云南2014.1高中数学学业水平考试卷及答案
- 格式:doc
- 大小:212.09 KB
- 文档页数:4
2014年普通高等学校招生全国统一考试(新课标全国卷Ⅰ)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,考试时间120分钟。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}{}22|,032|2<≤-=≥--=x x B x x x A ,则=B AA.]1,2[--B.]1,1[-C.)2,1[-D.)2,1[(2)=-+23)1()1(i i A.1+i B.-1+i C.1-i D.-1-i (3)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A.)()(x g x f 是偶函数B.|)(|)(x g x f 是奇函数C.)(|)(|x g x f 是奇函数D.|)()(|x g x f 是奇函数 (4)已知F 为双曲线C :)0(322>=-m m my x 的一个焦点,则点F 到C 的一条渐近线的距离为A.3B.m 3C.3D.m 3 (5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A.81 B.85 C.83 D.87(6)如图,图O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数)(x f ,则],0[)(π在x f y =的图像大致为(7)执行右面的程序框图,若输入的k b a ,,分别为1,2,3,则输出的M=A.320 B.516 C.27 D.815 (8)设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则 A.32παβ-=B.22παβ-= C.32παβ+=D.22παβ+=(9)不等式组1,24,x y x y +≥⎧⎨-≤⎩的解集为D ,有下面四个命题:1:(x,y)D,x 2y 2p ∀∈+≥-, 2:(x,y)D,x 2y 2p ∃∈+≥, 3:(x,y)D,x 2y 3p ∀∈+≤ 4:(x,y)D,x 2y 1p ∃∈+≤-,其中的真命题是A.23,p pB.14,p pC.12,p pD.13,p p (10)已知抛物线C :x y 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 得一个焦点,若FQ PF 4=,则=QFA.27B.25 C.3 D.2 (11)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是A.()2,+∞B.(),2-∞-C.()1,+∞D.(),1-∞- (12)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为A.B.第Ⅱ卷二、填空题:本大题共4小题,每小题5分(13)()()8x y x y -+的展开式中27x y 的系数为________.(用数字填写答案)(14)甲、乙、丙三位同学被问到是否去过C B A ,,三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市. 丙说:我们三个去过同一城市. 由此可判断乙去过的城市为__________ (15)已知C B A ,,为圆O 上的三点,若()+=21,则AB 与的夹角为_______.(16)已知c b a ,,分别为ABC ∆三个内角C B A ,,的对边,2=a ,且()C b c B A b sin )()sin (sin 2-=-+,则A B C ∆面积的最大值为____________.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数,(Ⅰ)证明:2n n a a λ+-=;(Ⅱ)是否存在λ,使得{}n a 为等差数列?并说明理由.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标Z 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(i )利用该正态分布,求()187.8212.2P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间()187.8,212.2的产品件数.利用(i )的结果,求EX .12.2≈若()2~,Z N μσ则()0.6826P Z μσμσ-<<+=,()220.9544P Z μσμσ-<<+=。
2014年普通高等学校招生全国统一考试全国课标1理科数学注意事项:1. 本试卷分第I 卷(选择题)和第n 卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第I 卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效 3. 回答第n 卷时,将答案写在答题卡上,答在本试题上无效 4. 考试结束,将本试题和答题卡一并交回•第I 卷•选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1. 2已知集合A={ x |x 2x 30} , B={ x | — 2< x V 2=,则 A B =2. 3. A .[-2,-1]C .[-1,1]D .[1,2)(1 i)3 (1 i)2A .1 iB .1 iC .D . 1 i设函数f(x) , g(x)的定义域都为 R , 且f (x)时奇函数,g(x)是偶函数,则下列结论正确的是A . f (x) g(x)是偶函数B .| f (x) |g(x)是奇函数C . f (x) |g(x) |是奇函数D .| f (x) g(x)是奇函数 4.已知F 是双曲线C : x 2 my 2 3m(m 0)的一个焦点,则点 F 到C 的一条渐近线的距离为A . 3B .3C . ■3mD . 3m5. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率AlB .8 C.86.如图,圆 O 的半径为1, A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线 OP ,过点P 作直线OA 的垂线,垂足为 M , 将点M 至U 直线OP 的距离表示为x 的函数f (x),贝U y = f (x)在[0,]上的图像大致7 5A .B .C .3D .22 21,若f (x)存在唯一的零点x °,且x ° >0,则a 的取值范围为A . (2, +s)B . (-g, -2)C . (1, +s)12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为a,b,k 分别为1,2,3,则输出的 AB .C .352(o‘2),(0,—),且 tanA ■ 3B .22C .3-D .215』,则cos9.不等式组y 2y 的解集记为 4D •有下面四个命题:Pi:(x,y) D,x 2y 2,P 2 :(x,y) D,x 2y 2 B :(x, y) D, x 2y 3, P 4 :(x,y)D, x 2y其中真命题是A . p 2, l~3B . P 1, P 4C . P 1, P 2D . P 1,P 310.已知抛物线C : UUUT4FQ , Q 是直线PF 与C 的一个焦点,uuu 若FP 则 | QF |= 3211.已知函数f(x)=ax 3x若输入的7.执行下图的程序框图,8.设 F ,准线为,P 是I 上一点,y 28x 的焦点为A.6 2 B .4 2 C.6 D .4本卷包括必考题和选考题两个部分。
