ax 2-3x +2=0}中只有一个元素,则a 等于( ) A.92 B.98 C .0D .0或98解析:选D 若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意.当a ≠0时,由Δ=(-3)2-8a =0,得a =98,所以a 的值为0或98.4.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a,b ,则b -a =( )A .1B .-1C .2D .-2解析:选C 因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a,b ,所以a ≠0,a +b =0,则b a=-1,所以a=-1,b =1.所以b -a =2.5.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.解析:由题意得m +2=3或2m 2+m =3,则m =1或m =-32,当m =1时,m +2=3且2m2+m =3,根据集合元素的互异性可知不满足题意;当m =-32时,m +2=12,而2m 2+m =3,故m =-32.答案:-32[怎样快解·准解]1.与集合中的元素有关的解题策略(1)确定集合中的代表元素是什么,即集合是数集还是点集. (2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.2.常见易错探因第2题,第5题易忽视集合中元素的互异性而导致错误;第3题集合A 中只有一个元素,要分a =0与a ≠0两种情况进行讨论,此题易忽视a =0的情形.考点二 集合间的基本关系基础送分型考点——自主练透集合间的关系有相等、子集(包含真子集)等,其中子集是高考考查重点,要能准确判定一个具体集合是否是另一个具体集合的子集.多以选择题形式出现,属于基础题.1.已知集合A ={x |x 2-3x +2=0,x ∈R},B ={x |0<x <5,x ∈N},则( ) A .B ⊆A B .A =B C .A BD .B A解析:选C 由x 2-3x +2=0得x =1或x =2,∴A ={1,2}.由题意知B ={1,2,3,4},比较A ,B 中的元素可知A B ,故选C.2.(2018·烟台调研)已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π4+π4,k ∈Z ,集合N = ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π8+π4,k ∈Z ,则( )A .M ∩N =∅B .M ⊆NC .N ⊆MD .M ∪N =M解析:选B 由题意可知,M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =2k +4π8-π4, k ∈Z ,=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =2n π8-π4,n ∈Z ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =2k π8-π4或,x =2k -1π8-π4,k ∈Z ,所以M ⊆N ,故选B. 3.(2018·云南第一次检测)设集合A ={x |-x 2-x +2<0},B ={x |2x -5>0},则集合A 与B 的关系是( )A .B ⊆A B .B ⊇AC .B ∈AD .A ∈B解析:选A 因为A ={x |-x 2-x +2<0}={x |x >1或x <-2},B ={x |2x -5>0}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >52.在数轴上标出集合A 与集合B ,如图所示,可知,B ⊆A . [题型技法]判断集合间关系的3种方法列举法根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系.(如第1题)结构法从元素的结构特点入手,结合通分、化简、变形等技巧,从元素结构上找差异进行判断.(如第2题)数轴法在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系.(如第3题)4.(2018·云南师大附中模拟)集合A ={x |x 2-a ≤0},B ={x |x <2},若A ⊆B ,则实数a 的取值范围是( )A .(-∞,4]B .(-∞,4)C .[0,4]D .(0,4)解析:选B 集合A 就是不等式x 2-a ≤0,即x 2≤a 的解集.①当a <0时,不等式无解,故A =∅.此时显然满足A ⊆B .②当a =0时,不等式为x 2≤0,解得x =0,所以A ={0}.显然{0}⊆{x |x <2},即满足A ⊆B .③当a >0时,解不等式x 2≤a ,得-a ≤x ≤a .所以A =[-a ,a ].由A ⊆B 可得,a <2,解得0<a <4.综上,实数a 的取值范围为(-∞,0)∪{0}∪(0,4)=(-∞,4).故选B.5.已知a ∈R ,b ∈R ,若{a ,ln(b +1),1}={a 2,a +b,0},则a2 018+b2 018=________.解析:由已知得a ≠0,ln(b +1)=0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a2 018+b2 018=1.答案:16.已知集合A ={x |1≤x <5},B ={x |-a <x ≤a +3},若B ⊆(A ∩B ),则a 的取值范围为________.解析:因为B ⊆(A ∩B ),所以B ⊆A .①当B =∅时,满足B ⊆A ,此时-a ≥a +3,即a ≤-32;②当B ≠∅时,要使B ⊆A ,则⎩⎪⎨⎪⎧-a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.由①②可知,a 的取值范围为(-∞,-1].答案:(-∞,-1] [题型技法]利用集合间关系求解参数问题的策略化简要分类若参数在元素的性质特征之中,多以一次不等式或二次不等式的形式出现,此时要对其进行合理分类,分类的主要依据就是参数对该不等式的对应方程的解的影响.分类的主要层次为:①最高次幂系数是否为0;②方程是否有解;③解之间的大小关系.(如第4题)关系要分类已知两个集合之间的关系求参数的取值,要注意对集合是否为空集进行分类讨论,因为∅是任意一个集合的子集.(如第6题)“端点”要取舍利用集合之间的子集关系确定参数所满足的条件,实际上就是比较两个区间端点值的大小关系,所以集合对应区间的端点的取舍对两个集合之间的关系有制约作用,这也是区分子集与真子集的关键.如已知A =(1,3],B=[a ,b ](a <b ),若B ⊆A ,则⎩⎪⎨⎪⎧a >1,b ≤3;若A ⊆B ,则⎩⎪⎨⎪⎧a ≤1,b ≥3集合的基本运算是历年高考的热点.高考中主要考查求集合的交、并、补运算,常与解不等式、求函数定义域和值域等知识相结合,考查题型主要是选择题,偶尔也出现填空题,属于基础题.1.已知集合A ={x |x 2-6x +5≤0},B ={x |y =log 2(x -2)},则A ∩B =( ) A .(1,2) B .[1,2) C .(2,5]D .[2,5]解析:选C 由x 2-6x +5≤0的解集为{x |1≤x ≤5},得A =[1,5].由x -2>0,解得x >2,故B =(2,+∞).把两个集合A ,B 在数轴上表示出来,如图,可知A ∩B =(2,5].2.(2018·湖南湘潭模拟)已知全集U =R ,集合M ={x ||x |<1},N ={y |y =2x,x ∈R},则集合∁U (M ∪N )=( )A .(-∞,-1]B .(-1,2)C .(-∞,-1]∪[2,+∞)D .[2,+∞)解析:选A 解|x |<1,得-1<x <1, 所以M =(-1,1). 集合N 中的代表元素为y ,所以该集合是函数y =2x,x ∈R 的值域,即N =(0,+∞). 从而M ∪N =(-1,+∞).因为U =R ,所以∁U (M ∪N )=(-∞,-1],故选A.3.已知全集U =R ,集合A ={x |x 2-3x -4>0},B ={x |-2≤x ≤2},则如图所示阴影部分所表示的集合为( )A .{x |-2≤x <4}B .{x |x ≤2或x ≥4}C .{x |-2≤x ≤-1}D .{x |-1≤x ≤2}解析:选D 依题意得A ={x |x <-1或x >4},因此∁R A ={x |-1≤x ≤4},题中的阴影部分所表示的集合为(∁R A )∩B ={x |-1≤x ≤2},选D.[解题师说]1.掌握“4种技巧”(1)先“简”后“算”:进行集合的基本运算之前要先对其进行化简,化简时要准确把握元素的性质特征,区分数集与点集等.如求集合P =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x <1的补集,要先进行化简,若直接否定集合P 中元素的性质特征,就会误以为∁R P =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x ≥1,导致漏解. (2)遵“规”守“矩”:定义是进行集合基本运算的依据,交集的运算要抓住“公共元素”,补集的运算要关注“你有我无”的元素.(3)活“性”减“量”:灵活利用交集与并集以及补集的运算性质,特别是摩根定律,即∁U (M ∩N )=(∁U M )∪(∁U N ),∁U (M ∪N )=(∁U M )∩(∁U N )等简化运算,减少运算量.(4)借“形”助“数”:在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化,用数轴表示时要注意端点值的取舍.(如典题领悟第1题)2.谨防“2种失误”(1)进行集合基本运算时要注意对应不等式端点值的处理,尤其是求解集合补集的运算,一定要注意端点值的取舍.(如典题领悟第2题)(2)求集合的补集时,既要注意全集是什么,又要注意求补集的步骤,一般先求出原来的集合,然后求其补集,否则容易漏解.(如典题领悟第3题、冲关演练第3题)[冲关演练]1.(2017·天津高考)设集合A ={1,2,6},B ={2,4},C ={x ∈R|-1≤x ≤5},则(A ∪B )∩C =( )A .{2}B .{1,2,4}C .{1,2,4,6}D .{x ∈R|-1≤x ≤5}解析:选B A ∪B ={1,2,4,6},又C ={x ∈R|-1≤x ≤5},则(A ∪B )∩C ={1,2,4}.2.(2018·合肥质量检测)已知集合A =[1,+∞),B =⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B.⎣⎢⎡⎦⎥⎤12,1C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)解析:选A 因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1.3.(2018·皖北协作区联考)已知集合A ={y |y =x 2-1},B ={x |y =lg(x -2x 2)},则∁R (A ∩B )=( )A.⎣⎢⎡⎭⎪⎫0,12B .(-∞,0)∪⎣⎢⎡⎭⎪⎫12,+∞ C.⎝ ⎛⎭⎪⎫0,12 D .(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞ 解析:选D 因为A ={y |y =x 2-1}=[0,+∞),B ={x |y =lg(x -2x 2)}=⎝ ⎛⎭⎪⎫0,12,所以A ∩B =⎝ ⎛⎭⎪⎫0,12,所以∁R (A ∩B )=(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞.考点四 集合的新定义问题 重点保分型考点——师生共研以集合为载体的新定义问题,是高考命制创新型试题的一个热点,常见的命题形式有新概念、新性质、新法则等,一般以选择题或填空题形式出现,难度中等或偏上.1.设集合A ={-1,0,1},集合B ={-1,1,2,3},定义A #B =⎩⎨⎧⎭⎬⎫z ⎪⎪⎪z =xy,x ∈A ,y ∈B ,则A #B 中元素的个数是( )A .5B .7C .10D .15解析:选B 因为x ∈A ,所以x 可取-1,0,1; 因为y ∈B ,所以y 可取-1,1,2,3. 则z =x y的结果如下表所示:y x-1 1 2 3 -1 1 -1 -12 -13 0 0 0 0 0 1-111213故A #B 中元素有-1,-2,-3,0,3,2,1,共7个,故选B.2.已知集合M ={(x ,y )|y =f (x )},若对于任意实数对(x 1,y 1)∈M ,都存在(x 2,y 2)∈M ,使得x 1x 2+y 1y 2=0成立,则称集合M 是“垂直对点集”.给出下列四个集合:①M =⎩⎨⎧⎭⎬⎫x ,y ⎪⎪⎪y =1x ; ②M ={(x ,y )|y =log 2x }; ③M ={(x ,y )|y =e x-2}; ④M ={(x ,y )|y =sin x +1}. 其中是“垂直对点集”的序号是( ) A .①④ B .②③ C .③④D .②④解析:选C 记A (x 1,y 1),B (x 2,y 2),则由x 1x 2+y 1y 2=0得OA ⊥OB .对于①,对任意A ∈M ,不存在B ∈M ,使得OA ⊥OB .对于②,当A 为点(1,0)时,不存在B ∈M 满足题意.对于③④,对任意A ∈M ,过原点O 可作直线OB ⊥OA ,它们都与函数y =e x-2及y =sin x +1的图象相交,即③④满足题意,故选C.3.设集合A ={-1,0,1},集合B ={0,1,2,3},定义A *B ={(x ,y )|x ∈A ∩B ,y ∈A ∪B },则A *B 中元素的个数是( )A .7B .10C .25D .52解析:选B 因为A ={-1,0,1},B ={0,1,2,3}, 所以A ∩B ={0,1},A ∪B ={-1,0,1,2,3}. 由x ∈A ∩B ,可知x 可取0,1; 由y ∈A ∪B ,可知y 可取-1,0,1,2,3. 所以元素(x ,y )的所有结果如下表所示:[解题师说]与集合相关的新定义问题的解题思路(1)紧扣“新”定义:分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题的关键所在.(2)把握“新”性质:集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.(3)遵守“新”法则:准确把握新定义的运算法则,将其转化为集合的交集、并集与补集的运算即可.[冲关演练]1.定义集合的商集运算为A B=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =m n,m ∈A ,n ∈B ,已知集合A ={2,4,6},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k 2-1,k ∈A ,则集合BA ∪B 中的元素个数为( )A .6B .7C .8D .9解析:选B 由题意知,B ={0,1,2},B A =0,12,14,16,1,13,则BA ∪B =⎩⎨⎧⎭⎬⎫0,12,14,16,1,13,2,共有7个元素,故选B.2.(2018·武昌调研)设A ,B 是两个非空集合,定义集合A -B ={x |x ∈A ,且x ∉B },若A ={x ∈N|0≤x ≤5},B ={x |x 2-7x +10<0},则A -B =( )A .{0,1}B .{1,2}C .{0,1,2}D .{0,1,2,5}解析:选D 因为A ={x ∈N|0≤x ≤5},所以A ={0,1,2,3,4,5}.解不等式x 2-7x +10<0,即(x -2)(x -5)<0,得2<x <5.所以B =(2,5).因为A -B ={x |x ∈A ,且x ∉B },而3,4∈B,0,1,2,5∉B ,所以A -B ={0,1,2,5},故选D.3.(2018·广东揭阳一模)非空数集A 若满足:(1)0∉A ;(2)若∀x ∈A ,有1x∈A ,则称A是“互倒集”.给出以下数集:①{x ∈R|x 2+ax +1=0};②{x |x 2-4x +1<0};③⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y =ln x x ,x ∈⎣⎢⎡⎭⎪⎫1e ,1∪1,e];④⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪⎪y =⎩⎪⎨⎪⎧ 2x +25,x ∈[0,1,x +1x,x ∈[1,2].. 其中“互倒集”的个数是( ) A .4 B .3 C .2D .1解析:选 C 对于①,当-2<a <2时为空集,所以①不是“互倒集”;对于②,{x |x2-4x +1<0}={x |2-3<x <2+3},所以12+3<1x <12-3,即2-3<1x <2+3,所以②是“互倒集”;对于③,y ′=1-ln x x 2≥0,故函数y =ln x x 是增函数,当x ∈⎣⎢⎡⎭⎪⎫1e ,1时,y ∈[-e,0),当x ∈(1,e]时,y ∈⎝ ⎛⎦⎥⎤0,1e ,所以③不是“互倒集”;对于④,y ∈⎣⎢⎡⎭⎪⎫25,125∪⎣⎢⎡⎦⎥⎤2,52=⎣⎢⎡⎦⎥⎤25,52且1y ∈⎣⎢⎡⎦⎥⎤25,52,所以④是“互倒集”,故选C.(一)普通高中适用作业A 级——基础小题练熟练快1.(2017·山东高考)设函数y =4-x 2的定义域为A ,函数y =ln(1-x )的定义域为B ,则A ∩B =( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)解析:选D 由题意可知A ={x |-2≤x ≤2},B ={x |x <1},故A ∩B ={x |-2≤x <1}. 2.(2017·全国卷Ⅲ)已知集合A ={1,2,3,4},B ={2,4,6,8},则A ∩B 中元素的个数为( )A .1B .2C .3D .4解析:选B A ,B 两集合中有两个公共元素2,4,故选B.3.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ∈Z ,且32-x ∈Z ,则集合A 中的元素个数为( ) A .2 B .3 C .4 D .5 解析:选C ∵32-x∈Z ,∴2-x 的取值有-3,-1,1,3,又∵x ∈Z ,∴x 的值分别为5,3,1,-1,故集合A 中的元素个数为4.4.已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A 且y ∈A 且x -y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .10解析:选D 由x ∈A ,y ∈A ,x -y ∈A ,得x -y =1或x -y =2或x -y =3或x -y =4,所以集合B ={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},所以集合B 有10个元素.5.已知集合A ={x |y =1-x 2,x ∈R},B ={x |x =m 2,m ∈A },则( ) A .A B B .B A C .A ⊆BD .B =A解析:选B 因为A ={x |y =1-x 2,x ∈R},所以A ={x |-1≤x ≤1},所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1},所以B A ,故选B.6.已知集合A ={0,1,2m },B ={x |1<22-x<4},若A ∩B ={1,2m },则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,1C.⎝ ⎛⎭⎪⎫0,12∪⎝ ⎛⎭⎪⎫12,1 D .(0,1)解析:选C 因为B ={x |1<22-x<4},所以B ={x |0<2-x <2},所以B ={x |0<x <2}.在数轴上画出集合B ,集合A ∩B ,如图1或图2所示,从图中可知,0<2m <1或1<2m <2,解得0<m <12或12<m <1,所以实数m 的取值范围是⎝ ⎛⎭⎪⎫0,12∪⎝ ⎛⎭⎪⎫12,1.故选C. 7.设集合A ={x |x 2-x -2≤0},B ={x |x <1,且x ∈Z},则A ∩B =________.解析:依题意得A ={x |(x +1)(x -2)≤0}={x |-1≤x ≤2},因此A ∩B ={x |-1≤x <1,x ∈Z}={-1,0}.答案:{-1,0}8.设集合A ={x |(x -a )2<1},且2∈A,3∉A ,则实数a 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧2-a 2<1,3-a2≥1,即⎩⎪⎨⎪⎧1<a <3,a ≤2或a ≥4,所以1<a ≤2.答案:(1,2]9.设A ,B 为两个集合,下列四个命题:①A ⃘B ⇔对任意x ∈A ,有x ∉B ;②A ⃘B ⇔A ∩B =∅; ③A ⃘B ⇔B ⃘A ;④A ⃘B ⇔存在x ∈A ,使得x ∉B . 其中真命题的序号是________.解析:如果对任意x ∈A ,有x ∈B ,则A ⊆B ,若A 中至少有一个元素不在B 中,即存在x ∈A ,使得x ∉B ,则A 不是B 的子集.所以④是真命题.答案:④10.已知集合A ={x |log 2x ≤2},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是__________.解析:由log 2x ≤2,得0<x ≤4, 即A ={x |0<x ≤4},而B ={x |x <a },由于A ⊆B ,在数轴上标出集合A ,B ,如图所示,则a >4. 答案:(4,+∞)B 级——中档题目练通抓牢1.(2018·湘中名校高三联考)已知集合A ={x |x 2-11x -12<0},B ={x |x =2(3n +1),n ∈Z},则A ∩B 等于( )A .{2}B .{2,8}C .{4,10}D .{2,8,10}解析:选B 因为集合A ={x |x 2-11x -12<0}={x |-1<x <12},集合B 为被6整除余数为2的数.又集合A 中的整数有0,1,2,3,4,5,6,7,8,9,10,11,故被6整除余数为2的数有2和8,所以A ∩B ={2,8},故选B.2.(2018·河北衡水中学月考)设A ,B 是两个非空集合,定义运算A ×B ={x |x ∈(A ∪B )且x ∉(A ∩B )},已知A ={x |y =2x -x 2},B ={y |y =2x ,x >0},则A ×B =( )A .[0,1]∪(2,+∞)B .[0,1)∪[2,+∞)C .[0,1]D .[0,2]解析:选A 由题意得A ={x |2x -x 2≥0}={x |0≤x ≤2},B ={y |y >1}, 所以A ∪B =[0,+∞),A ∩B =(1,2], 所以A ×B =[0,1]∪(2,+∞).3.已知全集U =A ∪B 中有m 个元素,()∁U A ∪()∁U B 中有n 个元素.若A ∩B 非空,则A ∩B的元素个数为( )A .mnB .m +nC .n -mD .m -n解析:选D 因为()∁U A ∪()∁U B 中有n 个元素,如图中阴影部分所示,又U =A ∪B 中有m 个元素,故A ∩B 中有m -n 个元素.4.(2018·贵阳监测)已知全集U ={a 1,a 2,a 3,a 4},集合A 是全集U 的恰有两个元素的子集,且满足下列三个条件:①若a 1∈A ,则a 2∈A ; ②若a 3∉A ,则a 2∉A ; ③若a 3∈A ,则a 4∉A .则集合A =________.(用列举法表示)解析:假设a 1∈A ,则a 2∈A ,由若a 3∉A ,则a 2∉A 可知,a 3∈A ,故假设不成立;假设a 4∈A ,则a 3∉A ,a 2∉A ,a 1∉A ,故假设不成立.故集合A ={a 2,a 3}.答案:{a 2,a 3}5.已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为________. 解析:当m ≤0时,B =∅,显然B ⊆A . 当m >0时,∵A ={x |-1<x <3}.当B ⊆A 时,在数轴上标出两集合,如图,∴⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .∴0<m ≤1.综上所述,m 的取值范围为(-∞,1]. 答案:(-∞,1]6.设全集U =R ,A ={x |1≤x ≤3},B ={x |2<x <4},C ={x |a ≤x ≤a +1}. (1)分别求A ∩B ,A ∪(∁U B );(2)若B ∪C =B ,求实数a 的取值范围.解:(1)由题意知,A ∩B ={x |1≤x ≤3}∩{x |2<x <4}={x |2<x ≤3}. 易知∁U B ={x |x ≤2或x ≥4},所以A ∪(∁U B )={x |1≤x ≤3}∪{x |x ≤2或x ≥4}={x |x ≤3或x ≥4}. (2)由B ∪C =B ,可知C ⊆B ,画出数轴(图略), 易知2<a <a +1<4,解得2<a <3. 故实数a 的取值范围是(2,3).7.已知集合A ={x ∈R|x 2-ax +b =0},B ={x ∈R|x 2+cx +15=0},A ∩B ={3},A ∪B ={3,5}.(1)求实数a ,b ,c 的值.(2)设集合P ={x ∈R|ax 2+bx +c ≤7},求集合P ∩Z. 解:(1)因为A ∩B ={3},所以3∈B , 所以32+c ×3+15=0,解得c =-8, 所以B ={x ∈R|x 2-8x +15=0}={3,5}. 又因为A ∩B ={3},A ∪B ={3,5},所以A ={3}, 所以方程x 2-ax +b =0有两个相等的实数根都是3, 所以a =6,b =9.(2)不等式ax 2+bx +c ≤7,即为6x 2+9x -8≤7, 所以2x 2+3x -5≤0,所以-52≤x ≤1,所以P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-52≤x ≤1, 所以P ∩Z={-2,-1,0,1}. C 级——重难题目自主选做1.对于非空集合A ,B ,定义运算:A ⊕B ={x |x ∈A ∪B ,且x ∉A ∩B }.已知非空集合M ={x |a <x <b },N ={x |c <x <d },其中a ,b ,c ,d 满足a +b =c +d ,ab <cd <0,则M ⊕N =( )A .(a ,d )∪(b ,c )B .(c ,a )∪(d ,b )C .(c ,a )∪[b ,d )D .(a ,c ]∪[d ,b )解析:选D 由M ={x |a <x <b },得a <b .又ab <0,∴a <0<b .同理可得c <0<d ,由ab <cd <0,c <0,b >0可得a c >db ,∴a -c c >d -b b .又∵a +b =c +d ,∴a -c =d -b ,∴d -bc>d -bb,∵c <0,b >0,∴d -b <0,因此a -c <0,∴a <c <0<d <b ,∴M ∩N =N ,∴M ⊕N ={x |a <x ≤c 或d ≤x <b }=(a ,c ]∪[d ,b ).故选D.2.已知k 为合数,且1<k <100,当k 的各数位上的数字之和为质数时,称此质数为k 的“衍生质数”.(1)若k 的“衍生质数”为2,则k =________;(2)设集合A ={P (k )|P (k )为k 的“衍生质数”},B ={k |P (k )为k 的“衍生质数”},则集合A ∪B 中元素的个数是________.解析:(1)依题意设k =10a +b (a ∈N *,b ∈N),则a +b =2,又a ∈N *,b ∈N ,则a =2,b =0,故k =20;(2)由(1)知“衍生质数”为2的合数有20,同理可推“衍生质数”为3的合数有12,21,30,“衍生质数”为5的合数有14,32,50,“衍生质数”为7的合数有16,25,34,52,70,“衍生质数”为11的合数有38,56,65,74,92,“衍生质数”为13的合数有49,58,76,85,94,“衍生质数”为17的合数有98,所以集合A 有7个元素,集合B 有23个元素,故集合A ∪B 中有30个元素.答案:20 30(二)重点高中适用作业A 级——保分题目巧做快做1.已知集合A =⎩⎨⎧⎭⎬⎫xx ∈Z ,且32-x ∈Z ,则集合A 中的元素个数为( ) A .2 B .3 C .4 D .5解析:选C ∵32-x∈Z ,∴2-x 的取值有-3,-1,1,3,又∵x ∈Z ,∴x 的值分别为5,3,1,-1,故集合A 中的元素个数为4.2.已知集合A ={x |y =1-x 2,x ∈R},B ={x |x =m 2,m ∈A },则( ) A .A B B .B A C .A ⊆BD .B =A解析:选B 因为A ={x |y =1-x 2,x ∈R},所以A ={x |-1≤x ≤1},所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1},所以B A .3.