2014年普通高等学校招生全国统一考试(课标I 文科卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,则MB =( )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(- (2)若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α (3)设i iz ++=11,则=||z A. 21 B. 22 C. 23 D. 2(4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B.26 C. 25D. 1 (5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A. )()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数 (6)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+ A. AD B.AD 21 C. BC 21D. BC (7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.执行右面的程序框图,若输入的,,a b k分别为1,2,3,则输出的M ( )A.203B.72C.165D.15810.已知抛物线C :x y =2的焦点为F ,()y x A 00,是C 上一点,zxxk x F A 045=,则=x 0( )A. 1B. 2C. 4D. 8(11)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5 (B )3 (C )-5或3 (D )5或-3(12)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值 范围是(A )()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞-第II 卷二、填空题:本大题共4小题,每小题5分(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.(14)甲、乙、丙三位同学被问到是否去过A 、B 、zxxk C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市; 由此可判断乙去过的城市为________.(15)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.(16)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
云南省部分名校高2014届12月份统一考试(昆明三中、玉溪一中)理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若复数ibi++21的实部与虚部相等,则实数b 等于( ) A .3 B. 1 C.31 D. 21- 2. 设全集U =R ,集合A ={x |12x x +-0≥},B ={x |1<2x<8},则(C U A )∩B 等于( )A .[-1,3)B .(0,2]C .(1,2]D .(2,3)3.已知某随机变量X 的概率密度函数为P (x )=⎩⎨⎧>≤-0,0,0x e x x,则随机变量X 落在区间(1,2)内的概率为( )A .e 2+e B .21e e + C .e 2-e D .21e e - 4.我校在模块考试中约有1000人参加考试,其数学考试成绩ξ~N(90,a 2)(a >0,试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的53,则此次数学考试成绩不低于110分的学生人数约为( )A .600B .400C .300D .2005. 若函数f (x )=(k -1)a x-a -x(a >0,且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x +k )的图象是( )A B C D 6. 设向量a =(sin α,)的模为,则cos2α=( )A .B .C .﹣D .﹣7. 已知正数x ,y 满足⎩⎨⎧≥+-≤-05302y x y x ,则y x z )21(4⋅=-的最小值为( )A .1B .3241 C .161 D .3218. 一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( )A .B .C .D . 9. 函数y=sin (ωx+φ)在区间上单调递减,且函数值从1减小到﹣1,那么此函数图象与y 轴交点的纵坐标为( ) A . B .C .D .10. P 是双曲线)0,0(12222>>=-b a by a x 上的点,F 1、F 2是其焦点,且021=⋅PF PF ,若△F 1PF 2的面积是9,a +b=7,则双曲线的离心率为( ) A .B .C .D .11.已知正四棱锥的各棱棱长都为23,则正四棱锥的外接球的表面积为( )A .π12B .π36C .π72D .π10812.设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,0)(')()()('>+x g x f x g x f ,且0)3(=-f ,则不等式0)()(<x g x f 的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3) 二、填空题:本大题共4小题,每小题5分,共20分. 13. 如右图所示的程序框图的输出值]2,1(∈y ,则输入值∈x 。
2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1}B. {2}C. {0,1}D. {1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,zxxk 12z i =+,则12z z =( ) A. - 5B. 5C. - 4+ iD. - 4 - i3.设向量a,b 满足|a+b 10|a-b 6,则a ⋅b = ( ) A. 1 B. 2 C. 3 D. 54.钝角三角形ABC 的面积是12,AB=1,2 ,则AC=( )A. 5 5 C. 2 D. 15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B. 0.75C. 0.6D. 0.456.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. 1727B. 59C. 1027D. 137.执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( ) A. 4 B. 5 C. 6 D. 78.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = A. 0 B. 1 C. 2 D. 39.设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 210.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( )C. 6332D. 9411.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1, 则BM 与AN 所成的角的余弦值为( )A. 110B. 2512.设函数()x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A. ()(),66,-∞-⋃∞B. ()(),44,-∞-⋃∞C. ()(),22,-∞-⋃∞D.