(2018·湖北七市(州)协作体联考)已知集合P ={n |n =2k -1,k ∈N *,k ≤50},Q ={2,3,5},则集合T ={xy |x ∈P ,y ∈Q }中元素的个数为( )A .147B .140C .130D .117解析:选B 由题意得,y 的取值一共有3种情况,当y =2时,xy 是偶数,不与y =3,y =5时有相同的元素,当y =3,x =5,15,25,...,95时,与y =5,x =3,9,15, (57)有相同的元素,共10个,故所求元素个数为3×50-10=140.4.(2018·河北衡水调研)已知集合A ={x |log 2x <1},B ={x |0<x <c },若A ∪B =B ,则c 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,2]D .[2,+∞)解析:选D A ={x |log 2x <1}={x |0<x <2},因为A ∪B =B ,所以A ⊆B ,所以c ≥2. 5.(2018·河北正定中学月考)已知集合P ={y |y 2-y -2>0},Q ={x |x 2+ax +b ≤0}.若P ∪Q =R ,且P ∩Q =(2,3],则a +b =( )A .-5B .5C .-1D .1解析:选A P ={y |y 2-y -2>0}={y |y >2或y <-1}.由P ∪Q =R 及P ∩Q =(2,3],得Q =[-1,3],所以-a =-1+3,b =-1×3,即a =-2,b =-3,a +b =-5,故选A.6.设集合A ={x |(x -a )2<1},且2∈A,3∉A ,则实数a 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧2-a 2<1,3-a2≥1,即⎩⎪⎨⎪⎧1<a <3,a ≤2或a ≥4,所以1<a ≤2.答案:(1,2]7.设集合A ={x |x 2-x -2≤0},B ={x |x <1,且x ∈Z},则A ∩B =________.解析:依题意得A ={x |(x +1)(x -2)≤0}={x |-1≤x ≤2},因此A ∩B ={x |-1≤x <1,x ∈Z}={-1,0}.答案:{-1,0}8.设全集为R ,集合A ={x |x 2-9<0},B ={x |-1<x ≤5},则A ∩(∁R B )=______________.解析:由题意知,A ={x |x 2-9<0}={x |-3<x <3}, ∵B ={x |-1<x ≤5},∴∁R B ={x |x ≤-1或x >5}.∴A ∩(∁R B )={x |-3<x <3}∩{x |x ≤-1或x >5}={x |-3<x ≤-1}. 答案:{x |-3<x ≤-1}9.(2018·江西玉山一中月考)已知集合A ={x |3≤3x≤27},B ={x |log 2x >1}.(1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围.解:(1)∵3≤3x ≤27,即31≤3x ≤33,∴1≤x ≤3,∴A ={x |1≤x ≤3}.∵log 2x >1,即log 2x >log 22,∴x >2,∴B ={x |x >2}.∴A ∩B ={x |2<x ≤3}. ∴∁R B ={x |x ≤2},∴(∁R B )∪A ={x |x ≤3}. (2)由(1)知A ={x |1≤x ≤3},C ⊆A . 当C 为空集时,满足C ⊆A ,a ≤1; 当C 为非空集合时,可得1<a ≤3.综上所述,a ≤3.实数a 的取值范围是(-∞,3].10.已知集合A ={x ∈R|x 2-ax +b =0},B ={x ∈R|x 2+cx +15=0},A ∩B ={3},A ∪B ={3,5}.(1)求实数a ,b ,c 的值.(2)设集合P ={x ∈R|ax 2+bx +c ≤7},求集合P ∩Z. 解:(1)因为A ∩B ={3},所以3∈B , 所以32+c ×3+15=0,解得c =-8, 所以B ={x ∈R|x 2-8x +15=0}={3,5}. 又因为A ∩B ={3},A ∪B ={3,5},所以A ={3}, 所以方程x 2-ax +b =0有两个相等的实数根都是3, 所以a =6,b =9.(2)不等式ax 2+bx +c ≤7,即为6x 2+9x -8≤7, 所以2x 2+3x -5≤0,所以-52≤x ≤1,所以P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-52≤x ≤1, 所以P ∩Z={-2,-1,0,1}. B 级——拔高题目稳做准做1.对于非空集合A ,B ,定义运算:A ⊕B ={x |x ∈A ∪B ,且x ∉A ∩B }.已知非空集合M ={x |a <x <b },N ={x |c <x <d },其中a ,b ,c ,d 满足a +b =c +d ,ab <cd <0,则M ⊕N =( )A .(a ,d )∪(b ,c )B .(c ,a )∪(d ,b )C .(c ,a )∪[b ,d )D .(a ,c ]∪[d ,b )解析:选D 由M ={x |a <x <b },得a <b .又ab <0,∴a <0<b .同理可得c <0<d ,由ab <cd <0,c <0,b >0可得a c >d b ,∴a -c c >d -b b .又∵a +b =c +d ,∴a -c =d -b ,∴d -bc>d -bb,∵c <0,b >0,∴d -b <0,因此a -c <0,∴a <c <0<d <b ,∴M ∩N =N ,∴M ⊕N ={x |a <x ≤c 或d ≤x <b }=(a ,c ]∪[d ,b ).故选D.2.设平面点集A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪⎭⎪⎫y -x ⎝ ⎛y -1x ≥0,B ={(x ,y )|(x -1)2+(y -1)2≤1},则A ∩B 所表示的平面图形的面积为( )A.34π B.35π C.47π D.π2解析:选 D 不等式(y -x )·⎝⎛⎭⎪⎫y -1x ≥0可化为⎩⎪⎨⎪⎧y -x ≥0,y -1x≥0或⎩⎪⎨⎪⎧y -x ≤0,y -1x≤0.集合B 表示圆(x -1)2+(y -1)2=1上以及圆内部的点所构成的集合,A ∩B 所表示的平面区域如图所示.曲线y =1x,圆(x -1)2+(y -1)2=1均关于直线y =x 对称,所以阴影部分占圆面积的一半,即为π2. 3.已知集合A ={x |a -1<x <a +1},B ={x |x 2-5x +4≥0},若A ∩B =∅,则实数a 的取值范围是________.解析:因为A ={x |a -1<x <a +1},B =(-∞,1]∪[4,+∞),由已知A ∩B =∅,所以⎩⎪⎨⎪⎧a -1≥1,a +1≤4,所以2≤a ≤3.答案:[2,3]4.(2018·贵阳监测)已知全集U ={a 1,a 2,a 3,a 4},集合A 是全集U 的恰有两个元素的子集,且满足下列三个条件:①若a 1∈A ,则a 2∈A ; ②若a 3∉A ,则a 2∉A ;③若a 3∈A ,则a 4∉A .则集合A =________.(用列举法表示)解析:假设a 1∈A ,则a 2∈A ,由若a 3∉A ,则a 2∉A 可知,a 3∈A ,故假设不成立;假设a 4∈A ,则a 3∉A ,a 2∉A ,a 1∉A ,故假设不成立.故集合A ={a 2,a 3}.答案:{a 2,a 3}5.已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R}.(1)若A ∩B =[0,3],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围. 解:由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)因为A ∩B =[0,3],所以⎩⎪⎨⎪⎧m -2=0,m +2≥3.所以m =2.(2)∁R B ={x |x <m -2或x >m +2}, 因为A ⊆∁R B ,所以m -2>3或m +2<-1, 即m >5或m <-3.因此实数m 的取值范围是(-∞,-3)∪(5,+∞). 6.若集合M ={x |-3≤x ≤4},集合P ={x |2m -1≤x ≤m +1}. (1)证明M 与P 不可能相等;(2)若集合M 与P 中有一个集合是另一个集合的真子集,求实数m 的取值范围. 解:(1)证明:若M =P ,则-3=2m -1且4=m +1, 解得m =-1且m =3,不成立. 故M 与P 不可能相等.(2)若P M ,当P ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1<4,m +1≥2m -1或⎩⎪⎨⎪⎧-3<2m -1,m +1≤4,m +1≥2m -1,解得-1≤m ≤2;当P =∅时,有2m -1>m +1,解得m >2,即m ≥-1; 若M P ,则⎩⎪⎨⎪⎧-3≥2m -1,4<m +1,m +1≥2m -1或⎩⎪⎨⎪⎧-3>2m -1,4≤m +1,m +1≥2m -1,无解.综上可知,当有一个集合是另一个集合的真子集时,只能是P M ,此时必有m ≥-1, 即实数m 的取值范围为[-1,+∞).第二节命题及其关系、充分条件与必要条件1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.3.充要条件充分条件与必要条件的定义从集合角度理解若p⇒q,则p是q的充分条件,q是p的必要条件p成立的对象的集合为A,q成立的对象的集合为Bp是q的充分不必要条件p⇒q且q⇒/p A是B的真子集集合与充要条件的关系p是q的必要不充分条件p⇒/q且q⇒p B是A的真子集p是q的充要条件p⇔q A=Bp是q的既不充分也不必要条件p⇒/q且q⇒/p A,B互不包含1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)“x2+2x-8<0”是命题.( )(2)一个命题非真即假.( )(3)四种形式的命题中,真命题的个数为0或2或4.( )(4)命题“若p,则q”的否命题是“若p,则綈q”.( )(5)若p是q成立的充分条件,则q是p成立的必要条件.( )答案:(1)× (2)√ (3)√ (4)× (5)√ 2.命题“若a >b ,则a +c >b +c ”的否命题是( ) A .若a ≤b ,则a +c ≤b +c B .若a +c ≤b +c ,则a ≤b C .若a +c >b +c ,则a >b D .若a >b ,则a +c ≤b +c解析:选A 命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b ,则a +c ≤b +c ”.3.在△ABC 中,“A >B ”是“sin A >sin B ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C 由正弦定理知a sin A =bsin B =2R (R 为△ABC 外接圆半径).若sin A >sin B ,则a 2R >b2R,即a >b ,所以A >B ;若A >B ,则a >b ,所以2R sin A >2R sin B ,即sin A >sin B ,所以“A >B ”是“sin A >sin B ”成立的充要条件.4.(2018·唐山一模)若x ∈R ,则“x >1”是“1x<1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 当x >1时,1x <1成立,而当1x <1时,x >1或x <0,所以“x >1”是“1x<1”的充分不必要条件,选A.5.“若a <b ,则ac 2<bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.解析:原命题:“若a <b ,则ac 2<bc 2”,这是假命题,因为若c =0时,由a <b ,得到ac 2=bc 2=0,不能推出ac 2<bc 2.逆命题:“若ac 2<bc 2,则a <b ”,这是真命题,因为由ac 2<bc 2得到c 2>0,所以两边同除以c 2,得a <b ,因为原命题和逆否命题的真假性相同,逆命题和否命题的真假性相同,所以真命题的个数是2.答案:26.设向量a =(x -1,x ),b =(x +2,x -4),则“a ⊥b ”是“x =2”的________条件. 解析:a =(x -1,x ),b =(x +2,x -4), 若a ⊥b ,则a·b =0, 即(x -1)(x +2)+x (x -4)=0,解得x =2或x =-12,∴x =2⇒a ⊥b ,反之a ⊥b ⇒x =2或x =-12,∴“a ⊥b ”是“x =2”的必要不充分条件. 答案:必要不充分考点一 四种命题的相互关系及真假判断基础送分型考点——自主练透[考什么·怎么考]四种命题的关系及其真假判断是高考的热点之一,一是对“若p ,则q ”形式命题的改写要熟练,二是弄清命题的四种形式之间的真假关系.一般以选择题、填空题形式出现,属于基础题.A .否命题是“正弦函数是分段函数”B .逆命题是“分段函数不是正弦函数”C .逆否命题是“分段函数是正弦函数”D .以上都不正确解析:选D 原命题可写成“若一个函数是正弦函数,则该函数不是分段函数”,否命题为“若一个函数不是正弦函数,则该函数是分段函数”,逆命题为“若一个函数不是分段函数,则该函数是正弦函数”,逆否命题为“若一个函数是分段函数,则该函数不是正弦函数”,可知A 、B 、C 都是错误的,故选D.2.设原命题:若a +b ≥2,则a ,b 中至少有一个不小于1,则原命题与其逆命题的真假情况是( )A .原命题真,逆命题假B .原命题假,逆命题真C .原命题与逆命题均为真命题D .原命题与逆命题均为假命题解析:选A 可以考虑原命题的逆否命题,即a ,b 都小于1,则a +b <2,显然为真.其逆命题,即若a ,b 中至少有一个不小于1,则a +b ≥2为假,如a =1.2,b =0.2,则a +b <2.3.命题“已知a >1,若x >0,则a x>1”的否命题为( ) A .已知0<a <1,若x >0,则a x>1 B .已知a >1,若x ≤0,则a x >1C .已知a >1,若x ≤0,则a x≤1 D .已知0<a <1,若x ≤0,则a x≤1解析:选C 命题中,“已知a >1”是大前提,在四种命题中不能改变;“x >0”是条件,“a x>1”是结论.由于命题“若p ,则q ”的否命题为“若綈p ,则綈q ”,故该命题的否命题为“已知a >1,若x ≤0,则a x≤1”.故选C.[怎样快解·准解]1.判断命题真假的2种方法(1)直接判断:判断一个命题是真命题,需经过严格的推理证明;而要说明它是假命题,只需举一反例即可.(如第2题逆命题的真假判断)(2)间接判断(等价转化):由于原命题与其逆否命题为等价命题,如果原命题的真假不易直接判断,那么可以利用这种等价性间接地判断命题的真假.(如第2题原命题的真假判断)2.谨防3类失误(1)如果原命题是“若p ,则q ”,则否命题是“若綈p ,则綈q ”,而命题的否定是“若p ,则綈q ”,即否命题是对原命题的条件和结论同时否定,命题的否定仅仅否定原命题的结论(条件不变).(2)对于不是“若p ,则q ”形式的命题,需先改写.(如第1题) (3)当命题有大前提时,写其他三种命题时需保留大前提.(如第3题) 考点二 充分、必要条件的判断重点保分型考点——师生共研充分条件、必要条件以其独特的表达形式成为高考命题的热点.高考主要考查充分条件、必要条件的判断,常以选择题的形式出现,难度不大,属于基础题.,充分条件、必要条件作为一个重要载体,考查的数学知识面较广,几乎涉及数学知识各个方面.1.(2017·北京高考)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A ∵m =λn ,∴m ·n =λn ·n =λ|n |2. ∴当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π,当〈m ,n 〉∈⎝ ⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件.2.(2017·天津高考)设x∈R,则“2-x≥0”是“|x-1|≤1”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选B 由2-x≥0,得x≤2,由|x-1|≤1,得0≤x≤2.∵0≤x≤2⇒x≤2,x≤2⇒/ 0≤x≤2,故“2-x≥0”是“|x-1|≤1”的必要而不充分条件.3.已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A 因为p:x+y≠-2,q:x≠-1,或y≠-1,所以綈p:x+y=-2,綈q:x=-1,且y=-1,因为綈q⇒綈p但綈p⇒/綈q,所以綈q是綈p的充分不必要条件,即p是q的充分不必要条件.4.(2018·江西鹰潭中学月考)设f(x)=x2-4x(x∈R),则f(x)>0的一个必要不充分条件是( )A.x<0 B.x<0或x>4C.|x-1|>1 D.|x-2|>3解析:选C 依题意,f(x)>0⇔x2-4x>0⇔x<0或x>4.又|x-1|>1⇔x-1<-1或x-1>1,即x<0或x>2,而{x|x<0或x >4}{x|x<0或x>2},因此选C.[解题师说]1.熟记判断充分、必要条件的3种方法方法解读适合题型定义法第一步,分清条件和结论:分清谁是条件,谁是结论;第二步,找推式:判断“p⇒q”及“q⇒p”的真假;第三步,下结论:根据推式及定义下结论定义法是判断充分、必要条件最根本、最适用的方法.(如典题领悟第1题)等价法利用p⇒q与綈q⇒綈p;q⇒p与綈p⇒綈q;p⇔q与綈q⇔綈p的等价关系适用于“直接正面判断不方便”的情况,可将命题转化为另一个等价的又便于判断真假的命题,再去判断.常用的是逆否等价法.(如典题领悟第3题)集合法记条件p,q对应的集合分别为A,B.若A B,则p是q的充分不必要条件;适用于“当所要判断的命题与方程的根、不等式的解集以及集合。
第1讲集合与常用逻辑用语考情解读(1)集合是高考必考知识点,经常以不等式解集、函数的定义域、值域为背景考查集合的运算,近几年也出现一些集合的新定义问题.(2)高考中考查命题的真假判断或命题的否定或充要条件的判断.1.集合的概念、关系(1)集合中元素的特性:确定性、互异性、无序性,求解含参数的集合问题时要根据互异性进行检验.(2)集合与集合之间的关系:A⊆B,B⊆C⇒A⊆C,空集是任何集合的子集,含有n个元素的集合的子集数为2n,真子集数为2n-1,非空真子集数为2n-2.2.集合的基本运算(1)交集:A∩B={x|x∈A,且x∈B}.(2)并集:A∪B={x|x∈A,或x∈B}.(3)补集:∁U A={x|x∈U,且x∉A}.重要结论:A∩B=A⇔A⊆B;A∪B=A⇔B⊆A.3.四种命题及其关系四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假,遇到复杂问题正面解决困难的,采用转化为反面情况处理.4.充分条件与必要条件若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇔q,则p,q互为充要条件.5.基本逻辑联结词(1)命题p∨q,只要p,q有一真,即为真;命题p∧q,只有p,q均为真,才为真;綈p和p为真假对立的命题.(2)命题p∨q的否定是(綈p)∧(綈q);命题p∧q的否定是(綈p)∨(綈q).6.全称量词与存在量词“∀x∈M,p(x)”的否定为“∃x0∈M,綈p(x0)”;“∃x0∈M,p(x0)”的否定为“∀x∈M,綈p(x)”.热点一集合的关系及运算例1(1)(2014·四川改编)已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=________.(2)(2013·广东改编)设整数n≥4,集合X={1,2,3,…,n},令集合S={(x,y,z)|x,y,z∈X,且三条件x<y<z,y<z<x,z<x<y恰有一个成立}.若(x,y,z)和(z,w,x)都在S中,则下列命题正确的是________.①(y,z,w)∈S,(x,y,w)∉S;②(y,z,w)∈S,(x,y,w)∈S;③(y,z,w)∉S,(x,y,w)∈S;④(y,z,w)∉S,(x,y,w)∉S.思维启迪明确集合的意义,理解集合中元素的性质特征.答案(1){-1,0,1,2}(2)②解析(1)因为A={x|x2-x-2≤0}={x|-1≤x≤2},又因为集合B为整数集,所以集合A∩B ={-1,0,1,2}.(2)因为(x,y,z)和(z,w,x)都在S中,不妨令x=2,y=3,z=4,w=1,则(y,z,w)=(3,4,1)∈S,(x,y,w)=(2,3,1)∈S,故(y,z,w)∉S,(x,y,w)∉S的说法均错误,可以排除①③④,故②正确.思维升华(1)对于集合问题,抓住元素的特征是求解的关键,要注意集合中元素的三个特征的应用,要注意检验结果.(2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证.(1)已知集合M={1,2,3},N={x∈Z|1<x<4},则M∩N=________.(2)(2013·山东改编)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是________.答案(1){2,3}(2)5解析(1)集合N是要求在(1,4)范围内取整数,所以N={x∈Z|1<x<4}={2,3},所以M∩N={2,3}.-2,-1,0,1,2.(2)x-y∈{}热点二四种命题与充要条件例2(1)(2014·天津改编)设a,b∈R,则“a>b”是“a|a|>b|b|”的________条件.(2)(2014·江西改编)下列叙述中正确的是________.①若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”;②若a,b,c∈R,则“ab2≥cb2”的充要条件是“a>c”;③命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”;④l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β.思维启迪要明确四种命题的真假关系;充要条件的判断,要准确理解充分条件、必要条件的含义.答案(1)充要(2)④解析(1)当b<0时,显然有a>b⇔a|a|>b|b|;当b=0时,显然有a>b⇔a|a|>b|b|;当b>0时,a>b有|a|>|b|,所以a>b⇔a|a|>b|b|.综上可知a>b⇔a|a|>b|b|.(2)由于“若b2-4ac≤0,则ax2+bx+c≥0”是假命题,所以“ax2+bx+c≥0”的充分条件不是“b2-4ac≤0”,①错;因为ab2>cb2,且b2>0,所以a>c.而a>c时,若b2=0,则ab2>cb2不成立,由此知“ab2>cb2”是“a>c”的充分不必要条件,②错;“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2<0”,③错;由l⊥α,l⊥β,可得α∥β,理由:垂直于同一条直线的两个平面平行,④正确.思维升华(1)四种命题中,原命题与逆否命题等价,逆命题与否命题等价;(2)充要条件的判断常用“以小推大”的技巧,即小范围推得大范围,判断一个命题为假可以借助反例.(1)命题“若a,b都是偶数,则a+b是偶数”的逆否命题是________.(2)“log3M>log3N”是“M>N成立”的________条件.(从“充要”、“充分不必要”、“必要不充分”中选择一个正确的填写)答案(1)若a+b不是偶数,则a,b不都是偶数(2)充分不必要解析(1)判断词“都是”的否定是“不都是”.(2)由log3M>log3N,又因为对数函数y=log3x在定义域(0,+∞)单调递增,所以M>N;当M>N 时,由于不知道M、N是否为正数,所以log3M、log3N不一定有意义.故不能推出log3M>log3N,所以“log3M>log3N”是“M>N成立”的充分不必要条件.热点三逻辑联结词、量词例3(1)已知命题p:∃x∈R,x-2>lg x,命题q:∀x∈R,sin x<x,则下列命题正确的是________.①命题p∨q是假命题②命题p∧q是真命题③命题p ∧(綈q )是真命题 ④命题p ∨(綈q )是假命题(2)已知p :∃x ∈R ,mx 2+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是_________________________________________________________________.思维启迪 (1)先判断命题p 、q 的真假,再利用真值表判断含逻辑联结词命题的真假;(2)含量词的命题要理解量词含义,确定参数范围.答案 (1)③ (2)[1,+∞)解析 (1)对于命题p ,取x =10,则有10-2>lg 10,即8>1,故命题p 为真命题;对于命题q ,取x =-π2,则sin x =sin(-π2)=-1,此时sin x >x ,故命题q 为假命题,因此命题p ∨q 是真命题,命题p ∧q 是假命题,命题p ∧(綈q )是真命题,命题p ∨(綈q )是真命题,故③正确.(2)∵p ∨q 为假命题,∴p 和q 都是假命题.由p :∃x ∈R ,mx 2+2≤0为假命题,得綈p :∀x ∈R ,mx 2+2>0为真命题,∴m ≥0.①由q :∀x ∈R ,x 2-2mx +1>0为假命题,得綈q :∃x ∈R ,x 2-2mx +1≤0为真命题,∴Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1.②由①和②,得m ≥1.思维升华 (1)命题的否定和否命题是两个不同的概念:命题的否定只否定命题的结论,真假与原命题相对立;(2)判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取值范围,还可以考虑从集合的角度来思考,将问题转化为集合间的运算.(1)已知命题p :在△ABC 中,“C >B ”是“sin C >sin B ”的充分不必要条件;命题q :“a >b ”是“ac 2>bc 2”的充分不必要条件,则下列命题中正确的是________.①p 真q 假 ②p 假q 真③“p ∧q ”为假 ④“p ∧q ”为真(2)已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”.若命题“(綈p )∧q ”是真命题,则实数a 的取值范围是________.答案 (1)③ (2)(1,+∞)解析 (1)△ABC 中,C >B ⇔c >b ⇔2R sin C >2R sin B (R 为△ABC 外接圆半径),所以C >B ⇔sin C >sin B .故“C >B ”是“sin C >sin B ”的充要条件,命题p 是假命题.若c =0,当a >b 时,则ac 2=0=bc 2,故a >b ac 2>bc 2,若ac 2>bc 2,则必有c ≠0,则c 2>0,则有a >b ,所以ac 2>bc 2⇒a >b ,故“a >b ”是“ac 2>bc 2”的必要不充分条件,故命题q 也是假命题.(2)命题p为真时a≤1;“∃x0∈R,x20+2ax0+2-a=0”为真,即方程x2+2ax+2-a=0有实根,故Δ=4a2-4(2-a)≥0,解得a≥1或a≤-2.(綈p)∧q为真命题,即綈p真且q真,即a>1.1.解答有关集合问题,首先正确理解集合的意义,准确地化简集合是关键;其次关注元素的互异性,空集是任何集合的子集等问题,关于不等式的解集、抽象集合问题,要借助数轴和Venn图加以解决.2.判断充要条件的方法,一是结合充要条件的定义;二是根据充要条件与集合之间的对应关系,把命题对应的元素用集合表示出来,根据集合之间的包含关系进行判断,在以否定形式给出的充要条件判断中可以使用命题的等价转化方法.3.含有逻辑联结词的命题的真假是由其中的基本命题决定的,这类试题首先把其中的基本命题的真假判断准确,再根据逻辑联结词的含义进行判断.4.一个命题的真假与它的否命题的真假没有必然的联系,但一个命题与这个命题的否定是互相对立的、一真一假的.真题感悟1.(2014·浙江改编)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=________.答案{2}解析因为A={x∈N|x≤-5或x≥5},所以∁U A={x∈N|2≤x<5},故∁U A={2}.2.(2014·重庆改编)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是________.①p∧q②綈p∧綈q③綈p∧q④p∧綈q答案④解析因为指数函数的值域为(0,+∞),所以对任意x∈R,y=2x>0恒成立,故p为真命题;因为当x>1时,x>2不一定成立,反之当x>2时,一定有x>1成立,故“x>1”是“x>2”的必要不充分条件,故q为假命题,则p∧q、綈p为假命题,綈q为真命题,綈p∧綈q、綈p∧q为假命题,p∧綈q为真命题,故④为真命题.押题精练1.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________.答案 [1,+∞)解析 A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ),因为A ⊆B ,画出数轴,如图所示,得c ≥1.2.已知下列命题:①命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1<3x ”;②已知p ,q 为两个命题,若“p ∨q ”为假命题,则“(綈p )∧(綈q )”为真命题;③“a >2”是“a >5”的充分不必要条件;④“若xy =0,则x =0且y =0”的逆否命题为真命题.其中正确的命题是________.答案 ②解析 命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1≤3x ”,故①错;“p ∨q ”为假命题说明p 假q 假,则(綈p )∧(綈q )为真命题,故②正确;a >5⇒a >2,但a >2a >5,故“a >2”是“a >5”的必要不充分条件,故③错;因为“若xy =0,则x =0或y =0”,所以原命题为假命题,故其逆否命题也为假命题,故④错.3.已知p :x +210-x≥0,q :x 2-2x +1-m 2≤0(m <0),且p 是q 的必要不充分条件,求实数m 的取值范围.解 由x +210-x≥0,得-2≤x <10,即p :-2≤x <10; 由x 2-2x +1-m 2≤0(m <0),得[x -(1+m )]·[x -(1-m )]≤0,所以1+m ≤x ≤1-m ,即q :1+m ≤x ≤1-m .又因为p 是q 的必要条件,所以⎩⎪⎨⎪⎧m +1≥-2,1-m <10,解得m ≥-3, 又m <0,所以实数m 的取值范围是-3≤m <0.(推荐时间:40分钟)1.(2014·陕西改编)设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N =________. 答案 [0,1)解析 N ={x |-1<x <1},M ∩N =[0,1).2.已知集合A ={1,2,3,4,5},B ={5,6,7},C ={(x ,y )|x ∈A ,y ∈A ,x +y ∈B },则C 中所含元素的个数为_______________________________________________________________. 答案 13解析 若x =5∈A ,y =1∈A ,则x +y =5+1=6∈B ,即点(5,1)∈C ;同理,(5,2)∈C ,(4,1)∈C ,(4,2)∈C ,(4,3)∈C ,(3,2)∈C ,(3,3)∈C ,(3,4)∈C ,(2,3)∈C ,(2,4)∈C ,(2,5)∈C ,(1,4)∈C ,(1,5)∈C .所以C 中所含元素的个数为13.3.设全集U 为整数集,集合A ={x ∈N |y =7x -x 2-6},B ={x ∈Z |-1<x ≤3},则图中阴影部分表示的集合的真子集的个数为________.答案 7解析 因为A ={x ∈N |y =7x -x 2-6}={x ∈N |7x -x 2-6≥0}={x ∈N |1≤x ≤6},由题意,知题图中阴影部分表示的集合为A ∩B ={1,2,3},所以其真子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3},共7个.4.“(m -1)(a -1)>0”是“log a m >0”的________条件.答案 必要不充分解析 (m -1)(a -1)>0等价于⎩⎪⎨⎪⎧ m >1,a >1或⎩⎪⎨⎪⎧ m <1,a <1.log a m >0等价于⎩⎪⎨⎪⎧ m >1,a >1或⎩⎪⎨⎪⎧0<m <1,0<a <1,所以前者是后者的必要不充分条件.5.已知命题p :∃x ∈(0,π2),使得cos x ≤x ,则该命题的否定是________. 答案 ∀x ∈(0,π2),使得cos x >x 解析 原命题是一个特称命题,其否定是一个全称命题.而“cos x ≤x ”的否定是“cos x >x ”.6.在△ABC 中,“A =60°”是“cos A =12”的________条件. 答案 充要解析 在A =60°时,有cos A =12,因为角A 是△ABC 的内角,所以,当cos A =12时,也只有A =60°,因此,是充要条件.7.(2013·湖北改编)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x |(12)x ≤1,B ={}x |x 2-6x +8≤0,则A ∩∁R B =________.答案 {x |0≤x <2或x >4}解析 ∵A ={x |x ≥0},B ={x |2≤x ≤4},∴A ∩∁R B ={x |x ≥0}∩{x |x >4或x <2}={x |0≤x <2或x >4}.8.已知集合A ={(x ,y )|x +y -1=0,x ,y ∈R },B ={(x ,y )|y =x 2+1,x ,y ∈R },则集合A ∩B 的元素个数是_________________________________________________________________.答案 2解析 集合A 表示直线l :x +y -1=0上的点的集合,集合B 表示抛物线C :y =x 2+1上的点的集合.由⎩⎪⎨⎪⎧x +y -1=0,y =x 2+1消去y 得x 2+x =0, 由于Δ>0,所以直线l 与抛物线C 有两个交点.即A ∩B 有2个元素.9.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是________.①p 为真;②綈q 为假;③p ∧q 为假;④p ∨q 为真.答案 ③解析 p 是假命题,q 是假命题,因此只有③正确.10.已知集合A ={(x ,y )|y =a },B ={(x ,y )|y =b x +1,b >0,b ≠1},若集合A ∩B 只有一个真子集,则实数a 的取值范围是________.答案 (1,+∞)解析 由于集合B 中的元素是指数函数y =b x 的图象向上平移一个单位长度后得到的函数图象上的所有点,要使集合A ∩B 只有一个真子集,那么y =b x +1(b >0,b ≠1)与y =a 的图象只能有一个交点,所以实数a 的取值范围是(1,+∞).11.已知集合P ={x |x (x -1)≥0},Q ={x |y =ln(x -1)},则P ∩Q =__________.答案 (1,+∞)解析 由x (x -1)≥0可得x ≤0或x ≥1,则P =(-∞,0]∪[1,+∞);又由x -1>0可得x >1,则Q =(1,+∞),所以P ∩Q =(1,+∞).12.已知集合A ={x |x >2或x <-1},B ={x |a ≤x ≤b },若A ∪B =R ,A ∩B ={x |2<x ≤4},则b a=________.答案 -4解析 由A ={x |x >2或x <-1},A ∪B =R ,A ∩B ={x |2<x ≤4},可得B ={x |-1≤x ≤4},则a=-1,b =4,故b a=-4. 13.由命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,求得实数m 的取值范围是(a ,+∞),则实数a =________.答案 1解析 根据题意可得:∀x ∈R ,x 2+2x +m >0是真命题,则Δ<0,即22-4m <0,m >1,故a =1.14.给出下列四个命题:①命题“若α=β,则cos α=cos β”的逆否命题;②“∃x 0∈R ,使得x 20-x 0>0”的否定是:“∀x ∈R ,均有x 2-x <0”;③命题“x 2=4”是“x =-2”的充分不必要条件;④p :a ∈{a ,b ,c },q :{a }⊆{a ,b ,c },p 且q 为真命题.其中真命题的序号是________.(填写所有真命题的序号)答案 ①④解析 对①,因命题“若α=β,则cos α=cos β”为真命题,所以其逆否命题亦为真命题,①正确;对②,命题“∃x 0∈R ,使得x 20-x 0>0”的否定应是:“∀x ∈R ,均有x 2-x ≤0”,故②错;对③,因由“x 2=4”得x =±2,所以“x 2=4”是“x =-2”的必要不充分条件,故③错;对④,p ,q 均为真命题,由真值表判定p 且q 为真命题,故④正确.15.已知集合M 为点集,记性质P 为“对∀(x ,y )∈M ,k ∈(0,1),均有(kx ,ky )∈M ”.给出下列集合:①{(x ,y )|x 2≥y },②{(x ,y )|2x 2+y 2<1},③{(x ,y )|x 2+y 2+x +2y =0},④{(x ,y )|x 3+y 3-x 2y =0},其中具有性质P 的点集序号是________.答案 ②④解析 对于①:取k =12,点(1,1)∈{(x ,y )|x 2≥y },但(12,12)∉{(x ,y )|x 2≥y },故①是不具有性质P 的点集.对于②:∀(x ,y )∈{(x ,y )|2x 2+y 2<1},则点(x ,y )在椭圆2x 2+y 2=1内部,所以对0<k <1,点(kx ,ky )也在椭圆2x 2+y 2=1的内部,即(kx ,ky )∈{(x ,y )|2x 2+y 2<1},故②是具有性质P 的点集.对于③:(x +12)2+(y +1)2=54,点(12,-12)在此圆上,但点(14,-14)不在此圆上,故③是不具有性质P 的点集.对于④:∀(x,y)∈{(x,y)|x3+y3-x2y=0},对于k∈(0,1),因为(kx)3+(ky)3-(kx)2·(ky)=0⇒x3+y3-x2y=0,所以(kx,ky)∈{(x,y)|x3+y3-x2y=0},故④是具有性质P的点集.综上,具有性质P的点集是②④.。
###N 或N+###第1讲集合的概念与运算高考解读GAO KAOJIEDU极块—/考点请单 ' 谦前娄漏知识梳理』1. 兀素与集合(1)集合兀素的特性:_ 确定性、 互异性 _、无序性.⑵集合与兀素的关系:右 a 属于集合 A,记作a € A ;若b 不属于集合 A ,记作 b?A .⑶集合的表示方法: 列举法 、描述法、图示法.⑷ 常见数集及其付号表示自然数集 正整数集 整数集 有理数集 实数集①A U B= A? B? A, A H B= A? A? B.②A H A= A , A H ? = ?.③A U A= A ,A U ? = A .④A H ?U A= __?__, A U ?U A= U , ?U( ?u A = A .⑤A? B? A H B= A? A U B= B?? u A? ?u B? A H( ?u0 = ?.对点检测j1.思维辨析(在括号内打“V”或“x”).(1) 集合{X2+ x, 0}中,实数x可取任意值.(x )(2) 任何集合都至少有两个子集.(x )⑶ 集合{x |y =・x — 1}与集合{y |y = x - 1}是同一个集合.(x ) ⑷ 若 A = {0,1} , B = {( x , y )| y = x + 1},则 A ? B ( x )解析 (1)错误.由元素的互异性知 x 2 + X M 0,即卩X M0且X M — 1.(2)错误.?只有一个子集.⑶ 错误.{x |y = x — 1} = {x |x > 1}, {y |y = x — 1} = {y |y > 0}. ⑷ 错误.集合A 是数集,集合 B 是点集.2.(2017 •浙江卷)已知集合 P = {x | — 1<x <1}, Q= {x |0<x <2},那么 P U Q= (A )A. ( —1,2)B. (0,1)C. ( —1,0)D. (1,2)解析 根据集合的并集的定义,得P U Q= ( — 1,2).3. (2017 •全国卷 I )已知集合 A ={x |x <1}, B = {x |3x <1},则(A ) A. A n B = {x | x <0} B. A U B = R C. A U B = {x | x >1}D. A n B = ?解析 集合 A ={x |x <1}, B = {x | x <0},A n B= {x | x <0}, A U B= {x | x <1}.故选 A.4. (2017 •全国卷川)已知集合A = {( x , y )| x 2 + y 2= 1},B = {( x , y )| y = x },贝U A nB中元素的个数为A. 3 C. 1板块二/考法林展-题型鮮码孝迭精讲jE 一集合的基本概念归纳总结集合元素性质的应用警示B. D.解析 /■ 2 2x + y = 1, 联立*y =x ,解得j ,贝U A n B =5.已知集合 A = {x |3 w x <7}, B= {x |2<x <10},则?R (A U B ) = {x | x W2 或 x 》10}解析 •/ A U B = {x |2< x <10}, • ?R (A U B) = {x | x <2 或 x > 10}.2个元素.有(1) 确定集合的兀素是什么,即集合是数集还是点集.(2) 看这些元素满足什么限制条件.(3) 根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满 足元素的互异性.A. 1 C. 5⑵ 若集合A = {x € R|ax 2— 3x + 2 = 0}中只有一个元素,则 a = ( D )解析 (1) T A = {0,1,2} ,••• B = {x — y |x € A, y € A } = {0,— 1, — 2, 1,2}.故集合 B 中有5个元素.29 (2)当 a = 0 时,显然成立;当 a ^0 时,△= ( — 3) — 8a = 0,即卩.8£讥二集合的基本关系归纳总结(1) 空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造 成漏解. (2) 已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系, 进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.【例 2] (1)设 P = {y |y =— x 2+ 1, x € R} , Q= {y |y = 2x , x € F},则(C )A. P ? QB. Q ? PC. ?R P ? QD. Q? ?R P(2)已知集合 A = {x | — 2< x <5}, B ={x |m ^ 1<x<2 m — 1},若B ?代 则实数 m 的取值 范围为__( —a, 31.解析 (1)因为 P = { y | y =— x 2 + 1, x € R} = {y | y < 1}, Q= {y | y = 2x , x € R} = { y | y >0}, 所以?4={y |y >1},所以?R P ? Q 选 C.(2) T B ? A ,.••①若 B = ?,贝 U 2m- 1<m+ 1,此时 m <2.2m-1 >1,②若 BM ?,贝U m+ 1>— 2,解得 2<3.2 m —1< 5,由①②可得,符合题意的实数m 的取值范围为(一a, 3].•三集合的基本运算【例1】(1)已知集合 A = {0,1,2},则集合B= {x — y |x € A, y € A }中元素的个数是B. 3 D. 9归纳总结集合基本运算的求解规律(1) 离散型数集或抽象集合间的运算,常借用Venn图求解.(2) 集合中的元素若是连续的实数,常借助数轴求解,但是要注意端点值能否取到等号的情况.(3) 根据集合运算求参数,先把符号语言译成文字语言,然后适时应用数形结合求解.【例3】(1 )(2018 •广东汕头期末)已知集合A= {x|y = ln(1 —2x)} , B= {x|x2w x}, 全集U= A U B,则?u(A A B) = ( C )A. (-R, 0)B. , 1 1C. ( —R, 0) U £, 1 ID. [—1, 0 1(2)设集合U= R, A={x|2x(x—2)<1}, B={x|y= ln(1 —x)},则图中阴影部分表示的集合为(B )A. {x|x> 1}B. {x|1 w x<2}C. {x|0<x w 1}D. {x|x w 1}(3) 已知集合A= {1,3 , n} , B= {1 , m , A U B= A,贝U m= ( B )A. 0 或3B. 0 或3C. 1 或3D. 1 或3解析(1)因为A= {x|y= In (1 —2x)} = {x|1 —2x>0} = —R, * ,B={x|x(x—1) w 0};n ;1 1 =[0,1],所以U= A U B= ( —R, 1],又A n B= |0,-,所以?u(A n B) = ( —R, 0) U〔2 1 ',故选C.(2) ... 2x(x—2)<1,.・. x(x—2)<0,.・. 0<x<2,即A= {x|0< x<2}.又.y= In (1 —x),/• 1 —x>0,「. x<1,即B= {x| x<1},二A n B= {x|0< x<1}.图中阴影部分表示?MA n B ,••• ?A(A n B) = {x|1 w x<2},故选B.(3) . A U B= A,「. B? A,「. m€ A,m= 3或m 解得m= 0或3,故选B.才产四集合中的创新题■解湮技巧集合定义新情景的解决方法解决集合的新情景问题,应从以下两点入手:(1) 正确理解创新定义,这类问题不是简单的考查集合的概念或性质问题,而是以集合为载体的有关新定义问题.常见的命题形式有新概念、新法则、新运算等.(2) 合理利用集合性质.运用集合的性质是破解新定义型集合问题的关键,在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,但关键之处还是合理利用集合的运算与性质.【例4】已知集合A= {( x, y)| x2+ y2w 1, x, y€ Z}, B= {( x, y)|| x| < 2, | y| < 2, x, y€ Z},定义集合A®B= {(X i + X2, y i + y2)|( X i, y i) € A (X2, y2)€B},则A® B 中元素的个数为(C )A. 77B. 49C. 45D. 302 2解析A= {( x, y)| x + y w 1, x, y€ Z} = {( —1, 0), (0,0) , (1,0) , (0,1) , (0 ,1)} , B= {( x , y)|| x| w2 , | y| w2 , x , y€ Z}, A® B表示点集.由X1 = —1,0,1 , X2=— 2 , —1,0,1,2 ,得X1+ X2= —3, —2, —1,0,1,2,3 ,共7 种取值可能.同理,由y1= —1 , 0,1 ,y2= —2, —1,0,1,2 ,得屮 + y2 = —3, —2, —1,0,1,2,3 ,共7 种取值可能.当X1+ X2= —3或3时,y1 + y2可以为一2, —1,0,1,2 中的一个值,分别构成5个不同的点.当X1+ X2 = —2, —1,0,1,2 时,屮+学可以为一3, —2, —1,0,1,2,3 中的一个值,分别构成7个不同的点.故A® B共有2X 5+ 5X 7= 45(个)元素.递进题组』21. (2017 •全国卷H )设集合A= {1,2,4} , B= {x| x —4x + m= 0}.若A n B= {1},则B =(C )A. {1 , —3}B. {1,0}C. {1,3}D. {1,5}2解析因为A n B= {1},所以1€ B,即1是方程x —4X + m= 0的根,所以1 — 4 + m= 0 , m= 3,方程为X—4x + 3= 0,解得x= 1或x= 3,所以B= {1,3},故选C.2. (2017 •北京卷)若集合A= {x| —2<x<1}, B= {x| x<—1 或x>3},则A n B= ( A )A. {x| —2<x< —1}B. {x| —2<x<3}C. {x| —1<x<1}D. {x|1< x<3}解析由集合交集的定义可得A n B= {x| —2<x<—1},故选A.3. 已知集合A= {x| x2—3x + 2 = 0 , x € R}, B={x|0<x<5, x€ N},则满足条件A? C? B的集合C 的个数为(D )A. 1B. 2C. 3D. 4解析 A = {1,2} , B= {1,2,3,4}, ••• A? C ? B ,.••满足条件的集合 C 有{1,2} , {1,2,3},{1,2,4} , {1,2,3,4} 共 4 个,故选 D.4.设 A B 是非空集合,定义 A ?B ={x |x € A U B 且x ?A A B }.已知集合 A = {x |0<x <2},B = {y | y >0},贝U A ?B = __{0} U [2 ,+^)__.解析 A U B = {x |x >0}, A H B = {x |0< x <2}, 贝U A ?B= {0} U [2 ,+s ).板块三/考慧送捡*易错警示易错点1不注意检验集合元素的互异性错因分析:对于含字母参数的集合, 根据条件求出字母的值后, 容易忽略检验是否满足 集合元素的互异性及其他条件.解析•/ A =嗖a 2+ 5a , 12, a —1 人且一3€ A ,2 2•••①当 2a + 5a = — 3 时,2a + 5a + 3= 0, 326解得 a =- 1 或a =-2,其中 a =-1 时,2a + 5a =百=-3, 与集合元素的互异性矛盾,舍去; 3 " 12、a = —了时,A = — 3, 12,—百 满足题意.2 5 ②当一;=—3时,a =— 1,由①知应舍去. a — 13 综上,a 的值为一^.【跟踪训练 1】已知集合 A = {a 2, a + 1, — 3}, B = {a — 3, a — 2,a 2 +1},若A HB = {—3},求 A U B解析由 A H B= { — 3}知,一3 € B.又a 2+1> 1,故只有a — 3, a — 2可能等于—3. ① 当 a — 3= — 3 时,a = 0,此时 A = {0,1 , — 3},— 3, — 2,1),A HB = (1 , — 3),故 a = 0 舍去.② 当 a — 2=— 3 时,a =— 1,此时 A = {1,0 , — 3} , B = ( — 4, — 3,2),满足 A n B = { — 3},从而 A U B = { — 4, - 3,0,1,2} 易错点2忽略空集【例1】 2已知集合A =「2a + 5a , 612,百,且—3€ A,求实数a 的值.错因分析:空集是个特殊集合.在以下四种条件中不要忽略B是空集的情形:①B? A;②B A(A非空):③ B n A= B;④ B U A= A【例 2 】设集合A= {0,—4} , B= {x|x2+ 2(a+ 1)x + a2— 1 = 0, x € R}.若B? A,则实数a的取值范围是____________ .解析因为A= {0,—4},所以B? A分以下三种情况:①当B= A时,B= {0 , —4},由此知0和一4是方程x2+ 2(a+ 1)x + a2—1= 0的两个根,由根与系数的关系,得2 2r A = 4(a+1)—4(a —1 >0,—2 a+ 1 = —4,解得a= 1;a2— 1 = 0,②当BM ?且B A时,B= {0}或B= { —4},2 2并且A= 4( a+1) —4( a —1) = 0,解得a=—1,此时B= {0}满足题意;2 2③当B= ?时,A= 4( a+1) —4( a —1)<0,解得a<—1.综上所述,所求实数a的取值范围是{a| a<—1或a= 1}.答案(一汽一1]U {1}【跟踪训练2】(2018 •江西临川一中月考)已知集合A= {x|3 W3x w27},B ={x|log 2x>1}.(1) 分别求A n B (?R B) U A;⑵已知集合C= {x|1<x<a},若C? A,求实数a的取值集合.解析(1) ••• 3W32W27,即卩31W3x W33,「.1W x<3,二A= {x|1 w x w3}.■/ log2x>1,即卩log 2X>log 22,「. x>2,「. B= {x| x>2},••• A n B= {x|2< x w 3},?R B= {x|x w 2},A (?R B) U A= {x|x w 3}.(2) 由(1)知A= {x|1 w x w 3},当C为空集时,a w 1;当C为非空集合时,可得1<a w 3.综上所述,a w 3.课时达标第1讲[解密考纲]本考点考查集合中元素的性质、集合之间的关系、集合的运算(一般以不等式、函数、方程为载体),一般以选择题、填空题的形式呈现,排在靠前的位置,题目难度不大.一、选择题 1.(2018 •河南郑州质量预测)设全集U = {x € N *|x w 4},集合 A = {1,4} , B = {2,4}, 则?u (A n B ) = ( A )A. {1,2,3}B. {1,2,4}C. {1,3,4}D. {2,3,4}解析 因为 U ^ {1,2,3,4}, A n B = {4},所以?*A n B ) = {1,2,3},故选 A .2. (2017 •天津卷)设集合 A = {1,2,6} , B = {2,4} , O {x € R — 1W x < 5},则(A U B )n C =(B )A. {2}B. {1,2,4}C. {1,2,4,6}D. {x € R| — 1W x w 5}解析 A U B = {1,2,4,6} , (A U B ) n C = {1,2,4},故选 B.3. 设集合 M= {x |x = x } ,N= {x |lg x w 0},贝y MU N= ( A )A [0,1] B. (0,1] C. [0,1)D. (—R, 1]解析 T M= {x | x 2= x } = {0,1} , N= {x |lg x w 0} = {x |0< x w 1}, ••• M U N= {x|0 w x w 1},故选 A .4. 已知集合 A = {y |y =|x | — 1 , x € R} , B = {x |x >2},则下列结论正确的是 (A ) A. — 3€ AB. 3?BC. A n B = BD. A U B = B解析 由题知A = {y |y >— 1},因此A n B= {x |x >2} = B ,故选C.5. 若集合 A = { — 1,1} , B = {0,2},则集合{z |z = x + y , x € A , y € 中的元素的个数 为(C )A. 5 C. 3解析 当 x =— 1, y = 0 时,z =— 1;当 x =—1, y = 2 时,z = 1;当 x = 1, y = 0 时,z =1 ;当 x = 1, y = 2 时,z = 3,故集合{z |z = x + y , x €A , y €B } = { — 1,1,3}中的元素个数 为3,故选C .6.满足 M {a 1, a 2, a s , a 。
2019年高考数学二轮复习(1)集合教案【专题要点】1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用【考纲要求】1. 集合部分的考点主要是集合之间的关系和集合的交并补运算;2. 掌握集合的表示法和用图示法表示集合之间的关系【知识纵横】⎧⎧⎪⎪→→⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪−−→⎨⎪⎪⎪⎩⎪⎪→⎧⎨−−→⎨⎪⎩⎪⎪⎧⎫⎪⎪⎪→⎫⎪⎪⎪⎪⎪⎪⎪−−→→−−→←⎨⎬⎬⎪⎪⎪⎪⎪→⎭⎪⎪⎪⎪⎪⎭⎪⎩⎩确定性概念元素性质互异性无序性列举法表示方法描述法图示法集合属于关系关系包含关系命题及其关系充要条件交集且逻辑联结词运算并集或常用逻辑用语补集非存在量词与全称量词 【教法指引】集合是数学中最基本的概念之一,集合语言是现代数学的基本语言,因此集合的概念以及集合之间的关系是历年高考的必考内容之一,本部分的考查一般有两种形式:一是考查集合的相关概念,集合之间的关系,题型以选择题、填空题为主;二是考查集合语言、集合思想的理解与应用,这多与其他知识融为一体,题型也是一般以选择填空为主,单纯的集合问题以解答题形式出出现的几率较小,多是与函数、不等式等联系。
在复习中还要特别注意,新课标的中特别强调表达与描述同一问题的三种语言“自然语言、图形语言、集合语言”之间的关系,因此要注意利用韦恩图数轴函数图象相结合的作用,另外集合新定义信息题在近几年的命题中时有出现。
§1.1集合的概念与运算【高考会这样考】 1.考查集合中元素的互异性,以集合中含参数的元素为背景,探求参数的值;2.求几个集合的交、并、补集;3.通过集合中的新定义问题考查创新能力.【复习备考要这样做】 1.注意分类讨论,重视空集的特殊性;2.会利用Venn图、数轴等工具对集合进行运算;3.重视对集合中新定义问题的理解.1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法2.(1)子集:对任意的x∈A,都有x∈B,则A⊆B(或B⊇A).(2)真子集:若A⊆B,且A≠B,则A B(或B A).(3)空集:空集是任意一个集合的子集,是任何非空集合的真子集.即∅⊆A,∅B(B≠∅).(4)若A含有n个元素,则A的子集有2n个,A的非空子集有2n-1个.(5)集合相等:若A⊆B,且B⊆A,则A=B.3.集合的运算A∪B={x|x∈A或A∩B={x|x∈A且∁A={x|x∈U,且x∉4.并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A.[难点正本疑点清源]1.正确理解集合的概念正确理解集合的有关概念,特别是集合中元素的三个特征,尤其是“确定性和互异性”在解题中要注意运用.在解决含参数问题时,要注意检验,否则很可能会因为不满足“互异性”而导致结论错误.2.注意空集的特殊性空集是不含任何元素的集合,空集是任何集合的子集.在解题时,若未明确说明集合非空时,要考虑到集合为空集的可能性.例如:A⊆B,则需考虑A=∅和A≠∅两种可能的情况.3.正确区分∅,{0},{∅}∅是不含任何元素的集合,即空集.{0}是含有一个元素0的集合,它不是空集,因为它有一个元素,这个元素是0.{∅}是含有一个元素∅的集合.∅⊆{0},∅⊆{∅},∅∈{∅},{0}∩{∅}=∅.1.(·江苏)已知集合A={1,2,4},B={2,4,6},则A∪B=________.答案{1,2,4,6}解析A∪B是由A,B的所有元素组成的.A∪B={1,2,4,6}.2.已知集合A={x|a-1≤x≤1+a},B={x|x2-5x+4≥0},若A∩B=∅,则实数a的取值范围是________. 答案 (2,3)解析 集合B 中,x 2-5x +4≥0,∴x ≥4或x ≤1. 又∵集合A 中a -1≤x ≤1+a .∵A ∩B =∅,∴a +1<4且a -1>1,∴2<a <3.3. 已知集合A ={-1,2},B ={x |mx +1=0},若A ∪B =A ,则m 的可能取值组成的集合为________. 答案 ⎩⎨⎧⎭⎬⎫0,1,-12解析 ∵A ∪B =A ,∴B ⊆A , ∴当B =∅时,m =0; 当-1∈B 时,m =1; 当2∈B 时,m =-12.∴m 的值为0,1,-12.4. (·江西)若集合A ={-1,1},B ={0,2},则集合{z |z =x +y ,x ∈A ,y ∈B }中的元素的个数为( )A .5B .4C .3D .2答案 C解析 当x =-1,y =0时,z =x +y =-1; 当x =1,y =0时,z =x +y =1; 当x =-1,y =2时,z =x +y =1; 当x =1,y =2时,z =x +y =3,由集合中元素的互异性可知集合{z |z =x +y ,x ∈A ,y ∈B }={-1,1,3},即元素的个数为3.5. (·北京)已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围为( )A .(-∞,-1]B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)答案 C解析 由P ={x |x 2≤1}得P ={x |-1≤x ≤1}.由P ∪M =P 得M ⊆P .又M ={a },∴-1≤a ≤1.题型一 集合的基本概念例1 (1)下列集合中表示同一集合的是( )A .M ={(3,2)},N ={(2,3)}B .M ={2,3},N ={3,2}C .M ={(x ,y )|x +y =1},N ={y |x +y =1}D .M ={2,3},N ={(2,3)}(2)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.思维启迪:解决集合问题首先要考虑集合的“三性”:确定性、互异性、无序性,理解集合中元素的特征. 答案 (1)B (2)2解析 (1)选项A 中的集合M 表示由点(3,2)所组成的单点集,集合N 表示由点(2,3)所组成的单点集,故集合M 与N 不是同一个集合.选项C 中的集合M 表示由直线x +y =1上的所有的点组成的集合,集合N 表示由直线x +y =1上的所有的点的纵坐标组成的集合,即N ={y |x +y =1}=R ,故集合M 与N 不是同一个集合.选项D 中的集合M 有两个元素,而集合N 只含有一个元素,故集合M 与N 不是同一个集合.对选项B ,由集合元素的无序性,可知M ,N 表示同一个集合. (2)因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,得ba =-1,所以a =-1,b =1.所以b -a =2.探究提高 (1)用描述法表示集合时要把握元素的特征,分清点集、数集;(2)要特别注意集合中元素的互异性,在解题过程中最容易被忽视,因此要对计算结果进行检验,防止所得结果违背集合中元素的互异性.若集合A ={x |ax 2-3x +2=0}的子集只有两个,则实数a =________.答案 0或98解析 ∵集合A 的子集只有两个,∴A 中只有一个元素. 当a =0时,x =23符合要求.当a ≠0时,Δ=(-3)2-4a ×2=0,∴a =98.故a =0或98.题型二 集合间的基本关系例2 已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,求实数m 的取值范围.思维启迪:若B ⊆A ,则B =∅或B ≠∅,要分两种情况讨论. 解 当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-22m -1≤7m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.探究提高 (1)集合中元素的互异性,可以作为解题的依据和突破口;(2)对于数集关系问题,往往利用数轴进行分析;(3)对含参数的方程或不等式求解,要对参数进行分类讨论.已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________. 答案 4解析 由log 2x ≤2,得0<x ≤4,即A ={x |0<x ≤4}, 而B =(-∞,a ),由于A ⊆B ,如图所示,则a >4,即c =4.题型三 集合的基本运算例3 设U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)x +m =0}.若(∁U A )∩B =∅,则m 的值是________.思维启迪:本题中的集合A ,B 均是一元二次方程的解集,其中集合B 中的一元二次方程含有不确定的参数m ,需要对这个参数进行分类讨论,同时需要根据(∁U A )∩B =∅对集合A ,B 的关系进行转化. 答案 1或2解析 A ={-2,-1},由(∁U A )∩B =∅,得B ⊆A ,∵方程x 2+(m +1)x +m =0的判别式Δ=(m +1)2-4m =(m -1)2≥0,∴B ≠∅. ∴B ={-1}或B ={-2}或B ={-1,-2}. ①若B ={-1},则m =1;②若B ={-2},则应有-(m +1)=(-2)+(-2)=-4,且m =(-2)·(-2)=4,这两式不能同时成立,∴B ≠{-2};③若B ={-1,-2},则应有-(m +1)=(-1)+(-2)=-3,且m =(-1)·(-2)=2,由这两式得m =2.经检验知m =1和m =2符合条件. ∴m =1或2.探究提高 本题的主要难点有两个:一是集合A ,B 之间关系的确定;二是对集合B 中方程的分类求解.集合的交、并、补运算和集合的包含关系存在着一些必然的联系,这些联系通过V enn 图进行直观的分析不难找出来,如A ∪B =A ⇔B ⊆A ,(∁U A )∩B =∅⇔B ⊆A 等,在解题中碰到这种情况时要善于转化,这是破解这类难点的一种极为有效的方法.设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}.(1)当a =-4时,求A ∩B 和A ∪B ; (2)若(∁R A )∩B =B ,求实数a 的取值范围. 解 (1)∵A ={x |12≤x ≤3},当a =-4时,B ={x |-2<x <2},∴A ∩B ={x |12≤x <2},A ∪B ={x |-2<x ≤3}.(2)∁R A ={x |x <12或x >3},当(∁R A )∩B =B 时,B ⊆∁R A ,即A ∩B =∅. ①当B =∅,即a ≥0时,满足B ⊆∁R A ; ②当B ≠∅,即a <0时,B ={x |--a <x <-a },要使B ⊆∁R A ,需-a ≤12,解得-14≤a <0.综上可得,实数a 的取值范围是a ≥-14.题型四 集合中的新定义问题例4 (·广东)设S 是整数集Z 的非空子集,如果∀a ,b ∈S ,有ab ∈S ,则称S 关于数的乘法是封闭的.若T ,V 是Z 的两个不相交的非空子集,T ∪V =Z ,且∀a ,b ,c ∈T ,有abc ∈T ;∀x ,y ,z ∈V ,有xyz ∈V ,则下列结论恒成立的是( )A .T ,V 中至少有一个关于乘法是封闭的B .T ,V 中至多有一个关于乘法是封闭的C .T ,V 中有且只有一个关于乘法是封闭的D .T ,V 中每一个关于乘法都是封闭的思维启迪:本题是一道新定义问题试题,较为抽象,题意难以理解,但若“以退为进”,取一些特殊的数集代入检验,即可解决. 答案 A解析 不妨设1∈T ,则对于∀a ,b ∈T ,∵∀a ,b ,c ∈T ,都有abc ∈T ,不妨令c =1,则ab ∈T ,故T 关于乘法是封闭的,故T 、V 中至少有一个关于乘法是封闭的;若T 为偶数集,V 为奇数集,则它们符合题意,且均是关于乘法是封闭的,从而B 、C 错误;若T 为非负整数集,V 为负整数集,显然T 、V 是Z 的两个不相交的非空子集,T ∪V =Z ,且∀a ,b ,c ∈T ,有abc ∈T ,∀x ,y ,z ∈V ,有xyz ∈V ,但是对于∀x ,y ∈V ,有xy >0,xy ∉V ,D 错误.故选A.探究提高 本题旨在考查我们接受和处理新信息的能力,解题时要充分理解题目的含义,进行全面分析,灵活处理.已知集合S ={0,1,2,3,4,5},A 是S 的一个子集,当x ∈A 时,若有x -1∉A ,且x +1∉A ,则称x 为A 的一个“孤立元素”,那么S 中无“孤立元素”的4个元素的子集共有________个.答案 6解析由成对的相邻元素组成的四元子集都没有“孤立元素”,如{0,1,2,3},{0,1,3,4},{0,1,4,5},{1,2,3,4},{1,2,4,5},{2,3,4,5},这样的集合共有6个.集合中元素特征认识不明致误典例:(5分)(·课标全国)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B 中所含元素的个数为()A.3B.6C.8D.10易错分析本题属于创新型的概念理解题,准确地理解集合B是解决本题的关键,该题解题过程易出错的原因有两个,一是误以为集合B中的元素(x,y)不是有序数对,而是无序的两个数值;二是对于集合B的元素的性质中的“x∈A,y∈A,x-y∈A”,只关注“x∈A,y∈A”,而忽视“x-y∈A”的限制条件导致错解.解析∵B={(x,y)|x∈A,y∈A,x-y∈A},A={1,2,3,4,5},∴x=2,y=1;x=3,y=1,2;x=4,y=1,2,3;x=5,y=1,2,3,4.∴B={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4)},∴B中所含元素的个数为10.答案 D温馨提醒判断集合中元素的性质时要注意两个方面:一是要注意集合中代表元素的字母符号,区分x、y、(x,y);二是准确把握元素所具有的性质特征,如集合{x|y=f(x)}表示函数y=f(x)的定义域,{y|y=f(x)}表示函数y=f(x)的值域,{(x,y)|y=f(x)}表示函数y=f(x)图象上的点.遗忘空集致误典例:(4分)若集合P={x|x2+x-6=0},S={x|ax+1=0},且S⊆P,则由a的可取值组成的集合为__________.易错分析从集合的关系看,S⊆P,则S=∅或S≠∅,易遗忘S=∅的情况.解析(1)P={-3,2}.当a=0时,S=∅,满足S⊆P;当a ≠0时,方程ax +1=0的解集为x =-1a ,为满足S ⊆P 可使-1a =-3或-1a =2,即a =13或a =-12.故所求集合为⎩⎨⎧⎭⎬⎫0,13,-12.答案 ⎩⎨⎧⎭⎬⎫0,13,-12温馨提醒 (1)根据集合间的关系求参数是高考的一个重点内容.解答此类问题的关键是抓住集合间的关系以及集合元素的特征.(2)在解答本题时,存在两个典型错误.一是忽略对空集的讨论,如S =∅时,a =0;二是易忽略对字母的讨论.如-1a 可以为-3或2.因此,在解答此类问题时,一定要注意分类讨论,避免漏解.方法与技巧1. 集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到.解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2. 对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号.3. 对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.这是数形结合思想的又一体现. 失误与防范1. 空集在解题时有特殊地位,它是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.2. 解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系. 3. 解答集合题目,认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.4. V enn 图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心.5. 要注意A ⊆B 、A ∩B =A 、A ∪B =B 、∁U A ⊇∁U B 、A ∩(∁U B )=∅这五个关系式的等价性.A 组 专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (·广东)设集合U ={1,2,3,4,5,6},M ={1,2,4},则∁U M 等于( )A .UB .{1,3,5}C .{3,5,6}D .{2,4,6} 答案 C解析 ∵U ={1,2,3,4,5,6},M ={1,2,4},∴∁U M ={3,5,6}.2. (·课标全国)已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( )A .2个B .4个C .6个D .8个 答案 B解析 ∵M ={0,1,2,3,4},N ={1,3,5},∴M ∩N ={1,3}. ∴M ∩N 的子集共有22=4个.3. (·山东)已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为 ( )A .{1,2,4}B .{2,3,4}C .{0,2,4}D .{0,2,3,4}答案 C解析 ∵∁U A ={0,4},B ={2,4},∴(∁U A )∪B ={0,2,4}. 4. 已知集合M ={x |xx -1≥0,x ∈R },N ={y |y =3x 2+1,x ∈R },则M ∩N 等于 ( ) A .∅B .{x |x ≥1}C .{x |x >1}D .{x |x ≥1或x <0}答案 C解析 由xx -1≥0,得⎩⎪⎨⎪⎧x ≠1,x (x -1)≥0,∴x >1或x ≤0,∴M ={x |x >1或x ≤0},N ={y |y ≥1}, M ∩N ={x |x >1}.二、填空题(每小题5分,共15分)5. 已知集合A ={1,3,a },B ={1,a 2-a +1},且B ⊆A ,则a =__________.答案 -1或2解析 由a 2-a +1=3,得a =-1或a =2,经检验符合.由a 2-a +1=a ,得a =1,由于集合中不能有相同元素,所以舍去.故a =-1或2.6. 已知集合A ={(0,1),(1,1),(-1,2)},B ={(x ,y )|x +y -1=0,x ,y ∈Z },则A ∩B =_________.答案 {(0,1),(-1,2)}解析 A 、B 都表示点集,A ∩B 即是由A 中在直线x +y -1=0上的所有点组成的集合,代入验证即可.7. (·天津)已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________. 答案 -1 1解析 A ={x |-5<x <1},因为A ∩B ={x |-1<x <n }, B ={x |(x -m )(x -2)<0},所以m =-1,n =1. 三、解答题(共22分)8. (10分)已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }.(1)若A ∩B =[0,3],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围. 解 由已知得A ={x |-1≤x ≤3}, B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3.∴m =2.(2)∁R B ={x |x <m -2或x >m +2},∵A ⊆∁R B , ∴m -2>3或m +2<-1,即m >5或m <-3.9. (12分)设符号@是数集A 中的一种运算:如果对于任意的x ,y ∈A ,都有x @y =xy ∈A ,则称运算@对集合A 是封闭的.设A ={x |x =m +2n ,m 、n ∈Z },判断A 对通常的实数的乘法运算是否封闭?解 设x =m 1+2n 1,y =m 2+2n 2,那么xy =(m 1+2n 1)×(m 2+2n 2)=(m 1n 2+m 2n 1)2+m 1m 2+2n 1n 2.令m =m 1m 2+2n 1n 2,n =m 1n 2+m 2n 1,则xy =m +2n , 由于m 1,n 1,m 2,n 2∈R ,所以m ,n ∈R . 故A 对通常的实数的乘法运算是封闭的.B 组 专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (·湖北)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C⊆B 的集合C 的个数为( )A .1B .2C .3D .4 答案 D解析 用列举法表示集合A ,B ,根据集合关系求出集合C 的个数. 由x 2-3x +2=0得x =1或x =2,∴A ={1,2}.由题意知B ={1,2,3,4},∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. 2. (·安徽)设集合A ={1,2,3,4,5,6},B ={4,5,6,7,8},则满足S ⊆A 且S ∩B ≠∅的集合S 的个数是( )A .57B .56C .49D .8 答案 B解析 由S ⊆A 知S 是A 的子集,又∵A ={1,2,3,4,5,6},∴满足条件S ⊆A 的S 共有26=64(种)可能.又∵S ∩B ≠∅,B ={4,5,6,7,8},∴S 中必含4,5,6中至少一个元素,而在满足S ⊆A 的所有子集S 中,不含4,5,6的子集共有23=8(种),∴满足题意的集合S 的可能个数为64-8=56.3. (·湖北)已知U ={y |y =log 2x ,x >1},P ={y |y =1x,x >2},则∁U P 等于( )A.⎣⎡⎭⎫12,+∞B.⎝⎛⎭⎫0,12 C .(0,+∞)D .(-∞,0]∪⎣⎡⎭⎫12,+∞答案 A解析 ∵U ={y |y =log 2x ,x >1}={y |y >0},P={y|y=1x,x>2}={y|0<y<12},∴∁U P={y|y≥12}=⎣⎡⎭⎫12,+∞.二、填空题(每小题5分,共15分)4.(·陕西改编)集合M={x|lg x>0},N={x|x2≤4},则M∩N=____________.答案(1,2]解析M={x|lg x>0}={x|x>1},N={x|x2≤4}={x|-2≤x≤2},∴M∩N={x|x>1}∩{x|-2≤x≤2}={x|1<x≤2}.5. 已知M ={(x ,y )|y -3x -2=a +1},N ={(x ,y )|(a 2-1)x +(a -1)y =15},若M ∩N =∅,则a的值为____________. 答案 1,-1,52,-4解析 集合M 表示挖去点(2,3)的直线,集合N 表示一条直线,因此由M ∩N =∅知,点(2,3)在集合N 所表示的直线上或两直线平行,由此求得a 的值为1,-1,52,-4.6. 设A ={x ||x |≤3},B ={y |y =-x 2+t },若A ∩B =∅,则实数t 的取值范围是__________.答案 (-∞,-3)解析 A ={x |-3≤x ≤3},B ={y |y ≤t }, 由A ∩B =∅知,t <-3. 三、解答题7. (13分)已知集合A ={y |y 2-(a 2+a +1)y +a (a 2+1)>0},B ={y |y =12x 2-x +52,0≤x ≤3}.(1)若A ∩B =∅,求a 的取值范围;(2)当a 取使不等式x 2+1≥ax 恒成立的a 的最小值时,求(∁R A )∩B . 解 A ={y |y <a 或y >a 2+1},B ={y |2≤y ≤4}.(1)当A ∩B =∅时,⎩⎪⎨⎪⎧a 2+1≥4,a ≤2,∴3≤a ≤2或a ≤- 3.(2)由x 2+1≥ax ,得x 2-ax +1≥0, 依题意Δ=a 2-4≤0,∴-2≤a ≤2. ∴a 的最小值为-2.当a =-2时,A ={y |y <-2或y >5}.∴∁R A ={y |-2≤y ≤5},∴(∁R A )∩B ={y |2≤y ≤4}.§1.2 命题及其关系、充分条件与必要条件高考会这样考 1.考查四种命题的意义及相互关系;2.考查对充分条件、必要条件、充要条件等概念的理解,主要以客观题的形式出现;3.在解答题中考查命题或充分条件与必要条件.复习备考要这样做 1.在解与命题有关的问题时,要理解命题的含义,准确地分清命题的条件与结论;2.注意条件之间关系的方向性、充分条件与必要条件方向正好相反;3.注意等价命题的应用.1.命题的概念在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.[难点正本疑点清源]1.等价命题和等价转化(1)逆命题与否命题互为逆否命题;(2)互为逆否命题的两个命题同真假;(3)当判断原命题的真假比较困难时,可以转化为判断它的逆否命题的真假.2.集合与充要条件设集合A={x|x满足条件p},B={x|x满足条件q},则有(1)若A⊆B,则p是q的充分条件,若A B,则p是q的充分不必要条件;(2)若B⊆A,则p是q的必要条件,若B A,则p是q的必要不充分条件;(3)若A=B,则p是q的充要条件;(4)若A B ,且B A ,则p 是q 的既不充分也不必要条件.1. 下列命题:①“全等三角形的面积相等”的逆命题; ②“若ab =0,则a =0”的否命题;③“正三角形的三个角均为60°”的逆否命题.其中真命题的序号是________(把所有真命题的序号填在横线上). 答案 ②③解析 ①“全等三角形的面积相等”的逆命题为“面积相等的三角形全等”,显然该命题为假命题;②“若ab =0,则a =0”的否命题为“若ab ≠0,则a ≠0”,而由ab ≠0,可得a ,b 都不为零,故a ≠0,所以该命题是真命题;③因为原命题“正三角形的三个角均为60°”是一个真命题,故其逆否命题也是一个真命题. 2. “x >2”是“1x <12”的________条件.答案 充分不必要解析 ①x >2⇒2x >0⇒x 2x >22x ⇒1x <12,∴“x >2”是“1x <12”的充分条件.②1x <12⇒x <0或x >2D ⇒/x >2. ∴“x >2”是“1x <12”的不必要条件.3. 已知a ,b ∈R ,则“a =b ”是“a +b2=ab ”的____________条件.答案 必要不充分解析 因为若a =b <0,则a +b 2≠ab ,所以充分性不成立;反之,因为a +b2=ab ⇔a=b ⇔a =b ≥0,所以必要性成立,故“a =b ”是“a +b2=ab ”的必要不充分条件.4. (·天津)设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分而不必要条件B .必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 C解析因为A={x|x-2>0}={x|x>2}=(2,+∞),B={x|x<0}=(-∞,0),所以A∪B=(-∞,0)∪(2,+∞),C={x|x(x-2)>0}={x|x<0或x>2}=(-∞,0)∪(2,+∞).即A∪B=C.故“x∈A∪B”是“x∈C”的充要条件.5.(·天津)设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的() A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析由条件推结论和结论推条件后再判断.若φ=0,则f(x)=cos x是偶函数,但是若f(x)=cos(x+φ) (x∈R)是偶函数,则φ=π也成立.故“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的充分而不必要条件.题型一四种命题的关系及真假例1已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是() A.否命题“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题思维启迪:根据四种命题的定义判断一个原命题的逆命题、否命题、逆否命题的表达格式.当命题较简单时,可直接判断其真假,若命题本身复杂或不易直接判断时,可利用其等价命题——逆否命题进行真假判断.答案 D解析 命题“若函数f (x )=e x -mx 在(0,+∞)上是增函数,则m ≤1”是真命题,所以其逆否命题“若m >1,则函数f (x )=e x -mx 在(0,+∞)上不是增函数”是真命题. 探究提高 (1)熟悉四种命题的概念是正确书写或判断四种命题真假的关键;(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假;(3)认真仔细读题,必要时举特例.命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数 答案 C解析 由于“x ,y 都是偶数”的否定表达是“x ,y 不都是偶数”,“x +y 是偶数”的否定表达是“x +y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”,故选C. 题型二 充要条件的判断例2 已知下列各组命题,其中p 是q 的充分必要条件的是( ) A .p :m ≤-2或m ≥6;q :y =x 2+mx +m +3有两个不同的零点 B .p :f (-x )f (x )=1;q :y =f (x )是偶函数C .p :cos α=cos β;q :tan α=tan βD .p :A ∩B =A ;q :A ⊆U ,B ⊆U ,∁U B ⊆∁U A思维启迪:首先要分清条件和结论,然后可以从逻辑推理、等价命题或集合的角度思考问题,做出判断. 答案 D解析 对于A ,由y =x 2+mx +m +3有两个不同的零点,可得Δ=m 2-4(m +3)>0,从而可得m <-2或m >6.所以p 是q 的必要不充分条件;对于B ,由f (-x )f (x )=1⇒f (-x )=f (x )⇒y =f (x )是偶函数,但由y =f (x )是偶函数不能推出f (-x )f (x )=1,例如函数f (x )=0,所以p 是q 的充分不必要条件;对于C ,当cos α=cos β=0时,不存在tan α=tan β,反之也不成立,所以p 是q 的既不充分也不必要条件;对于D ,由A ∩B =A ,知A ⊆B ,所以∁U B ⊆∁U A ; 反之,由∁U B ⊆∁U A ,知A ⊆B ,即A ∩B =A . 所以p ⇔q .综上所述,p 是q 的充分必要条件的是D.探究提高 判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ;二是由条件q 能否推得条件p .对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件; ②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件; ④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件. 其中真.命题的序号是________. 答案 ①④解析 对于①,当数列{a n }为等比数列时,易知数列{a n a n +1}是等比数列,但当数列 {a n a n +1}为等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确;对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确;对于③,当m =3时,相应的两条直线互相垂直,反之,这两条直线垂直时,不一定有m =3,也可能m =0.因此③不正确;对于④,由题意得b a =sin B sin A =3,若B =60°,则sin A =12,注意到b >a ,故A =30°,反之,当A =30°时,有sin B =32,由于b >a ,所以B =60°或B =120°,因此④正确.综上所述,真命题的序号是①④. 题型三 利用充要条件求参数例3 已知集合M ={x |x <-3或x >5},P ={x |(x -a )·(x -8)≤0}.(1)求实数a 的取值范围,使它成为M ∩P ={x |5<x ≤8}的充要条件;(2)求实数a 的一个值,使它成为M ∩P ={x |5<x ≤8}的一个充分但不必要条件. 思维启迪:解决此类问题一般是先把充分条件、必要条件或充要条件转化为集合之间的关系,再根据集合之间的关系列出关于参数的不等式求解. 解 (1)由M ∩P ={x |5<x ≤8},得-3≤a ≤5, 因此M ∩P ={x |5<x ≤8}的充要条件是{a |-3≤a ≤5}.(2)求实数a 的一个值,使它成为M ∩P ={x |5<x ≤8}的一个充分但不必要条件,就是在集合{a |-3≤a ≤5}中取一个值,如取a =0,此时必有M ∩P ={x |5<x ≤8};反之,M ∩P ={x |5<x ≤8}未必有a =0,故“a =0”是“M ∩P ={x |5<x ≤8}”的一个充分但不必要条件.探究提高 利用充要条件求参数的值或范围,关键是合理转化条件,准确地将每个条件对应的参数的范围求出来,然后转化为集合的运算,一定要注意区间端点值的检验.已知p :x 2-4x -5≤0,q :|x -3|<a (a >0).若p 是q 的充分不必要条件,求a 的取值范围.解 设A ={x |x 2-4x -5≤0}={x |-1≤x ≤5},B ={x |-a +3<x <a +3},因为p 是q 的充分不必要条件,从而有A B .故⎩⎪⎨⎪⎧-a +3<-1,a +3>5,解得a >4.等价转化思想在充要条件关系中的应用典例:(14分)已知p :⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0 (m >0),且綈p 是綈q 的必要而不充分条件,求实数m 的取值范围.审题视角 (1)先求出两命题的解集,即将命题化为最简.(2)再利用命题间的关系列出关于m 的不等式或不等式组,得出结论.规范解答解 方法一 由q :x 2-2x +1-m 2≤0, 得1-m ≤x ≤1+m ,[2分] ∴綈q :A ={x |x >1+m 或x <1-m ,m >0},[4分] 由p :⎪⎪⎪⎪⎪⎪1-x -13≤2,解得-2≤x ≤10,[6分] ∴綈p :B ={x |x >10或x <-2}.[8分]∵綈p 是綈q 的必要而不充分条件.∴AB ,∴⎩⎪⎨⎪⎧m >0,1-m <-2,1+m ≥10,或⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m >10,即m ≥9或m >9.∴m ≥9.[14分]方法二 ∵綈p 是綈q 的必要而不充分条件, ∴p 是q 的充分而不必要条件,[2分]由q :x 2-2x +1-m 2≤0,得1-m ≤x ≤1+m , ∴q :Q ={x |1-m ≤x ≤1+m },[3分]由p :⎪⎪⎪⎪⎪⎪1-x -13≤2,解得-2≤x ≤10,∴p :P ={x |-2≤x ≤10}.[8分]∵p 是q 的充分而不必要条件,∴PQ ,∴⎩⎪⎨⎪⎧m >0,1-m <-2,1+m ≥10,或⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m >10,即m ≥9或m >9.∴m ≥9.[12分]温馨提醒 本例涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决.一般地,在涉及字母参数的取值范围的充要关系问题中,常常要利用集合的包含、相等关系来考虑,这是破解此类问题的关键.方法与技巧1. 当一个命题有大前提而要写出其它三种命题时,必须保留大前提,也就是大前提不动;对于由多个并列条件组成的命题,在写其它三种命题时,应把其中一个(或几个)作为大前提.2. 数学中的定义、公理、公式、定理都是命题,但命题与定理是有区别的;命题有真假之分,而定理都是真的. 3. 命题的充要关系的判断方法(1)定义法:直接判断若p 则q 、若q 则p 的真假.(2)等价法:利用A ⇒B 与綈B ⇒綈A ,B ⇒A 与綈A ⇒綈B ,A ⇔B 与綈B ⇔綈A 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 失误与防范1. 判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p则q ”的形式.2. 判断条件之间的关系要注意条件之间关系的方向,正确理解“p 的一个充分而不必要条件是q ”等语言.A 组 专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (·湖南)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α ≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4答案 C解析 由原命题与其逆否命题之间的关系可知,原命题的逆否命题: 若tan α≠1,则α≠π4.2. (·福建)已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是( )A .x =-12B .x =-1C .x =5D .x =0答案 D解析 ∵a =(x -1,2),b =(2,1), ∴a ·b =2(x -1)+2×1=2x .又a ⊥b ⇔a ·b =0,∴2x =0,∴x =0.3. 已知集合M ={x |0<x <1},集合N ={x |-2<x <1},那么“a ∈N ”是“a ∈M ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 因为M N ,所以a ∈M ⇒a ∈N ,反之,则不成立,故“a ∈N ”是“a ∈M ”的必要而不充分条件.故选B. 4. 下列命题中为真命题的是( )A .命题“若x >y ,则x >|y |”的逆命题B .命题“若x >1,则x 2>1”的否命题C .命题“若x =1,则x 2+x -2=0”的否命题D .命题“若x 2>0,则x >1”的逆否命题 答案 A解析 对于A ,其逆命题:若x >|y |,则x >y ,是真命题,这是因为x >|y |=⎩⎨⎧y (y ≥0)-y (y <0),必有x >y ;对于B ,否命题:若x ≤1,则x 2≤1,是假命题.如x =-5,x 2=25>1;对于C ,其否命题:若x ≠1,则x 2+x -2≠0,因为x =-2时,x 2+x -2=0,所以是假命题;对于D ,若x 2>0,则x >0或x <0,不一定有x >1,因此原命题的逆否命题是假命题,故选A.二、填空题(每小题5分,共15分) 5. 下列命题:①若ac 2>bc 2,则a >b ; ②若sin α=sin β,则α=β;③“实数a =0”是“直线x -2ay =1和直线2x -2ay =1平行”的充要条件; ④若f (x )=log 2x ,则f (|x |)是偶函数. 其中正确命题的序号是________. 答案 ①③④解析 对于①,ac 2>bc 2,c 2>0,∴a >b 正确;对于②,sin 30°=sin 150°D ⇒/30°=150°,所以②错误;对于③,l 1∥l 2⇔A 1B 2=A 2B 1,即-2a =-4a ⇒a =0且A 1C 2≠A 2C 1,所以③对;对于④显然对.6. 已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________. 答案 [3,8)解析 因为p (1)是假命题,所以1+2-m ≤0, 解得m ≥3;又因为p (2)是真命题,所以4+4-m >0, 解得m <8.故实数m 的取值范围是3≤m <8.7. (·陕西)设n ∈N +,一元二次方程x 2-4x +n =0有整数..根的充要条件是n =________. 答案 3或4解析 ∵x 2-4x +n =0有整数根, ∴x =4±16-4n 2=2±4-n ,∴4-n 为某个整数的平方且4-n ≥0,∴n =3或n =4. 当n =3时,x 2-4x +3=0,得x =1或x =3; 当n =4时,x 2-4x +4=0,得x =2. ∴n =3或n =4. 三、解答题(共22分)8. (10分)判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假.解 原命题:若a ≥0,则x 2+x -a =0有实根. 逆否命题:若x 2+x -a =0无实根,则a <0. 判断如下:∵x 2+x -a =0无实根,∴Δ=1+4a <0,∴a <-14<0,∴“若x 2+x -a =0无实根,则a <0”为真命题.9. (12分)已知p :|x -3|≤2,q :(x -m +1)(x -m -1)≤0,若綈p 是綈q 的充分而不必要条件,求实数m 的取值范围.解 由题意得p :-2≤x -3≤2,∴1≤x ≤5. ∴綈p :x <1或x >5.q :m -1≤x ≤m +1,∴綈q :x <m -1或x >m +1. 又∵綈p 是綈q 的充分而不必要条件,∴⎩⎪⎨⎪⎧m -1≥1,m +1≤5,且等号不能同时取到,∴2≤m ≤4.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (·上海)对于常数m 、n ,“mn >0”是“方程mx 2+ny 2=1的曲线是椭圆”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 ∵mn >0,∴⎩⎨⎧m >0,n >0或⎩⎪⎨⎪⎧m <0,n <0,当m >0,n >0且m ≠n 时,方程mx 2+ny 2=1的曲线是椭圆, 当m <0,n <0时,方程mx 2+ny 2=1不表示任何图形, 所以条件不充分;反之,当方程mx 2+ny 2=1表示的曲线是椭圆时有mn >0,所以“mn >0”是“方程mx 2+ny 2=1的曲线是椭圆”的必要不充分条件.2. 已知p :1x -2≥1,q :|x -a |<1,若p 是q 的充分不必要条件,则实数a 的取值范围为( )A .(-∞,3]B .[2,3]C .(2,3]D .(2,3)答案 C解析 由1x -2≥1,得2<x ≤3;由|x -a |<1,得a -1<x <a +1.若p 是q 的充分不必要条件,则⎩⎪⎨⎪⎧a -1≤2a +1>3,即2<a ≤3.所以实数a 的取值范围是(2,3],故选C.3. 集合A ={x ||x |≤4,x ∈R },B ={x |x <a },则“A ⊆B ”是“a >5”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 A ={x |-4≤x ≤4},若A ⊆B ,则a >4.a >4D /⇒a >5,但a >5⇒a >4.故“A ⊆B ”是“a >5”的必要不充分条件. 二、填空题(每小题5分,共15分)4. 设有两个命题p 、q .其中p :对于任意的x ∈R ,不等式ax 2+2x +1>0恒成立;命题q :f (x )=(4a -3)x 在R 上为减函数.如果两个命题中有且只有一个是真命题,那么实数a 的取值范围是____________. 答案 ⎝⎛⎭⎫34,1∪(1,+∞)解析 当a =0时,不等式为2x +1>0,显然不能恒成立,故a =0不适合;当a ≠0时,不等式ax 2+2x +1>0恒成立的条件是⎩⎪⎨⎪⎧a >0,Δ=22-4a <0, 解得a >1.若命题q 为真,则0<4a -3<1,解得34<a <1.由题意,可知p ,q 一真一假. 当p 真q 假时,a 的取值范围是。
第一章:集合与常用逻辑用语东北大学外国语学院丁梁整理1 元素与集合(1)概念:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)。
构成集合的每个对象叫做这个集合的元素(或成员)(2)集合中元素的特征:1 确定性:作为一个集合,必须是确定的2 互异性:集合中的元素必须是互异的3 无序性:集合与其中元素的排列顺序无关(3)元素与集合的两种关系:∈(属于) ∉(不属于)(4)集合的分类:有限集,无限集,空集(5)常用的数集及其表示符号(6)集示方法:列举法、描述法、图示法(Venn图)2 集合间的关系(1)集合间的运算关系1 子集:如果集合A中所有的元素都是集合B中的元素,则称集合A为集合B的子集2 真子集:如果集合A⊆B,但存在元素a∈B,但元素a∉A,则称集合A是集合B 的真子集3 等集:集合A与集合B中的元素相同,那么就说集合A与集合B相等4 并集:对于两个给定集合A、B,由所有属于集合A或属于集合B的元素组成的集合5 交集:对于两个给定的集合A、B,由所有属于集合A且属于集合B的元素组成的集合6补集:对于一个集合A,由全集U中所有属于集合U但不属于集合A的所有元素组成的集合成为A在全集U中的补集,记作C U A(2)集合间的逻辑关系交集:A B⊆A A B⊆B A A=A A =并集:A B⊇A A B⊇B A A=A A =A补集:C U(C U A)=A C U U= C U= U A (C U A)=A (C U A)=U3 设有限集合A,card(A)=n(n∈N+),则(1)A的子集的个数是:n2(2)A的真子集的个数是:n2-1(3)A的非空子集个数是:n2—1(4)A的非空真子集的个数是:n2—24 逻辑联结词(1)命题的概念:例:①12>5 ②3是12的约数③0.5是整数定义:可以判断真假的语句叫命题.正确的叫真命题,错误的叫假命题。
第一节集合1.集合的含义与表示(1)了解集合的含义、元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Venn)图表达集合的关系及运算.授课提示:对应学生用书第1页◆教材通关◆1.元素与集合(1)集合中元素的三个特征:确定性、互异性、无序性.(2)集合中元素与集合的关系有且仅有两种:属于(用符号“∈”表示)和不属于(用符号“∉”表示).(3)集合的表示法:列举法、描述法、图示法.2.集合间的基本关系A B[必记结论]集合的子集、真子集个数的规律为:含n 个元素的集合有2n 个子集,有2n -1个真子集(除集合本身),有2n -1个非空子集,有2n -2个非空真子集(除集合本身和空集,此时n ≥1).3.集合的基本运算(1)A ∩∅=∅,A ∪∅=A ;(2)A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B ⇔A ∩(∁U B )=∅;(3)A ∪(∁U A )=U ,A ∩(∁U A )=∅,∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).[小题诊断]1.(2017·高考全国卷Ⅰ)已知集合A ={x |x <2},B ={x |3-2x >0},则( )A .A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪x <32B .A ∩B =∅C .A ∪B =⎩⎨⎧⎭⎬⎫x ⎪⎪ x <32D .A ∪B =R解析:因为A ={x |x <2},B ={x |3-2x >0}=⎩⎨⎧⎭⎬⎫x ⎪⎪x <32,所以A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪x <32,A ∪B ={x |x <2}.故选A.答案:A2.设集合M ={-1,1},N ={x |x 2-x <6},则下列结论正确的是( ) A .N ⊆M B .N ∩M =∅ C .M ⊆ND .M ∩N =R解析:由已知得集合M ={-1,1},N ={x |x 2-x <6}={x |-2<x <3},所以M ⊆N ,故选C.答案:C3.(2018·唐山模拟)已知全集U ={1,2,3,4,5},A ={1,2,4},B ={2,5},则(∁U A )∪B =( ) A .{3,4,5} B .{2,3,5} C .{5}D .{3}解析:因为U ={1,2,3,4,5},A ={1,2,4},所以∁U A ={3,5},又B ={2,5},所以(∁U A )∪B={2,3,5}.答案:B4.(2018·衡水中学联考)若集合B={x|x≥0},且A∩B=A,则集合A可能是()A.{1,2} B.{x|x≤1}C.{-1,0,1} D.R解析:由A∩B=A得A⊆B,因为B={x|x≥0},所以集合A可能是{1,2},故选A.答案:A5.已知全集U=R,集合A={0,1,2,3,4,5},B={x∈R|x≥2},则图中阴影部分所表示的集合为()A.{0,1} B.{1}C.{1,2} D.{0,1,2}解析:由Venn图可知,阴影部分的元素由属于A且不属于B的元素构成,所以用集合表示为A∩∁U B.∵U=R,A={0,1,2,3,4,5},B={x∈R|x≥2},∴A∩∁U B={0,1},故选A.答案:A6.已知集合A={(x,y)|x,y∈R,x2+y2=1},B={(x,y)|x,y∈R,y=4x2-1},则A∩B 的元素个数是________.解析:集合A是以原点为圆心,半径等于1的圆周上的点的集合,集合B是抛物线y=4x2-1上的点的集合,观察图象可知,抛物线与圆有3个交点,因此A∩B中含有3个元素.答案:3◆易错通关◆1.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身.2.运用数轴图示法易忽视端点是实心还是空心.3.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.[小题纠偏]1.设全集U=R,集合A={x|7-6x≤0},集合B={x|y=lg(x+2)},则(∁U A)∩B等于()A.⎝⎛⎭⎫-2,76 B .⎝⎛⎭⎫76,+∞ C.⎣⎡⎭⎫-2,76 D .⎝⎛⎭⎫-2,-76 解析:依题意得A =⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≥76,∁U A =⎩⎨⎧⎭⎬⎫x ⎪⎪x <76;B ={x |x +2>0}={x |x >-2},因此(∁U A )∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪-2<x <76. 答案:A2.若集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ⊆A ,则由m 的可取值组成的集合为________.解析:当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ;若B ≠∅,且满足B ⊆A ,如图所示,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,即⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.故m <2或2≤m ≤3,即所求集合为{m |m ≤3}.答案:{m |m ≤3}3.已知集合A ={x ∈N |x 2-2x ≤0},则满足A ∪B ={0,1,2}的集合B 的个数为________. 解析:由A 中的不等式解得0≤x ≤2,x ∈N ,即A ={0,1,2}.∵A ∪B ={0,1,2},∴B 可能为{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},∅,共8个.答案:8授课提示:对应学生用书第2页考点一 集合的概念与关系 自主探究 基础送分考点——自主练透[题组练通]1.已知集合A ={1,-1},B ={1,0,-1},则集合C ={a +b |a ∈A ,b ∈B }中元素的个数为( )A .2B .3C .4D .5解析:由题意,当a =1,b =1时,a +b =2;当a =1,b =0时,a +b =1;当a =1,b =-1时,a +b =0;当a =-1,b =1时,a +b =0;当a =-1,b =0时,a +b =-1;当a =-1,b =-1时,a +b =-2.因此集合C ={2,1,0,-1,-2},共有5个元素.故选D.答案:D2.(2018·兰州模拟)已知集合A ={x |y =ln(x +3)},B ={x |x ≥2},则下列结论正确的是( ) A .A =B B .A ∩B =∅ C .A ⊆BD .B ⊆A解析:A ={x |x >-3},B ={x |x ≥2},结合数轴可得:B ⊆A . 答案:D3.已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =k π4+π4,k ∈Z ,集合N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π8-π4,k ∈Z ,则( ) A .M ∩N =∅ B .M ⊆N C .N ⊆MD .M ∪N =N解析:由题意可知,M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =(2k +4)8π-π4,k ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪x =2n π8-π4,n ∈Z ,N =⎩⎨⎧ x ⎪⎪ x =2k π8-π4或⎭⎪⎬⎪⎫x =(2k -1)8π-π4,k ∈Z ,所以M ⊆N ,故选B.答案:B4.已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.解析:由log 2x ≤2,得0<x ≤4, 即A ={x |0<x ≤4}, 而B =(-∞,a ),由于A ⊆B ,如图所示,则a >4,即c =4. 答案:41.集合中元素的互异性常常容易被忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.如题组中1易错.2.已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的条件,解决这类问题常常要合理利用数轴、Venn 图帮助分析.如题组中2,4均用了数轴进行分析求解.考点二 集合的基本运算 多维探究 题点多变考点——多角探明[锁定考向] 集合运算多与解简单的不等式、函数的定义域、值域相联系,考查对集合的理解及不等式的有关知识;有些集合题为抽象集合题或新定义型集合题,考查学生的灵活处理问题的能力.常见的命题角度有:(1)集合的基本运算;(2)利用集合运算求参数或范围. 角度一 集合的基本运算1.(2017·高考全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.答案:B2.设集合A ={x ∈Z ||x |≤2},B =⎩⎨⎧⎭⎬⎫x ⎪⎪32x≤1,则A ∩B =( ) A .{1,2} B .{-1,2} C .{-2,1,2}D .{-2,-1,0,2}解析:A ={-2,-1,0,1,2},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪2x -32x≥0=⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥32或x <0,所以A ∩B ={-2,-1,2},故选C.答案:C3.已知集合A ={y |y =x 2-1},B ={x |y =lg(x -2x 2)},则∁R (A ∩B )=( ) A.⎣⎡⎭⎫0,12 B .(-∞,0)∪⎣⎡⎭⎫12,+∞ C.⎝⎛⎭⎫0,12 D .(-∞,0]∪⎣⎡⎭⎫12,+∞ 解析:A ={y |y =x 2-1}=[0,+∞), B ={x |y =lg(x -2x 2)}=⎝⎛⎭⎫0,12, 所以A ∩B =⎝⎛⎭⎫0,12, 所以∁R (A ∩B )=(-∞,0]∪⎣⎡⎭⎫12,+∞. 答案:D解决集合运算的两个方法角度二 利用集合运算求参数或范围4.(2017·高考全国卷Ⅱ)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( )A .{1,-3}B .{1,0}C .{1,3}D .{1,5}解析:因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3}.答案:C5.已知集合A ={x |log 2x <1},B ={x |0<x <c },若A ∪B =B ,则c 的取值范围是( ) A .(0,1] B .[1,+∞) C .(0,2]D .[2,+∞)解析:A ={x |log 2x <1}={x |0<x <2},因为A ∪B =B ,所以A ⊆B ,所以c ≥2,所以c ∈[2,+∞),故选D.答案:D6.(2017·合肥模拟)已知A =[1,+∞),B =⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B .⎣⎡⎦⎤12,1 C.⎣⎡⎭⎫23,+∞ D .(1,+∞)解析:因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1,故选A. 答案:A根据集合运算的结果确定参数的取值范围解决此类问题的步骤一般为:(1)化简所给集合;(2)用数轴表示所给集合;(3)根据集合端点间关系列出不等式(组);(4)解不等式(组);(5)检验,通过返回代入验证端点是否能够取到.解决此类问题多利用数形结合的方法,结合数轴或Venn 图进行求解.[即时应用]1.(2017·高考全国卷Ⅱ)设集合A ={1,2,3},B ={2,3,4},则A ∪B =( ) A .{1,2,3,4} B .{1,2,3} C .{2,3,4}D .{1,3,4}解析:由题意得A ∪B ={1,2,3,4}. 答案:A2.(2017·高考浙江卷)已知集合P ={x |-1<x <1},Q ={x |0<x <2},则P ∪Q =( ) A .(-1,2) B .(0,1) C .(-1,0)D .(1,2) 解析:P ∪Q =(-1,2). 答案:A3.(2017·高考山东卷)设函数y =4-x 2的定义域为A ,函数y =ln(1-x )的定义域为B ,则A ∩B =( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1) 解析:由4-x 2≥0,解得-2≤x ≤2,由1-x >0,解得x <1,∴A ∩B ={x |-2≤x <1}.故选D.答案:D4.(2018·长沙模拟)已知集合A ={1,2,3},B ={x |x 2-3x +a =0,a ∈A },若A ∩B ≠∅,则a 的值为( )A .1B .2C.3 D.1或2解析:当a=1时,B中元素均为无理数,A∩B=∅;当a=2时,B={1,2},A∩B={1,2}≠∅;当a=3时,B=∅,则A∩B=∅,所以a的值为2,故选B.答案:B5.设集合A={0,1},集合B={x|x>a},若A∩B=∅,则实数a的取值范围是() A.a≤1 B.a≥1C.a≥0 D.a≤0解析:由A∩B=∅知0∉B,1∉B,∴a≥1,故选B.答案:B考点三集合的新定义问题创新探究交汇创新考点——突破疑难与集合有关的新定义问题属于信息迁移类问题,它是化归思想的具体运用,是近几年高考的热点问题,这类试题的特点是:通过给出的新的数学概念或新的运算法则,在新的情境下完成某种推理证明,或在新的运算法则下进行运算.常见的有定义新概念、新公式、新运算和新法则等类型.解决此类题型的关键是理解问题中的新概念、新公式、新运算、新法则等的含义,然后分析题目中的条件,设法进行套用.[典例]设A是自然数集的一个非空子集,对于k∈A,如果k2∉A,且k∉A,那么k是A 的一个“酷元”,给定S={x∈N|y=lg(36-x2)},设M⊆S,集合M中有两个元素,且这两个元素都是M的“酷元”,那么这样的集合M有()A.3个B.4个C.5个D.6个解析:由36-x2>0可解得-6<x<6,又x∈N,故x可取0,1,2,3,4,5,故S={0,1,2,3,4,5}.由题意可知:集合M不能含有0,1,且不能同时含有2,4.故集合M可以是{2,3}、{2,5}、{3,5}、{3,4}、{4,5}.答案:C[即时应用]1.设A,B是两个非空集合,定义集合A-B={x|x∈A,且x∉B}.若A={x∈N|0≤x≤5},B={x|x2-7x+10<0},则A-B=()A.{0,1} B.{1,2}C.{0,1,2} D.{0,1,2,5}解析:∵A ={x ∈N |0≤x ≤5}={0,1,2,3,4,5},B ={x |x 2-7x +10<0}={x |2<x <5},A -B ={x |x ∈A 且x ∉B },∴A -B ={0,1,2,5}.故选D. 答案:D2.设P ,Q 为两个非空实数集合,定义集合P ⊗Q ={z |z =a ÷b ,a ∈P ,b ∈Q },若P ={-1,0,1},Q ={-2,2},则集合P ⊗Q 中元素的个数是( )A .2B .3C .4D .5解析:当a =0时,无论b 取何值,z =a ÷b =0; 当a =-1,b =-2时,z =12;当a =-1,b =2时,z =-12;当a =1,b =-2时,z =-12;当a =1,b =2时,z =12.故P ⊗Q =⎩⎨⎧⎭⎬⎫0,-12,12,该集合中共有3个元素,所以选B.答案:B课时作业单独成册 对应学生用书第187页A 组——基础对点练1.(2017·高考天津卷)设集合A ={1,2,6},B ={2,4},C ={1,2,3,4},则(A ∪B )∩C =( ) A .{2} B .{1,2,4} C .{1,2,4,6}D .{1,2,3,4,6}解析:由题意知A ∪B ={1,2,4,6}, ∴(A ∪B )∩C ={1,2,4}. 答案:B2.(2018·成都市模拟)设集合A ={0,1},B ={x |(x +2)(x -1)<0,x ∈Z },则A ∪B =( ) A .{-2,-1,0,1} B .{-1,0,1} C .{0,1}D .{0} 解析:因为集合A ={0,1},B ={x |(x +2)(x -1)<0,x ∈Z }={-1,0},所以A ∪B ={-1,0,1}.故选B.答案:B3.设集合A ={x |x <2},B ={y |y =2x -1},则A ∩B =( ) A .(-∞,3) B .[2,3) C .(-∞,2)D .(-1,2)解析:A ={x |x <2},因为y =2x -1>-1,所以B ={y |y =2x -1}=(-1,+∞),所以A ∩B =(-1,2),故选D.答案:D4.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =( )A .1B .-1C .2D .-2解析:根据题意,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,又∵a ≠0,∴a +b =0,即a =-b ,∴ba=-1,b =1.故a =-1,b =1,则b -a =2.故选C. 答案:C5.已知集合A ={-2,-1,0,1,2,3},B ={x |x +1x -2<0},则A ∩B =( )A .{-2,-1,0,1,2,3}B .{-1,0,1,2}C .{-1,2}D .{0,1}解析:由题意,得B ={x |-1<x <2},所以A ∩B ={0,1},故选D. 答案:D6.已知集合A ={1,2,3,4},B ={y |y =3x -2,x ∈A },则A ∩B =( ) A .{1} B .{4} C .{1,3}D .{1,4}解析:由题意,得B ={1,4,7,10},∴A ∩B ={1,4}. 答案:D7.(2018·长沙市模拟)已知集合P ={x |-2 016≤x ≤2 017},Q ={x | 2 017-x <1},则P ∩Q =( )A .(2 016,2 017)B .(2 016,2 017]C .[2 016,2 017)D .(-2 016,2 017)解析:由已知可得Q ={x |0≤2 017-x <1}=(2 016,2 017],则P ∩Q =(2 016,2 017]. 答案:B8.(2018·石家庄模拟)函数y =x -2与y =ln(1-x )的定义域分别为M ,N ,则M ∪N =( )A.(1,2] B.[1,2]C.(-∞,1]∪[2,+∞) D.(-∞,1)∪[2,+∞)解析:使x-2有意义的实数x应满足x-2≥0,∴x≥2,∴M=[2,+∞),y=ln(1-x)中x应满足1-x>0,∴x<1,∴N=(-∞,1),所以M∪N=(-∞,1)∪[2,+∞),故选D.答案:D9.(2018·沈阳市模拟)设全集U=R,集合A={x|x≥2},B={x|0≤x<6},则集合(∁U A)∩B =()A.{x|0<x<2} B.{x|0<x≤2}C.{x|0≤x<2} D.{x|0≤x≤2}解析:∵U=R,A={x|x≥2},∴∁U A={x|x<2}.又B={x|0≤x<6},∴(∁U A)∩B={x|0≤x <2}.故选C.答案:C10.(2017·天津模拟)设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=()A.{1} B.{2}C.{0,1} D.{1,2}解析:N={x|x2-3x+2≤0}={x|1≤x≤2},又M={0,1,2},所以M∩N={1,2}.答案:D11.已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4} B.{2,3}C.{9,16} D.{1,2}解析:n=1,2,3,4时,x=1,4,9,16,∴集合B={1,4,9,16},∴A∩B={1,4}.答案:A12.(2018·长春市模拟)已知集合A={x|x2-x+4>x+12},B={x|2x-1<8},则A∩(∁R B )=()A.{x|x≥4} B.{x|x>4}C.{x|x≥-2} D.{x|x<-2或x≥4}解析:由题意易得,A={x|x<-2或x>4},B={x|x<4},则A∩(∁R B)={x|x>4}.故选B.答案:B13.已知集合A={-1,2,3,6},B={x|-2<x<3},则A∩B=________.答案:{-1,2}14.已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁U B)=________.解析:∁U B={2},∴A∪∁U B={1,2,3}.答案:{1,2,3}15.集合{-1,0,1}共有__________个子集.解析:集合{-1,0,1}的子集有∅,{-1},{0},{1},{-1,0},{-1,1},{0,1},{-1,0,1},共8个.答案:816.已知集合U ={1,2,3,4,5},A ={1,3},B ={1,3,4},则A ∪(∁U B )=__________. 答案:{1,2,3,5}B 组——能力提升练1.已知全集U ={0,1,2,3},∁U M ={2},则集合M =( ) A .{1,3} B .{0,1,3} C .{0,3}D .{2}解析:M ={0,1,3}. 答案:B2.已知集合A ={0,1,2},B ={1,m }.若A ∩B =B ,则实数m 的值是( ) A .0 B .2C .0或2D .0或1或2 解析:∵A ∩B =B ,∴B ⊆A ,∴m =0或m =2. 答案:C3.(2018·南昌市模拟)已知集合A ={x ∈R |0<x ≤5},B ={x ∈R |log 2x <2},则(∁A B )∩Z =( )A .{4}B .{5}C .[4,5]D .{4,5}解析:∵集合A ={x ∈R |0<x ≤5},B ={x ∈R |log 2x <2}={x |0<x <4},∴∁A B ={x |4≤x ≤5},∴(∁A B )∩Z ={4,5},故选D.答案:D4.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -1x +2≤0,B ={x |y =lg(-x 2+4x +5)},则A ∩(∁R B )=( ) A .(-2,-1] B .[-2,-1] C .(-1,1]D .[-1,1]解析:依题意,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -1x +2≤0={x |-2<x ≤1},B ={x |y =lg(-x 2+4x +5)}={x |-x 2+4x +5>0}={x |-1<x <5},∴∁R B ={x |x ≤-1或x ≥5},A ∩(∁R B )=(-2,-1],选A.答案:A5.(2018·惠州模拟)已知集合A ={0,1},B ={z |z =x +y ,x ∈A ,y ∈A },则集合B 的子集的个数为()A.3 B.4C.7 D.8解析:由题意知,B={0,1,2},则集合B的子集的个数为23=8.故选D.答案:D6.(2018·太原市模拟)已知全集U=R,集合A={x|x(x+2)<0},B={x||x|≤1},则如图所示的阴影部分表示的集合是()A.(-2,1)B.[-1,0]∪[1,2)C.(-2,-1)∪[0,1]D.[0,1]解析:因为集合A={x|x(x+2)<0},B={x||x|≤1},所以A={x|-2<x<0},B={x|-1≤x≤1},所以A∪B=(-2,1],A∩B=[-1,0),所以阴影部分表示的集合为∁A∪B(A∩B)=(-2,-1)∪[0,1],故选C.答案:C7.(2018·郑州质量预测)设全集U={x∈N*|x≤4},集合A={1,4},B={2,4},则∁U(A∩B)=()A.{1,2,3} B.{1,2,4}C.{1,3,4} D.{2,3,4}解析:因为U={1,2,3,4},A∩B={4},所以∁U(A∩B)={1,2,3},故选A.答案:A8.(2018·广雅中学测试)若全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是()解析:由题意知,N={x|x2+x=0}={-1,0},而M={-1,0,1},所以N M,故选B.答案:B9.已知集合A满足条件{1,2}⊆A{1,2,3,4,5},则集合A的个数为()A.8 B.7C.4 D.3解析:由题意可知,集合A中必含有元素1和2,可含有3,4,5中的0个、1个、2个,则集合A 可以为{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},共7个.故选B.答案:B10.已知集合A ={2,0,1,4},B ={k |k ∈R ,k 2-2∈A ,k -2∉A },则集合B 中所有的元素之和为( )A .2B .-2C .0D . 2解析:若k 2-2=2,则k =2或k =-2,当k =2时,k -2=0,不满足条件,当k =-2时,k -2=-4,满足条件;若k 2-2=0,则k =±2,显然满足条件;若k 2-2=1,则k =±3,显然满足条件;若k 2-2=4,得k =±6,显然满足条件.所以集合B 中的元素为-2,±2,±3,±6,所以集合B 中的元素之和为-2,故选B.答案:B11.给出下列四个结论: ①{0}是空集; ②若a ∈N ,则-a ∉N ;③集合A ={x |x 2-2x +1=0}中有两个元素;④集合B =⎩⎨⎧⎭⎬⎫x ∈Q ⎪⎪6x∈N 是有限集. 其中正确结论的个数是( ) A .0 B .1 C .2D .3解析:对于①,{0}中含有元素0,不是空集,故①错误; 对于②,比如0∈N ,-0∈N ,故②错误;对于③,集合A ={x |x 2-2x +1=0}={1}中有一个元素,故③错误;对于④,当x ∈Q 且6x ∈N 时,6x 可以取无数个值,所以集合B =⎩⎨⎧⎭⎬⎫x ∈Q ⎪⎪6x ∈N 是无限集,故④错误.综上可知,正确结论的个数是0.故选A. 答案:A12.已知集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z },B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },定义集合A B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B },则A B 中元素的个数为( )A .77B .49C .45D .30解析:集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z },所以集合A中有5个元素(即5个点),即图中圆内及圆上的整点.集合B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z }中有25个元素(即25个点),即图中正方形ABCD 内及正方形ABCD 上的整点.集合A B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B }中的元素可看作正方形A 1B 1C 1D 1内及正方形A 1B 1C 1D 1上除去四个顶点外的整点,共7×7-4=45个.答案:C13.设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________. 解析:依题意得U ={1,2,3,4,5,6,7,8,9,10},∁U A ={4,6,7,9,10},(∁U A )∩B ={7,9}. 答案:{7,9}14.集合A ={x ∈R ||x -2|≤5}中的最小整数为________.解析:由|x -2|≤5,得-5≤x -2≤5,即-3≤x ≤7,所以集合A 中的最小整数为-3. 答案:-315.若集合A ={x |(a -1)x 2+3x -2=0,x ∈R }有且仅有两个子集,则实数a 的值为________.解析:由题意知,方程(a -1)x 2+3x -2=0,x ∈R ,有一个根,∴当a =1时满足题意,当a ≠1时,Δ=0,即9+8(a -1)=0,解得a =-18.答案:1或-18第二节 命题及其关系、充分条件与必要条件1.理解命题的概念.2.了解“若p ,则q ”形式的命题及其逆命题、 否命题与逆否命题,会分析四种命题的相互关系. 3.理解必要条件、充分条件与充要条件的意义.授课提示:对应学生用书第4页◆ 教材通关 ◆1.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题时,它们的真假性没有关系.[必记结论]由于互为逆否命题的两个命题具有相同的真假性,因而当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.[提醒]易混否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.充分条件、必要条件与充分必要条件的概念qpp1.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是() A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3解析:同时否定原命题的条件和结论,所得命题就是它的否命题.答案:A2.命题“若a2<b,则-b<a<b”的逆否命题为()A.若a2≥b,则a≥b或a≤-bB.若a2>b,则a>b或a<-bC.若a≥b或a≤-b,则a2≥bD.若a>b或a<-b,则a2>b解析:因为“a 2<b ”的否定为“a 2≥b ”,“-b <a <b ”的否定为“a ≥b 或a ≤-b ”,所以逆否命题为“若a ≥b 或a ≤-b ,则a 2≥b ”. 答案:C3.(2018·唐山模拟)已知a ,b 为实数,则“a 3<b 3”是“2a <2b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件解析:由于函数y =x 3,y =2x 在R 上单调递增,所以a 3<b 3⇔a <b ⇔2a <2b ,即“a 3<b 3”是“2a <2b ”的充要条件.答案:C4.已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定解析:命题p :“正数a 的平方不等于0”写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.答案:B5.(2016·高考四川卷)设p :实数x ,y 满足x >1且y >1,q :实数x ,y 满足x +y >2,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵⎩⎪⎨⎪⎧x >1,y >1,∴x +y >2,即p ⇒q .而当x =0,y =3时,有x +y =3>2,但不满足x >1且y >1,即q p .故p 是q 的充分不必要条件.答案:A6.命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( ) A .a ≥4 B .a >4 C .a ≥1D .a >1解析:要使“对任意x ∈[1,2),x 2-a ≤0”为真命题,只需要a ≥4,∴a >4是命题为真的充分不必要条件.答案:B◆ 易错通关 ◆1.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A 是B 的充分不必要条件(A ⇒B 且BA )与A 的充分不必要条件是B (B ⇒A 且A B )两者的不同.[小题纠偏]1.设a ,b 均为非零向量,则“a ∥b ”是“a 与b 的方向相同”的________条件. 答案:必要不充分2.“在△ABC 中,若C =90°,则A ,B 都是锐角”的否命题为:________. 解析:原命题的条件:在△ABC 中,C =90°, 结论:A ,B 都是锐角.否命题是否定条件和结论, 即“在△ABC 中,若C ≠90°,则A ,B 不都是锐角”. 答案:在△ABC 中,若C ≠90°,则A ,B 不都是锐角授课提示:对应学生用书第5页考点一 命题及其关系 自主探究 基础送分考点——自主练透[题组练通]1.命题“若△ABC 有一内角为π3,则△ABC 的三个内角成等差数列”的逆命题( )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:原命题显然为真,原命题的逆命题为“若△ABC 的三个内角成等差数列,则△ABC有一内角为π3”,它是真命题.答案:D2.(2018·焦作质检)设等比数列{a n }的公比为q ,前n 项和为S n .给出命题s :若|q |=2,则S 6=7S 2,则在命题s 的逆命题、否命题、逆否命题中,错误命题的个数是( )A .3B .2C .1D .0解析:若|q |=2,则q 2=2,S 6=a 1(1-q 6)1-q =a 1(1-q 2)(1+q 2+q 4)1-q =7·a 1(1-q 2)1-q=7S 2,所以原命题为真,从而逆否命题为真;而当S 6=7S 2时,显然q ≠1,这时a 1(1-q 6)1-q =7·a 1(1-q 2)1-q ,解得q =-1或|q |=2,因此,逆命题为假,否命题为假,故错误命题的个数为2.答案:B3.命题“若a >b ,则a +c >b +c ”的否命题是( ) A .若a ≤b ,则a +c ≤b +c B .若a +c ≤b +c ,则a ≤b C .若a +c >b +c ,则a >b D .若a >b ,则a +c ≤b +c解析:否命题是将原命题的条件和结论都否定,故命题“若a >b ,则a +c >b +c ”的否命题是“若a ≤b ,则a +c ≤b +c ”,故选A.答案:A1.判断命题真假的方法(1)判定一个命题是真命题,需经过严格推理证明,而要说明它是假命题,只需举出一个反例即可.(2)利用原命题与逆否命题、逆命题与否命题具有相同的真假性对所给命题的真假进行间接判断.2.由原命题写出其他三种命题的方法由原命题写出其他三种命题,关键要分清原命题的条件和结论,将原命题的条件与结论互换即得到逆命题,将原命题的条件与结论同时否定即得否命题,将原命题的条件与结论互换的同时进行否定即得逆否命题.考点二 充分必要条件的判定 互动探究 重点保分考点——师生共研[典例] (1)(2018·合肥教学质检)“x ≥1”是“x +1x ≥2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)如果x ,y 是实数,那么“x ≠y ”是“cos x ≠cos y ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件(3)(2018·衡阳联考)设p :x 2-x -20>0,q :log 2(x -5)<2,则p 是q 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:(1)由题意得x +1x ≥2⇔x >0,所以“x ≥1”是“x +1x≥2”的充分不必要条件,故选A.(2)设集合A ={(x ,y )|x ≠y },B ={(x ,y )|cos x ≠cos y },则A 的补集C ={(x ,y )|x =y },B 的补集D ={(x ,y )|cos x =cos y },显然C D ,所以B A .于是“x ≠y ”是“cos x ≠cos y ”的必要不充分条件.(3)∵x 2-x -20>0,∴x >5或x <-4,∴p :x >5或x <-4.∵log 2(x -5)<2,∴0<x -5<4,即5<x <9,∴q :5<x <9,∵{x |5<x <9}{x |x >5或x <-4},∴p 是q 的必要不充分条件.故选B.答案:(1)A (2)C (3)B充要条件的3种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断;(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的某种条件,即可转化为判断“x =1且y =1”是“xy =1”的某种条件.[即时应用]1.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:设命题a :“若p ,则q ”,可知命题a 是祖暅原理的逆否命题,则a 是真命题.故p 是q 的充分条件.设命题b :“若q ,则p ”,若A 比B 在某些等高处的截面积小一些,在另一些等高处的截面积大一些,且大的总量与小的总量相抵,则它们的体积还是一样的.所以命题b 是假命题,即p 不是q 的必要条件.综上所述,p 是q 的充分不必要条件.故选A.答案:A2.设a ,b ∈R ,则“log 2a >log 2b ”是“2a -b >1”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:log 2a >log 2b ⇔a >b >0,2a -b >1⇔a >b ,所以“log 2a >log 2b ”是“2a -b >1”的充分不必要条件.故选A.答案:A3.已知命题甲是“⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x 2+x x -1≥0”,命题乙是“{x |log 3(2x +1)≤0}”,则( ) A .甲是乙的充分条件,但不是乙的必要条件B .甲是乙的必要条件,但不是乙的充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件解析:由x 2+x x -1≥0,即x (x +1)(x -1)≥0且x ≠1,解得-1≤x ≤0或x >1.∵log 3(2x +1)≤0,∴0<2x +1≤1,解得-12<x ≤0.∴甲是乙的必要条件,但不是乙的充分条件.故选B. 答案:B考点三 根据充分、必要条件求参数的取值范围 变式探究 母题变式考点——多练题型[典例] (2018·济南月考)已知P ={x |x 2-8x -20≤0},S ={x |1-m ≤x ≤1+m }.是否存在实数m ,使得x ∈P 是x ∈S 的充分必要条件?若存在,求出m 的取值范围.解析:P ={x |x 2-8x -20≤0}={x |-2≤x ≤10}.要使x ∈P 是x ∈S 的充分必要条件,则P =S ,即{x |-2≤x ≤10}={x |1-m ≤x ≤1+m }.∴⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,此时,m 不存在,即不存在实数m ,使得x ∈P 是x ∈S 的充分必要条件.[变式探究1]母题条件若改为“x ∈P 是x ∈S 的必要条件”,问题不变.解析:∵x ∈P 是x ∈S 的必要条件,即x ∈S ⇒x ∈P ,∴S P ,∴1-m >1+m 或⎩⎪⎨⎪⎧ 1-m ≥-2,1+m ≤10,1-m ≤1+m ,∴m ≤3.[变式探究2] 母题条件若改为“綈P 是綈S 的必要不充分条件”,问题不变.解析:∵綈P 是綈S 的必要不充分条件,∴S 是P 的必要不充分条件,∴P 是S 的充分不必要条件,∴P S ⇔⎩⎪⎨⎪⎧ 1+m >1-m ,1-m ≤-2,1+m ≥10,∴m ≥9.利用充要条件求参数的值或范围的关键点和注意点(1)关键点:是合理转化条件,准确将每个条件对应的参数的范围求出来,然后转化为集合的运算.(2)注意点:注意区间端点值的检验.[即时应用]1.(2018·日照模拟)已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.解析:由2x 2-3x +1≤0,得12≤x ≤1, ∴命题p 为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤1. 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,∴命题q 为{x |a ≤x ≤a +1}.綈p 对应的集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x >1或x <12, 綈q 对应的集合B ={x |x >a +1或x <a }.∵綈p 是綈q 的必要不充分条件,∴a +1≥1且a ≤12,∴0≤a ≤12, 即实数a 的取值范围是⎣⎡⎦⎤0,12.答案:⎣⎡⎦⎤0,12 2.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析:A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2.答案:(2,+∞)课时作业单独成册 对应学生用书第189页A 组——基础对点练1.(2017·高考天津卷)设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:由|x -1|≤1,得0≤x ≤2,∵0≤x ≤2⇒x ≤2,x ≤20≤x ≤2, 故“2-x ≥0”是“|x -1|≤1”的必要而不充分条件,故选B.2.命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数解析:由于“x ,y 都是偶数”的否定表达是“x ,y 不都是偶数”,“x +y 是偶数”的否定表达是“x +y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”,故选C.答案:C3.已知命题“若函数f (x )=e x -mx 在(0,+∞)上是增函数,则m ≤1”,则下列结论正确的是( )A .否命题“若函数f (x )=e x -mx 在(0,+∞)上是减函数,则m >1”是真命题B .逆命题“若m ≤1,则函数f (x )=e x -mx 在(0,+∞)上是增函数”是假命题C .逆否命题“若m >1,则函数f (x )=e x -mx 在(0,+∞)上是减函数”是真命题D .逆否命题“若m >1,则函数f (x )=e x -mx 在(0,+∞)上不是增函数”是真命题 解析:命题“若函数f (x )=e x -mx 在(0,+∞)上是增函数,则m ≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.答案:D4.“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a=-2时,直线l1:2x+y-3=0,l2:2x+y+4=0,所以直线l1∥l2;若l1∥l2,则-a(a+1)+2=0,解得a=-2或a=1.所以“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的充分不必要条件,故选A.答案:A5.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是()A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析:由原命题和逆否命题的关系可知D正确.答案:D6.(2018·惠州市调研)设函数y=f(x),x∈R,“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件解析:设f(x)=x2,y=|f(x)|是偶函数,但是不能推出y=f(x)的图象关于原点对称.反之,若y=f(x)的图象关于原点对称,则y=f(x)是奇函数,这时y=|f(x)|是偶函数,故选C.答案:C7.(2018·南昌十校模拟)命题“已知a,b,c为实数,若abc=0,则a,b,c中至少有一个等于0”,在该命题的逆命题、否命题、逆否命题中,真命题的个数为() A.0 B.1C.2 D.3解析:原命题为真命题,逆命题为“已知a,b,c为实数,若a,b,c中至少有一个等于0,则abc=0”,也为真命题.根据命题的等价关系可知其否命题、逆否命题也是真命题,故在该命题的逆命题、否命题、逆否命题中,真命题的个数为3.答案:D8.(2018·石家庄模拟)已知向量a =(1,m ),b =(m,1),则“m =1”是“a ∥b ”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:向量a =(1,m ),b =(m,1),若a ∥b ,则m 2=1,即m =±1,故“m =1”是“a ∥b ”的充分不必要条件,选A.答案:A9.(2018·武汉市模拟)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:a 1>0,a 2n -1+a 2n =a 1q 2n -2(1+q )<0⇒1+q <0⇒q <-1⇒q <0,而a 1>0,q <0,取q =-12,此时a 2n -1+a 2n =a 1q 2n -2(1+q )>0.故“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的必要不充分条件.答案:B10.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“a ⊥b ”是“α⊥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:因为α⊥β,b ⊥m ,所以b ⊥α,又直线a 在平面α内,所以a ⊥b ;但直线a ,m 不一定相交,所以“a ⊥b ”是“α⊥β”的必要不充分条件,故选B.答案:B11.(2018·南昌市模拟)a 2+b 2=1是a sin θ+b cos θ≤1恒成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:因为a sin θ+b cos θ=a 2+b 2sin(θ+φ)≤a 2+b 2,所以由a 2+b 2=1可推得a sin θ+b cos θ≤1恒成立.反之,取a =2,b =0,θ=30°,满足a sin θ+b cos θ≤1,但不满足a 2+b 2=1,即由a sin θ+b cos θ≤1推不出a 2+b 2=1,故a 2+b 2=1是a sin θ+b cos θ≤1恒成立的充分不必要条件.故选A.答案:A12.(2018·洛阳统考)已知集合A ={1,m 2+1},B ={2,4},则“m =3”是“A ∩B ={4}”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析:若A ∩B ={4},则m 2+1=4,∴m =±3,而当m =3时,m 2+1=4,∴“m =3”是“A ∩B ={4}”的充分不必要条件.答案:A13.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的__________条件.解析:由正弦定理,得a sin A =b sin B,故a ≤b ⇔sin A ≤sin B .答案:充要14.“x >1”是“log 12(x +2)<0”的__________条件. 解析:由log 12(x +2)<0,得x +2>1,解得x >-1,所以“x >1”是“log 12(x +2)<0”的充分不必要条件.答案:充分不必要15.命题“若x >1,则x >0”的否命题是__________.答案:若x ≤1,则x ≤016.如果“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为__________.解析:由x 2>1,得x <-1,或x >1,又“x 2>1”是“x <a ”的必要不充分条件,知由“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,即a 的最大值为-1.答案:-1B 组——能力提升练1.(2018·湖南十校联考)已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若A =B =0,则S n =0,故数列{a n }不是等比数列;若数列{a n }是等比数列,则a 1=Aq +B ,a 2=Aq 2-Aq ,a 3=Aq 3-Aq 2,由a 3a 2=a 2a 1,得A =-B .故选B. 答案:B2.已知函数f (x )=3ln(x +x 2+1)+a (7x +7-x ),x ∈R ,则“a =0”是“函数f (x )为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由题意知f (x )的定义域为R ,易知y =ln(x +x 2+1)为奇函数,y =7x +7-x 为偶函数.当a =0时,f (x )=3ln(x +x 2+1)为奇函数,充分性成立;当f (x )为奇函数时,则a =0,必要性成立.因此“a =0”是“函数f (x )为奇函数”的充要条件.故选C.答案:C3.l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线;q :l 1,l 2不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充要条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:两直线异面,则两直线一定无交点,即两直线一定不相交;而两直线不相交,有可能是平行,不一定异面,故两直线异面是两直线不相交的充分不必要条件,故选A.答案:A4.“x 1>3且x 2>3”是“x 1+x 2>6且x 1x 2>9”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:x 1>3,x 2>3⇒x 1+x 2>6,x 1x 2>9;反之不成立,例如x 1=12,x 2=20.故选A. 答案:A5.若a ,b 为正实数,且a ≠1,b ≠1,则“a >b >1”是“log a 2<log b 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件。
考前回扣一、集合、复数与常用逻辑用语知识方法1.集合的概念、关系及运算(1)集合中元素的特性:确定性、互异性、无序性,求解含参数的集合问题时要根据互异性进行检验.(2)集合与集合之间的关系:A⊆B,B⊆C⇒A⊆C,空集是任何集合的子集,含有n个元素的集合的子集数为2n,真子集数为2n-1,非空真子集数为2n-2.2.复数(1)复数的相等:a+bi=c+di(a,b,c,d∈R)⇔a=c,b=d.(2)共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.(3)运算:(a+bi)±(c+di)=(a±c)+(b±d)i,(a+bi)(c+di)=(ac-bd)+(bc+ad)i,(a+bi)÷(c+di)=+i(c+di≠0).(4)复数的模:|z|=|a+bi|=r=(r≥0,r∈R).3.四种命题的关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.4.充分条件与必要条件若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇔q,则p,q互为充要条件.5.全(特)称命题及其否定(1)全称命题p:∀x∈M,p(x).它的否定 p:∃x0∈M, p(x0).(2)特称命题p:∃x0∈M,p(x0).它的否定 p:∀x∈M, p(x).易忘提醒1.遇到A∩B=⌀时,注意“极端”情况:A=⌀或B=⌀;同样在应用条件A∪B=B⇔A∩B=A⇔A⊆B 时,不要忽略A=⌀的情况.2.区分命题的否定和否命题的不同,否命题是对命题的条件和结论都否定,而命题的否定仅对命题的结论否定.3.“A的充分不必要条件是B”是指B能推出A,但A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,但B不能推出A.4.复数z为纯虚数的充要条件是a=0且b≠0(z=a+bi(a,b∈R)).还要注意巧妙运用参数问题和合理消参的技巧.习题回扣(命题人推荐)1.(集合的运算)设U=R,A={x|1≤x≤3},B={x|2<x<4},则A∩B=,A∪B= ,A ∪∁U B= .答案:{x|2<x≤3}{x|1≤x<4}{x|x≤3或x≥4}2.(复数的运算)已知(1+2i)=4+3i,则z= ,= .答案:2-i -i3.(充分必要条件)“a>b”是“a2>b2”的条件.答案:既不充分也不必要4.(命题的否定)已知p:∃x0∈R,-x0+1≤0,则 p为.答案:∀x∈R,x2-x+1>0二、平面向量、框图与合情推理知识方法1.平面向量中的四个基本概念(1)零向量模的大小为0,方向是任意的,它与任意非零向量都共线,记为0.(2)长度等于1个单位长度的向量叫单位向量,与a同向的单位向量为.(3)方向相同或相反的向量叫共线向量(平行向量).(4)向量的投影:|b|cos<a,b>叫做向量b在向量a方向上的投影.2.平面向量的两个重要定理(1)向量共线定理:向量a(a≠0)与b共线当且仅当存在唯一一个实数λ,使b=λa.(2)平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2,其中e1,e2是一组基底.3.平面向量的两个充要条件若两个非零向量a=(x1,y1),b=(x2,y2),则(1)a∥b⇔a=λb⇔x1y2-x2y1=0;(2)a⊥b⇔a·b=0⇔x1x2+y1y2=0.4.平面向量的三个性质(1)若a=(x,y),则|a|==.(2)若A(x1,y1),B(x2,y2),则||=.(3)若a=(x1,y1),b=(x2,y2),θ为a与b的夹角,则cos θ==.易忘提醒1.若a=0,则a·b=0,但由a·b=0,不能得到a=0或b=0,因为a⊥b时,a·b=0.2.两向量夹角的范围为[0,π],向量的夹角为锐角与向量的数量积大于0不等价.习题回扣(命题人推荐)1.(平面向量的线性运算)设D,E,F分别是△ABC的边BC,CA,AB上的点,且AF=AB,BD=BC,CE=CA,若记=m,=n,则= (用m,n表示).答案:-m-n2.(平面向量的坐标运算)设向量=(k,12),=(4,5),=(10,k),若A,B,C三点共线,则k= .答案:-2或113.(平面向量的数量积)已知向量a与b不共线,|a|=3,|b|=4,若a+kb与a-kb垂直,则k= .答案:±4.(类比推理)在等差数列{a n}中,若a10=0,则有a1+a2+…+a n=a1+a2+…+a19-n(n<19,且n∈N*)成立,类比上述性质,在等比数列{b n}中,若b9=1,则有.答案:b1b2…b n=b1b2…b17-n(n<17且n∈N*)三、不等式与线性规划知识方法1.一元二次不等式的解法先化为一般形式ax2+bx+c>0(a>0),再求相应一元二次方程ax2+bx+c=0(a>0)的根,最后根据相应二次函数图象与x轴的位置关系,确定一元二次不等式的解集.2.线性规划(1)判断二元一次不等式表示的平面区域的方法在直线Ax+By+C=0的某一侧任取一点(x0,y0),通过Ax0+By0+C的符号来判断Ax+By+C>0(或Ax+By+C<0)所表示的区域.(2)解决线性规划问题首先要找到可行域,再注意目标函数所表示的几何意义,数形结合找到目标函数取到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.3.五个重要的不等式(1)|a|≥0,a2≥0(a∈R);(2)a2+b2≥2ab(a,b∈R);(3)≥(a>0,b>0);(4)ab≤2(a,b∈R);(5)≥≥≥(a>0,b>0).易忘提醒1.解分式不等式时注意同解变形.2.作可行域时,注意边界线的虚实;及非线性目标函数的几何意义.3.在利用基本不等式求最值时,不要忽略“一正、二定、三相等”.习题回扣(命题人推荐)1.(求线性目标函数的最值)若x,y满足约束条件则z=3x+5y的最大值为,最小值为.答案:17 -112.(不等式的解法)若关于x的一元二次方程mx2-(1-m)x+m=0没有实数根,则m的取值范围为.答案:(-∞,-1)∪,+∞3.(利用基本不等式求最值)函数f(x)=x+的值域是.答案:(-∞,-2]∪[2,+∞)四、函数图象与性质、函数与方程知识方法1.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.证明函数的单调性时,规范步骤为取值、作差、变形、判断符号和下结论.复合函数的单调性遵循“同增异减”的原则;(2)奇偶性:①若f(x)是偶函数,那么f(x)=f(-x);②若f(x)是奇函数,0在其定义域内,则f(0)=0;③奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内有相反的单调性;(3)周期性:①若y=f(x)对x∈R,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a 的周期函数;②若y=f(x)是偶函数,其图象又关于直线x=a对称,则f(x)是周期为2|a|的周期函数;③若y=f(x)是奇函数,其图象又关于直线x=a对称,则f(x)是周期为4|a|的周期函数;④若f(x+a)=-f(x)或f(x+a)=,则y=f(x)是周期为2|a|的周期函数. 2.函数的图象对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换.3.函数的零点与方程的根(1)函数的零点与方程根的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.(2)零点存在性定理注意以下两点:①满足条件的零点可能不唯一;②不满足条件时,也可能有零点.易忘提醒1.函数具有奇偶性时,定义域关于原点对称,但定义域关于原点对称的函数不一定具有奇偶性.2.求单调区间时易忽略函数的定义域,切记:单调区间必须是定义域的子集且当同增(减)区间不连续时,不能用并集符号连接.3.忽略函数的单调性、奇偶性、周期性的定义中变量取值的任意性.4.画图时容易忽略函数的性质,图象左右平移时,平移距离容易出错.习题回扣(命题人推荐)1.(奇偶性)若函数f(x)=x2-mx+m+2是偶函数,则m= .答案:02.(单调性)若函数f(x)=x2+mx-2在区间(-∞,2)上是单调减函数,则实数m的取值范围为.答案:(-∞,-4]3.(函数图象)已知函数y=log a(x+b)的图象如图所示,则a= ;b= .答案: 34.(零点的应用)若方程7x2-(m+13)x-m-2=0的一个根在区间(0,1)上,另一个根在区间(1,2)上,则实数m的取值范围是.答案:(-4,-2)五、导数的简单应用知识方法1.导数的几何意义函数y=f(x)在x=x0处的导数f'(x0)的几何意义是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率,即k=f'(x0).2.导数与函数单调性的关系(1)若可导函数y=f(x)在区间(a,b)上单调递增,则f'(x)≥0在区间(a,b)上恒成立;若可导函数y=f(x)在区间(a,b)上单调递减,则f'(x)≤0在区间(a,b)上恒成立.可导函数y=f(x)在区间(a,b)上为增函数是f'(x)>0的必要不充分条件.(2)可导函数y=f(x)在x=x0处的导数f'(x0)=0是y=f(x)在x=x0处取得极值的必要不充分条件.3.函数的极值与最值(1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题.(2)函数在其定义区间的最大值、最小值最多有一个,而函数的极值可能不止一个,也可能没有.(3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的最值.易忘提醒1.求切线方程时,注意“在点A处的切线”与“过点A的切线”的区别.2.利用导数研究函数的单调性时不要忽视函数的定义域.3.函数y=f(x)在区间上单调递增不等价于f'(x)≥0.一般来说,已知函数y=f(x)单调递增,可以得到f'(x)≥0(有等号);求函数y=f(x)的单调递增区间,解f'(x)>0(没有等号)和确定定义域.4.对与不等式有关的综合问题要有转化为函数最值的化归思想;对含参数的综合问题要有分类讨论的思想.习题回扣(命题人推荐)1.(导数的几何意义)曲线y=在点M(π,0)处的切线方程为.答案:y=-+12.(极值)已知函数f(x)=x(x-c)2在x=2处有极大值,则c= .答案:63.(最值)已知函数f(x)=x2+px+q,当x=1时,f(x)有最小值4,则p= ,q= . 答案:-2 54.(单调性)函数f(x)=x+cos x,x∈0,的单调增区间为.答案:0,六、导数的综合应用知识方法1.利用导数求函数最值的几种情况(1)若连续函数f(x)在(a,b)内有唯一的极大值点x0,则f(x0)是函数f(x)在[a,b]上的最大值,min{f(a),f(b)}是函数f(x)在[a,b]上的最小值;若函数f(x)在(a,b)内有唯一的极小值点x0,则f(x0)是函数f(x)在[a,b]上的最小值,max{f(a),f(b)}是函数f(x)在[a,b]上的最大值.(2)若函数f(x)在[a,b]上单调递增,则f(a)是函数f(x)在[a,b]上的最小值,f(b)是函数f(x)在[a,b]上的最大值;若函数f(x)在[a,b]上单调递减,则f(a)是函数f(x)在[a,b]上的最大值,f(b)是函数f(x)在[a,b]上的最小值.(3)若函数f(x)在[a,b]上有极值点x1,x2,…,x n(n∈N*,n≥2),则将f(x1),f(x2),…,f(x n)与f(a),f(b)作比较,其中最大的一个是函数f(x)在[a,b]上的最大值,最小的一个是函数f(x)在[a,b]上的最小值.2.与不等式有关的恒成立与存在性问题(1)f(x)>g(x)对一切x∈I恒成立⇔I是f(x)>g(x)的解集的子集⇔[f(x)-g(x)]min>0(x∈I).(2)存在x0∈I使f(x)>g(x)成立⇔I与f(x)>g(x)的解集的交集不是空集⇔[f(x)-g(x)]max>0(x∈I).(3)对∀x1,x2∈D使得f(x1)≤g(x2)⇔f(x)max≤g(x)min.(4)对∀x1∈D1,∃x2∈D2使得f(x1)≥g(x2)⇔f(x)min≥g(x)min,f(x)定义域为D1,g(x)定义域为D2.3.证明不等式问题不等式的证明可转化为利用导数研究函数的单调性、极值和最值,再由单调性或最值来证明不等式,其中构造一个可导函数是用导数证明不等式的关键.易忘提醒1.不要忽略函数的定义域.2.在需分类讨论时,要做到不重不漏,不要忽略导函数中二次项系数的正负,以及根的大小比较.3.存在性问题与恒成立问题容易混淆,它们既有区别又有联系:若f(x)≤m恒成立,则f(x)max≤m;若f(x)≥m恒成立,则f(x)min≥m.若f(x)≤m有解,则f(x)min≤m;若f(x)≥m有解,则f(x)max≥m.习题回扣(命题人推荐)1.(导数几何意义的应用)如图,直线l和圆C,当l从l0开始在平面上绕点O按逆时针方向匀速转动(转动角度不超过90°)时,它扫过的圆内阴影部分的面积S是时间t的函数,这个函数的图象大致是( D )2.(比较大小)当x∈(0,π)时,sin x x.答案:<七、三角函数的图象与性质、三角恒等变换知识方法1.“巧记”诱导公式对于“±α,k∈Z的三角函数值”与“角α的三角函数值”的关系可按下面口诀记忆:奇变偶不变,符号看象限.2.“牢记”三角公式(1)两角和与差的正弦、余弦、正切公式sin(α±β)=sin αcos β±cos αsin β;cos(α±β)=cos αcos β∓sin αsin β;tan(α±β)= .(2)二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α;cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;tan 2α=;cos2α=,sin2α=.3.三种三角函数的图象和性质函数y=sin x y=cos x y=tan x图象单调性在-+2kπ,+2kπ(k∈Z)上单调递增;在+2kπ,+2kπ(k∈Z)上单调递减在[-π+2kπ,2kπ](k∈Z)上单调递增;在[2kπ,π+2kπ](k∈Z)上单调递减在-+kπ,+kπ(k∈Z)上单调递增续表函数y=sin x y=cos x y=tan x对称性对称中心:(kπ,0)(k∈Z);对称轴:x=+kπ(k∈Z)对称中心:+kπ,0(k∈Z);对称轴:x=kπ(k∈Z)对称中心:,0(k∈Z);无对称轴易忘提醒1.求单调区间时应先把变量系数化为正值再求解,且不要忘记周期性及k∈Z.2.注意“在区间[a,b]上单调递增(减)”与“单调区间是[a,b]”的区别.3.图象变换时,变换前后的函数名称要一致.4.图象变换时,注意“先相位后周期”与“先周期后相位”图象平移的单位个数的区别.(平移只对“x”而言)5.解三角变换问题的基本思路是:一角、二名、三结构.习题回扣(命题人推荐)1.(同角三角函数间关系)已知sin α+cos α=(0<α<π),则tan α=.答案:-2.(同角三角函数间关系)设tan α=-,则= .答案:-13.(三角函数图象变换)要得到函数y=3sin2x+的图象,只需将y=3sin 2x的图象个单位长度.答案:向左平移4.(三角函数性质)函数y=sin x+的单调递增区间为.答案:2kπ-,2kπ+(k∈Z)八、解三角形知识方法1.正弦定理===2R(2R为△ABC外接圆的直径).变形:a=2Rsin A,b=2Rsin B,c=2Rsin C.sin A=,sin B=,sin C=.a∶b∶c=sin A∶sin B∶sin C.2.余弦定理a2=b2+c2-2bccos A,b2=a2+c2-2accos B,c2=a2+b2-2abcos C.推论:cos A=,cos B=,cos C=.3.面积公式S△ABC =bcsin A=acsin B=absin C.4.解三角形(1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一.(3)已知两边及其夹角,利用余弦定理求解.(4)已知三边,利用余弦定理求解.易忘提醒1.已知三角函数值求角时,要注意角的范围的挖掘.2.利用正弦定理解三角形时,注意解的个数的讨论,可能有一解、两解或无解.在△ABC 中,A>B⇔sin A>sin B.3.已知两边和其中一边的对角,利用余弦定理求第三边时,应注意检验,否则易产生增根.4.在判断三角形的形状时,注意等式两边的公因式不要约掉,要移项提取公因式,否则会有漏掉一种形状的可能.习题回扣(命题人推荐)1.(正弦定理)在△ABC中,已知a=6,b=6,B=120°,则c= .答案:62.(余弦定理)在△ABC中,已知(a+b+c)(b+c-a)=3bc,则A= .答案:3.(求三角形面积)在△ABC中,已知c=10,A=45°,C=30°,则b= ,S△ABC= . 答案:5+525(+1)4.(三角形形状判断)在△ABC中,已知a2tan B=b2tan A,则△ABC是三角形.答案:等腰或直角5.(解三角形实际应用问题)在一座20 m高的观测台顶测得对面水塔塔顶的仰角为60°,塔底俯角为45°,则这座水塔的高度是m.答案:20(1+)九、等差数列与等比数列知识方法1.等差、等比数列的通项公式及前n项和公式等差数列等比数列通项公式a n=a1+(n-1)d a n=a1q n-1(q≠0)前n项和S n==na1+ d(1)q≠1,S n==;(2)q=1,S n=na12.等差、等比数列的性质类型等差数列等比数列项的性质2a k=a m+a l (m,k,l∈N*且m,k,l成等差数列)=a m·a l(m,k,l∈N*且m,k,l成等差数列) a m+a n=a p+a q(m,n,p,q∈N*,且m+n=p+q) a m·a n=a p·a q(m,n,p,q∈N*且m+n=p+q)和的性质当n为奇数时,S n=n当n为偶数时,=q(公比)依次每k项的和:S k,S2k-S k,S3k-S2k,…构成等差数列依次每k项的和:S k,S2k-S k ,S 3k-S2k,…构成等比数列(公比q≠-1)3.证明(或判断)数列是等差(比)数列的四种基本方法(1)定义法:a n+1-a n=d(常数)(n∈N*)⇒{a n}是等差数列;=q(q是非零常数)⇒{a n}是等比数列.(2)等差(比)中项法:2a n+1=a n+a n+2(n∈N*)⇒{a n}是等差数列;=a n·a n+2(n∈N*,a n≠0)⇒{a n}是等比数列.(3)通项公式法:a n=pn+q(p,q为常数)⇒{a n}是等差数列;a n=a1·q n-1(其中a1,q为非零常数,n ∈N*)⇒{a n}是等比数列.(4)前n项和公式法:S n=An2+Bn(A,B为常数)⇒{a n}是等差数列;S n=Aq n-A(A为非零常数,q≠0,1)⇒{a n}是等比数列.4.等差、等比数列的单调性(1)等差数列的单调性d>0⇔{a n}为递增数列,S n有最小值.d<0⇔{a n}为递减数列,S n有最大值.d=0⇔{a n}为常数列.(2)等比数列的单调性当或时,{a n}为递增数列.当或时,{a n}为递减数列.易忘提醒1.忽略公式a n=S n-S n-1成立的条件是n≥2,n∈N*.2.证明一个数列是等差或等比数列时,由数列的前几项,想当然得到通项公式,易出错,必须用定义证明.3.应用等比数列的前n项和公式时,应注意条件是否暗示了q的范围,否则,应注意讨论.4.等差数列的单调性只取决于公差d的正负,等比数列的单调性既要考虑公比q又要考虑首项a1.习题回扣(命题人推荐)1.(等差数列综合)等差数列{a n}中,已知a1=,d=-,S n=-5,则a n= .答案:-2.(等差数列最值问题)已知等差数列{a n}中,a1=16,公差d=-,则|a n|最小时,n= . 答案:22十、数列求和及简单应用知识方法1.数列的通项公式数列综合问题一般先求数列的通项公式,这是做好该类题的关键.若是等差数列或等比数列,则直接运用公式求解,否则常用下列方法求解:(1)a n=(2)递推关系形如a n+1-a n=f(n),常用累加法求通项公式.(3)递推关系形如=f(n),常用累乘法求通项公式.(4)递推关系形如“a n+1=pa n+q(p,q是常数,且p≠1,q≠0)”的数列求通项公式,常用待定系数法.可设a n+1+λ=p(a n+λ),经过比较,求得λ,则数列{a n+λ}是一个等比数列.2.数列求和常用的方法(1)分组求和法:分组求和法是解决通项公式可以写成c n=a n+b n形式的数列求和问题的方法(其中{a n}与{b n}是等差(比)数列或一些可以直接求和的数列).(2)裂项相消法:将数列的通项分成两个代数式的差,即a n=f(n+1)-f(n)的形式,然后通过累加抵消中间若干项的求和方法.形如(其中{a n}是各项均不为0的等差数列,c为常数)的数列等.(3)错位相减法:形如{a n·b n}(其中{a n}为等差数列,{b n}为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n.易忘提醒1.求解{a n}的前n项和的最值时,无论是利用S n还是a n,都要注意条件n∈N*.2.运用错位相减法求和时,相减后,要注意右边的n+1项中的前n项,哪些项构成等比数列,以及两边需除以代数式时,注意要讨论代数式是否为零.习题回扣(命题人推荐)1.(分组法求和)(a-1)+(a2-2)+…+(a n-n)= .答案:2.(裂项法求和)数列的前n项和S n= .答案:3.(错位相减法求和)+2×2+3×3+…+n×n= .答案:2-(n+2)×n十一、空间几何体的三视图、表面积与体积知识方法1.棱柱、棱锥(1)棱柱的性质侧棱都相等,侧面是平行四边形;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形;直棱柱的侧棱长与高相等且侧面与对角面是矩形.(2)棱锥的性质棱锥的高、斜高和斜高在底面内的射影构成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也构成一个直角三角形;某侧面上的斜高、侧棱及底面边长的一半也构成一个直角三角形;侧棱在底面内的射影、斜高在底面内的射影及底面边长的一半也构成一个直角三角形.2.三视图(1)正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体得到的投影图.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高;(2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样.3.几何体的切接问题(1)解决球的内接长方体、正方体、正四棱柱等问题的关键是把握球的直径即是棱柱的体对角线.(2)解决柱、锥的内切球问题的关键是找准切点位置,化归为平面几何问题.4.柱体、锥体、台体和球的表面积与体积(不要求记忆)(1)表面积公式①圆柱的表面积S=2πr(r+l);②圆锥的表面积S=πr(r+l);③圆台的表面积S=π(r'2+r2+r'l+rl);④球的表面积S=4πR2.(2)体积公式①柱体的体积V=Sh;②锥体的体积V=Sh;③台体的体积V=(S'++S)h;④球的体积V=πR3.【温馨提示】在有关体积、表面积的计算应用中要注意等积法的应用.易忘提醒1.台体可以看成是由锥体截得的,但要注意截面与底面平行.2.空间几何体以不同位置放置时,对三视图会有影响.3.画三视图的轮廓线时,可见轮廓线在三视图中为实线,不可见轮廓线为虚线.习题回扣(命题人推荐)1.(直线与球的关系)一条直线被一个半径为5的球截得的线段长为8,则球心到直线的距离为.答案:32.(球与几何体的接切问题)已知一个正方体的8个顶点都在同一个球面上,则球的表面积与正方体的全面积之比为.答案:3.(三视图)一几何体按比例绘制的三视图如图所示(单位:m),则它的体积为.答案: m34.(几何体间的关系)正三棱柱的内切圆柱与外接圆柱的体积比为.答案:1∶4十二、点、直线、平面之间的位置关系知识方法1.直线与平面平行的判定和性质(1)判定:①判定定理:a∥b,b⊂α,a⊄α⇒a∥α;②面面平行的性质:α∥β,a⊂α⇒a∥β;③a⊥b,α⊥b,a⊄α,则a∥α.(2)性质:l∥α,l⊂β,α∩β=m⇒l∥m.2.直线与平面垂直的判定和性质(1)判定:①判定定理:a⊥b,a⊥c,b,c⊂α,b∩c=O ⇒a⊥α.②a∥b,a⊥α⇒b⊥α.③l⊥α,α∥β⇒l⊥β.④α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.(2)性质:①l⊥α,a⊂α⇒l⊥a.②l⊥α,m⊥α⇒l∥m.3.两个平面平行的判定和性质(1)判定:①判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒β∥α.②l⊥α,l⊥β⇒α∥β.③α∥γ,α∥β⇒β∥γ.(2)性质:α∥β,γ∩α=a,γ∩β=b⇒a∥b.4.两个平面垂直的判定和性质(1)判定:a⊂α,a⊥β⇒α⊥β.(2)性质:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.易忘提醒1.在应用平行或垂直的判定定理时,常因忽略定理的条件或步骤跳跃而失分.2.“展开”“翻折”问题易忽略展开及翻折前后元素之间的关系.3.将空间问题转化为平面问题时,易忽略挖掘平面图形的几何性质.习题回扣(命题人推荐)1.(两平行平面的性质)已知:如图,α∥β,点P是平面α,β外的一点,直线PA,PD分别与α,β相交于点A,B和C,D.已知PA=4 cm,AB=5 cm,PC=3 cm,则PD= .答案: cm2.(两直线的关系)如图,在三棱锥A BCD中,E,F,G,H分别是边AB,BC,CD,DA的中点,则(1)AC与BD 时,四边形EFGH为菱形;(2)AC与BD 时,四边形EFGH为正方形.答案:(1)相等(2)相等且垂直3.(线面垂直的判定)如图,在△ABC中,M为边BC的中点,沿AM将△ABM折起,使点B在平面ACM外.当时,直线AM垂直于平面BMC.答案:AB=AC4.(两平面的关系)已知:如图,平面α⊥平面β,在α与β的交线l上取线段AB=4 cm,AC,BD 分别在平面α和平面β内,它们都垂直于交线l,并且AC=3 cm,BD=12 cm,则CD= . 答案:13 cm十三、直线与圆、圆锥曲线的概念、方程与性质知识方法1.直线方程的五种形式名称方程适用范围点斜式y-y0=k(x-x0) 不含垂直于x轴的直线斜截式y=kx+b 不含垂直于x轴的直线名称方程适用范围两点式不含直线x=x1(x1≠x2)和直线y=y1(y1≠y2)=不含垂直于坐标轴和过原点的直线截距式+=1一般式Ax+By+C=0(A2+B2≠0)平面直角坐标系内的直线都适用2.直线的两种位置关系(1)两直线平行①对于直线l1:y=k1x+b1,l2:y=k2x+b2,l1∥l2⇔k1=k2且b1≠b2.②对于直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,l1∥l2⇔A1B2-A2B1=0且B1C2-B2C1≠0.(2)两直线垂直①对于直线l1:y=k1x+b1,l2:y=k2x+b2,l1⊥l2⇔k1·k2=-1.②对于直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,l1⊥l2⇔A1A2+B1B2=0.3.三种距离公式(1)点A(x1,y1),B(x2,y2)间的距离:|AB|=.(2)点P(x0,y0)到直线l:Ax+By+C=0的距离:d=.(3)两平行直线l1:Ax+By+C1=0与l2:Ax+By+C2=0(C1≠C2)间的距离为d=.【温馨提示】运用点到直线的距离公式时,需把直线方程化为一般式;运用两平行线的距离公式时,需先把两平行线方程中x,y的系数化为相同的形式.4.圆的方程的两种形式(1)圆的标准方程:(x-a)2+(y-b)2=r2(r>0),其中(a,b)为圆心,r为半径.(2)圆的一般方程:x2+y2+Dx+Ey+F=0表示圆的充要条件是D2+E2-4F>0,其中圆心为-,-,半径r=.5.直线与圆、圆与圆的位置关系(1)直线与圆的位置关系:相交、相切、相离,根据圆心到直线的距离与半径的关系判断直线与圆的位置关系.(2)圆与圆的位置关系:相交、相切、相离,根据圆心距离与半径之和差的关系判断两圆的位置关系.6.圆锥曲线的定义、标准方程与几何性质名称椭圆双曲线抛物线定义|PF1|+|PF2|=2a(2a>|F1F2|)||PF1|-|PF2||=2a(2a<|F1F2|)|PF|=|PM|,点F不在直线l上,PM⊥l于M标准方程+=1(a>b>0)-=1(a>0,b>0)y2=2px(p>0)图形范围|x|≤a,|y|≤b|x|≥a x≥0顶点(±a,0),(0,±b)(±a,0) (0,0)对称性关于x轴,y轴和原点对称关于x 轴对称焦点(±c,0),0轴长轴长2a,短轴长2b实轴长2a,虚轴长2b离心率e==(0<e<1)e==(e>1)e=1准线x=-渐近线y=±x【温馨提示】 (1)椭圆、双曲线的很多问题有相似之处,在学习中要注意应用类比的方法,但一定要把握好它们的区别和联系.(2)与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径.(3)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则用一般弦长公式.易忘提醒1.求直线方程时要注意判断直线斜率是否存在;根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.2.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.3.过圆外一定点求圆的切线,应该有两个结果,若只求出一个结果,应该考虑切线斜率不存在的情况.4.求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为-1列方程来简化运算.5.抛物线中出现与焦点有关的问题时,易忽略定义的使用.6.圆锥曲线中焦点位置没有明确给出时,应对焦点位置进行分情况讨论.7.混淆椭圆、双曲线中a,b,c的关系,椭圆:a2=b2+c2,双曲线:c2=a2+b2.习题回扣(命题人推荐)1.(两直线垂直的条件)已知直线l1:(m+2)x-(m-2)y+2=0,直线l2:3x+my-1=0,且l1⊥l2,则m 的值为.答案:-1或62.(圆的方程)已知半径为5的圆过点P(-4,3),且圆心在直线2x-y+1=0上,则该圆的方程为.答案:(x-1)2+(y-3)2=25或(x+1)2+(y+1)2=253.(椭圆的方程)若椭圆+=1(a>b>0)过点(3,-2),离心率为,则a= ,b= .答案:4.(双曲线的性质)已知双曲线的方程为-=1,过点(a,0),(0,b)的直线的倾斜角为150°,则双曲线的离心率为.答案:5.(抛物线定义的应用)抛物线y2=4x上一点到焦点的距离为5,则该点的坐标为. 答案:(4,4)或(4,-4)6.(双曲线的方程)双曲线的离心率等于,且与椭圆+=1有公共焦点,则双曲线的方程为.答案:-y2=1十四、直线与圆锥曲线的位置关系知识方法1.直线与圆锥曲线的位置关系的判定方法将直线方程与圆锥曲线方程联立,由方程组解的组数确定直线与圆锥曲线的位置关系,特别地,当直线与双曲线的渐近线平行时,该直线与双曲线只有一个交点;当直线与抛物线的对称轴平行时,该直线与抛物线只有一个交点.2.有关弦长问题有关弦长问题应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=或|P1P2|=.(2)当斜率k不存在时,可求出交点坐标,直接计算弦长.3.弦的中点问题。
第一讲集合、常用逻辑用语集合的概念及运算授课提示:对应学生用书第3页[悟通——方法结论]1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁U A)=∅,A∪(∁U A)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解.(2)若已知的集合是点集,用数形结合法求解.(3)若已知的集合是抽象集合,用Venn图求解.(1)(2018·南宁模拟)设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∪N =MB .M ∪∁R N =MC .N ∪∁R M =RD .M ∩N =M解析:∵M ={x |x <4},N ={x |0<x <2},∴M ∪N ={x |x <4}=M ,故选项A 正确;M ∪∁R N =R ≠M ,故选项B 错误;N ∪∁R M ={x |0<x <2}∪{x |x ≥4}≠R ,故选项C 错误;M ∩N ={x |0<x <2}=N ,故选项D 错误.故选A.答案:A(2)(2018·宜昌模拟)已知两个集合A ={x ∈R |y =1-x 2},B ={x |x +11-x≥0},则A ∩B=( )A .{x |-1≤x ≤1}B .{x |-1≤x <1}C .{-1,1}D .∅解析:∵A ={x |-1≤x ≤1},B ={x |-1≤x <1},∴A ∩B ={x |-1≤x <1}. 答案:B破解集合运算需掌握2招第1招,化简各个集合,即明确集合中元素的性质,化简集合;第2招,借形解题,即与不等式有关的无限集之间的运算常借助数轴,有限集之间的运算常用Venn 图(或直接计算),与函数的图象有关的点集之间的运算常借助坐标轴等,再根据集合的交集、并集、补集的定义进行基本运算.[练通——即学即用]1.(2018·高考全国卷Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4解析:将满足x 2+y 2≤3的整数x ,y 全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A. 答案:A2.(2018·德州模拟)设全集U =R ,集合A ={x ∈Z |y =4x -x 2},B ={y |y =2x,x >1},则A∩(∁U B)=( )A.{2} B.{1,2}C.{-1,0,1,2} D.{0,1,2}解析:由题意知,A={x∈Z|4x-x2≥0}={x∈Z|0≤x≤4}={0,1,2,3,4},B={y|y>2},则∁U B={y|y≤2},则A∩(∁U B)={0,1,2},故选D.答案:D3.(2018·枣庄模拟)已知集合A={|m|,0},B={-2,0,2},若A⊆B,则∁B A=( ) A.{-2,0,2} B.{-2,0}C.{-2} D.{-2,2}解析:由A⊆B得|m|=2,所以A={0,2}.故∁B A={-2}.答案:C命题及真假判断授课提示:对应学生用书第4页[悟通——方法结论]1.全称命题和特称命题的否定归纳∀x∈M,p(x) ∃x0∈M,綈p(x0).简记:改量词,否结论.2.“或”“且”联结词的否定形式“p或q”的否定形式是“非p且非q”,“p且q”的否定形式是“非p或非q”.3.命题的“否定”与“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.[全练——快速解答]1.(2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则( )A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0解析:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题;綈p:∀x∈R,log2(3x+1)>0.答案:B2.给出下列3个命题:p 1:函数y =a x+x (a >0,且a ≠1)在R 上为增函数;p 2:∃a 0,b 0∈R ,a 20-a 0b 0+b 20<0;p 3:cos α=cos β成立的一个充分不必要条件是α=2k π+β(k ∈Z ).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∨(綈p 3) C .p 1∨(綈p 3)D .(綈p 2)∧p 3解析:对于p 1,令f (x )=a x+x (a >0,且a ≠1),当a =12时,f (0)=⎝ ⎛⎭⎪⎫120+0=1,f (-1)=⎝ ⎛⎭⎪⎫12-1-1=1,所以p 1为假命题;对于p 2,因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3为真命题,所以(綈p 2)∧p 3为真命题,故选D.答案:D3.命题“若xy =1,则x ,y 互为倒数”的否命题为________;命题的否定为________. 答案:若xy ≠1,则x ,y 不互为倒数 若xy =1,则x ,y 不互为倒数判断含有逻辑联结词命题真假的方法方法一(直接法):(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.充分、必要条件的判断授课提示:对应学生用书第4页[悟通——方法结论]充分、必要条件的判断:考查形式多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角函数、向量、数列、解析几何等,有一定的综合性.(1)“a =-2”是“直线l 1:ax -y +3=0与l 2:2x -(a +1)y +4=0互相平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当a =-2时,直线l 1:2x +y -3=0,l 2:2x +y +4=0,所以直线l 1∥l 2;若l 1∥l 2,则-a (a +1)+2=0,解得a =-2或a =1.所以“a =-2”是“直线l 1:ax -y +3=0与l 2:2x -(a +1)y +4=0互相平行”的充分不必要条件.答案:A(2)(2018·南昌模拟)已知m ,n 为两个非零向量,则“m 与n 共线”是“m·n =|m·n |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当m 与n 反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n =|m·n|,则m·n =|m|·|n|cos 〈m ,n 〉=|m |·|n |·|cos 〈m ,n 〉|,则cos 〈m ,n 〉=|cos 〈m ,n 〉|,故cos 〈m ,n 〉≥0,即0°≤〈m ,n 〉≤90°,此时m 与n 不一定共线,即必要性不成立.故“m 与n 共线”是“m·n =|m·n|”的既不充分也不必要条件,故选D.答案:D[练通——即学即用]1.(2018·胶州模拟)设x ,y 是两个实数,命题“x ,y 中至少有一个数大于1”成立的充分不必要条件是( )A .x +y =2B .x +y >2C .x 2+y 2>2D .xy >1解析:当⎩⎪⎨⎪⎧x ≤1y ≤1时,有x +y ≤2,但反之不成立,例如当x =3,y =-10时,满足x+y ≤2,但不满足⎩⎪⎨⎪⎧x ≤1y ≤1,所以⎩⎪⎨⎪⎧x ≤1y ≤1是x +y ≤2的充分不必要条件.所以“x +y >2”是“x ,y 中至少有一个数大于1”的充分不必要条件.答案:B2.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:根据祖暅原理,“A ,B 在等高处的截面积恒相等”是“A ,B 的体积相等”的充分不必要条件,即綈q 是綈p 的充分不必要条件,即命题“若綈q, 则綈p ”为真,逆命题为假,故逆否命题“若p ,则q ”为真,否命题“若q ,则p ”为假,即p 是q 的充分不必要条件,选A.答案:A授课提示:对应学生用书第115页一、选择题1.(2018·高考全国卷Ⅰ)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2}D .{x |x ≤-1}∪{x |x ≥2}解析:∵x 2-x -2>0,∴(x -2)(x +1)>0,∴x >2或x <-1,即A ={x |x >2或x <-1}.在数轴上表示出集合A ,如图所示.由图可得∁R A ={x |-1≤x ≤2}. 故选B. 答案:B2.(2017·高考山东卷)设函数y =4-x 2的定义域为A ,函数 y =ln(1-x )的定义域为B ,则A ∩B =( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)解析:由题意可知A ={x |-2≤x ≤2},B ={x |x <1},故A ∩B ={x |-2≤x <1}. 答案:D3.设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <32 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1≤x <32 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪32<x ≤3 解析:A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <32. 答案:B4.(2017·高考全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.答案:B5.(2018·合肥模拟)已知命题q :∀x ∈R ,x 2>0,则( ) A .命题綈q :∀x ∈R ,x 2≤0为假命题 B .命题綈q :∀x ∈R ,x 2≤0为真命题 C .命题綈q :∃x 0∈R ,x 20≤0为假命题 D .命题綈q :∃x 0∈R ,x 20≤0为真命题解析:全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x =0时,x 2≤0成立,所以綈q 为真命题.答案:D6.(2018·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+cB.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>bD.若a>b,则a+c≤b+c解析:命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a≤b,则a+c≤b+c”,故选A.答案:A7.(2018·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.答案:A8.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.答案:D9.(2018·石家庄模拟)已知a,b∈R,下列四个条件中,使“a>b”成立的必要不充分条件是( )A.a>b-1 B.a>b+1C.|a|>|b| D.2a>2b解析:由a>b-1不一定能推出a>b,反之由a>b可以推出a>b-1,所以“a>b-1”是“a>b”的必要不充分条件.故选A.答案:A10.已知命题p:“x=0”是“x2=0”的充要条件,命题q:“x=1”是“x2=1”的充要条件,则下列命题为真命题的是( )A.p∧q B.(綈p)∨qC.p∧(綈q) D.(綈p)∧q解析:易知命题p为真命题,q为假命题,根据复合命题的真值表可知p∧(綈q)为真命题.答案:C11.(2018·济宁模拟)已知命题p :“x <0”是“x +1<0”的充分不必要条件,命题q :若随机变量X ~N (1,σ2)(σ>0),且P (0<X <1)=0.4,则P (0<X <2)=0.8,则下列命题是真命题的是( )A .p ∨(綈q )B .p ∧qC .p ∨qD .(綈p )∧(綈q )解析:因为“x <0”是“x +1<0”的必要不充分条件,所以p 为假命题,因为P (0<X <1)=P (1<X <2)=0.4,所以P (0<X <2)=0.8,q 为真命题,所以p ∨q 为真命题.答案:C12.下列命题是假命题的是( )A .命题“若x 2+x -6=0,则x =2”的逆否命题为“若x ≠2,则x 2+x -6≠0” B .若命题p :∃x 0∈R ,x 20+x 0+1=0,则綈p :∀x ∈R ,x 2+x +1≠0 C .若p ∨q 为真命题,则p 、q 均为真命题 D .“x >2”是“x 2-3x +2>0”的充分不必要条件解析:由复合命题的真假性知,p 、q 中至少有一个为真命题,则p ∨q 为真,故选项C 错误.答案:C 二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x-x -a 有零点,则綈p :________. 解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点 14.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫y -3x -2=1,P ={(x ,y )|y ≠x+1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3},所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3},则∁U (M ∪P )={(2,3)}.答案:{(2,3)}15.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________. 解析:因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2. 答案:[2,+∞)16.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)。
第一讲 集合、常用逻辑用语集合的概念及运算授课提示:对应学生用书第3页[悟通——方法结论]1.集合的运算性质及重要结论 (1)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A . (2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解. (2)若已知的集合是点集,用数形结合法求解. (3)若已知的集合是抽象集合,用Venn 图求解.(1)(2018·南宁模拟)设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∪N =MB .M ∪∁R N =MC .N ∪∁R M =RD .M ∩N =M解析:∵M ={x |x <4},N ={x |0<x <2},∴M ∪N ={x |x <4}=M ,故选项A 正确;M ∪∁R N =R ≠M ,故选项B 错误;N ∪∁R M ={x |0<x <2}∪{x |x ≥4}≠R ,故选项C 错误;M ∩N ={x |0<x <2}=N ,故选项D 错误.故选A.答案:A(2)(2018·宜昌模拟)已知两个集合A ={x ∈R |y =1-x 2},B ={x |x +11-x ≥0},则A ∩B =( )A .{x |-1≤x ≤1}B .{x |-1≤x <1}C .{-1,1}D .∅解析:∵A ={x |-1≤x ≤1},B ={x |-1≤x <1},∴A ∩B ={x |-1≤x <1}. 答案:B破解集合运算需掌握2招第1招,化简各个集合,即明确集合中元素的性质,化简集合;第2招,借形解题,即与不等式有关的无限集之间的运算常借助数轴,有限集之间的运算常用Venn 图(或直接计算),与函数的图象有关的点集之间的运算常借助坐标轴等,再根据集合的交集、并集、补集的定义进行基本运算.[练通——即学即用]1.(2018·高考全国卷Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4解析:将满足x 2+y 2≤3的整数x ,y 全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A. 答案:A2.(2018·德州模拟)设全集U=R,集合A={x∈Z|y=4x-x2},B={y|y=2x,x>1},则A∩(∁U B)=()A.{2} B.{1,2}C.{-1,0,1,2} D.{0,1,2}解析:由题意知,A={x∈Z|4x-x2≥0}={x∈Z|0≤x≤4}={0,1,2,3,4},B={y|y>2},则∁U B={y|y≤2},则A∩(∁U B)={0,1,2},故选D.答案:D3.(2018·枣庄模拟)已知集合A={|m|,0},B={-2,0,2},若A⊆B,则∁B A=() A.{-2,0,2} B.{-2,0}C.{-2} D.{-2,2}解析:由A⊆B得|m|=2,所以A={0,2}.故∁B A={-2}.答案:C命题及真假判断授课提示:对应学生用书第4页[悟通——方法结论]1.全称命题和特称命题的否定归纳∀x∈M,p(x)∃x0∈M,綈p(x0).简记:改量词,否结论.2.“或”“且”联结词的否定形式“p或q”的否定形式是“非p且非q”,“p且q”的否定形式是“非p或非q”.3.命题的“否定”与“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.[全练——快速解答]1.(2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则()A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D .p 是真命题;綈p :∀x ∈R ,log 2(3x +1)>0解析:∵3x >0,∴3x +1>1,则log 2(3x +1)>0,∴p 是假命题;綈p :∀x ∈R ,log 2(3x +1)>0. 答案:B2.给出下列3个命题:p 1:函数y =a x +x (a >0,且a ≠1)在R 上为增函数;p 2:∃a 0,b 0∈R ,a 20-a 0b 0+b 20<0;p 3:cos α=cos β成立的一个充分不必要条件是α=2k π+β(k ∈Z ).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∨(綈p 3) C .p 1∨(綈p 3)D .(綈p 2)∧p 3解析:对于p 1,令f (x )=a x +x (a >0,且a ≠1),当a =12时,f (0)=⎝⎛⎭⎫120+0=1,f (-1)=⎝⎛⎭⎫12-1-1=1,所以p 1为假命题;对于p 2,因为a 2-ab +b 2=⎝⎛⎭⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3为真命题,所以(綈p 2)∧p 3为真命题,故选D.答案:D3.命题“若xy =1,则x ,y 互为倒数”的否命题为________;命题的否定为________. 答案:若xy ≠1,则x ,y 不互为倒数 若xy =1,则x ,y 不互为倒数判断含有逻辑联结词命题真假的方法方法一(直接法):(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.充分、必要条件的判断授课提示:对应学生用书第4页[悟通——方法结论]充分、必要条件的判断:考查形式多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角函数、向量、数列、解析几何等,有一定的综合性.(1)“a =-2”是“直线l 1:ax -y +3=0与l 2:2x -(a +1)y +4=0互相平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当a =-2时,直线l 1:2x +y -3=0,l 2:2x +y +4=0,所以直线l 1∥l 2;若l 1∥l 2,则-a (a +1)+2=0,解得a =-2或a =1.所以“a =-2”是“直线l 1:ax -y +3=0与l 2:2x -(a +1)y +4=0互相平行”的充分不必要条件.答案:A(2)(2018·南昌模拟)已知m ,n 为两个非零向量,则“m 与n 共线”是“m·n =|m·n |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当m 与n 反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n =|m·n|,则m·n =|m|·|n|cos 〈m ,n 〉=|m |·|n |·|cos 〈m ,n 〉|,则cos 〈m ,n 〉=|cos 〈m ,n 〉|,故cos 〈m ,n 〉≥0,即0°≤〈m ,n 〉≤90°,此时m 与n 不一定共线,即必要性不成立.故“m 与n 共线”是“m·n =|m·n|”的既不充分也不必要条件,故选D.答案:D[练通——即学即用]1.(2018·胶州模拟)设x ,y 是两个实数,命题“x ,y 中至少有一个数大于1”成立的充分不必要条件是( )A .x +y =2B .x +y >2C .x 2+y 2>2D .xy >1解析:当⎩⎪⎨⎪⎧x ≤1y ≤1时,有x +y ≤2,但反之不成立,例如当x =3,y =-10时,满足x +y ≤2,但不满足⎩⎨⎧x ≤1y ≤1,所以⎩⎪⎨⎪⎧x ≤1y ≤1是x +y ≤2的充分不必要条件.所以“x +y >2”是“x ,y 中至少有一个数大于1”的充分不必要条件.答案:B2.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:根据祖暅原理,“A ,B 在等高处的截面积恒相等”是“A ,B 的体积相等”的充分不必要条件,即綈q 是綈p 的充分不必要条件,即命题“若綈q, 则綈p ”为真,逆命题为假,故逆否命题“若p ,则q ”为真,否命题“若q ,则p ”为假,即p 是q 的充分不必要条件,选A.答案:A授课提示:对应学生用书第115页一、选择题。