()(),14,-∞-⋃∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答.本试题由 整理二.填空题13.()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案)14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.16.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得zxxk ∠OMN=45°,则0x 的取值范围是________.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1231112n a a a ++<…+.18. (本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D-AE-C 为60°,AP=1,3,求三棱锥E-ACD 的体积.19. (本小题满分12分)某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:年份 2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y2.93.33.64.44.85.25.9(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121nii i ni i tty y b t t ∧==--=-∑∑,ˆˆay bt =-20. (本小题满分12分)设1F ,2F 分别是椭圆C:()222210y x a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N.(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .21. (本小题满分12分)已知函数()f x =2x x e e x ---zxxk (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.41422 1.4143<<,估计ln2的近似值(精确到0.001)请考生在第22、23、24题中任选一题做答,如果多做,有途高考网同按所做的第一题计分,做答时请写清题号.22.(本小题满分10)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O相交于点B ,C ,PC=2PA ,D 为PC 的中点,AD 的延长线交O于点E.证明: (Ⅰ)BE=EC ; (Ⅱ)AD ⋅DE=22PB23. (本小题满分10)选修4-4:坐标系与参数方程 在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴 为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.zxxk (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:32l y x =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24. (本小题满分10)选修4-5:不等式选讲 设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.2014年普通高等学校招生全国统一考试理科数学试题参考答案一、 选择题(1)D (2)A (3)A (4)B (5)A (6)C (7)D ( 8)D (9)B (10)D (11)C (12)C二、 填空题(13)12(14)1 (15)(-1,3) (16)[-1,1]三、解答题(17)解:(1)由131m m a a +=+得1113().22m m a a ++=+又113a 22+=,所以,{12m a + } 是首项为32,公比为3的等比数列。
一、单选题1.已知集合,,则( ) {}2,3,4A ={}1,3,5B =A B = A . B .C .D .∅{}3{2,4}{1,2,3,4,5}【答案】B【分析】利用交集的定义直接求解即可.【详解】∵集合,,∴. {}2,3,4A ={}1,3,5B ={}3A B ⋂=故选:B .2.设,则“”是“”的( ) x ∈R 1x >2x x >A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】解不等式得的范围,依据小范围推出大范围的原则判定充分必要条件. 2x x >x 【详解】由,解得或,2x x >0x <1x >故由能够推出;由不能够推出, 1x >2x x >2x x >1x >故“”是“”的充分不必要条件, 1x >2x x >故选:A .3.已知则( ) ()()πcos ,2422,2x x f x f x x ⎧≤⎪=⎨⎪->⎩()3f =A .BCD .【答案】C【分析】根据自变量应用分段函数,再由特殊角求解函数值即可. 【详解】 ()()π3212cos 24f f ====故选:C.4.设,,则a ,b ,c 的大小关系为( ) a = 1.12b =2log 3c =A . B . b a c >>c b a >>C . D .b c a >>a b c >>【答案】A【分析】根据指数对数函数单调性计算,,,得到答案. 2a =2b >2c <【详解】,,,故.2a == 1.122b =>22log 3log 42c =<=b a c >>故选:A5.已知集合,集合,下列图象能建立从集合A 到集合B 的函数关{}04A x x =≤≤{}02B x x =≤≤系的是( )A .B .C .D .【答案】D【分析】存在点使一个与两个对应,A 错误;当时,没有与之对应的,B 错误;x y 24x <≤y y 的范围超出了集合的范围,C 错误;选项D 满足函数关系的条件,正确,得到答案. B 【详解】对选项A :存在点使一个与两个对应,不符合,排除; x y 对选项B :当时,没有与之对应的,不符合,排除; 24x <≤y 对选项C :的范围超出了集合的范围,不符合,排除; y B 对选项D :满足函数关系的条件,正确. 故选:D6.在中,已知( )ABC A πsin 4A ⎛⎫-= ⎪⎝⎭πcos 4A ⎛⎫+= ⎪⎝⎭A B . C .D 【答案】A 【分析】由结合诱导公式求解即可. 2πππ=44A A ⎛⎫++- ⎪⎝⎭【详解】. ππππcos cos sin 4244A A A ⎡⎤⎛⎫⎛⎫⎛⎫+=+-=--=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选:A.7.已知函数的图象与函数的图象关于直线对称,则函数的单()y f x =e x y =y x =()243y f x x =-+调递增区间为( )A .B .C .D .(),1-∞(),2-∞()2,+∞()3,+∞【答案】D【分析】由题意,函数与互为反函数,求得,然后根据复合函数单调性的性质()y f x =e x y =()f x 得出答案.【详解】由题意,函数与互为反函数,则,()y f x =e x y =()ln f x x =所以,()()2243ln 43y f x x x x =-+=-+由,解得或,即函数的定义域为或, 2430x x -+>1x <3x >{|1x x <3}x >令,243u x x =-+当时,单调递减;当时,单调递增, 1x <u 3x >u 又在上单调递增,ln y u =(0,)+∞所以的单调递增区间为.()243y f x x =-+()3,+∞故选:D.8.数学可以刻画现实世界中的和谐美,人体结构、建筑物、国旗、绘画、优选法等美的共性与黄金分割相关,古希腊的毕达哥拉斯学派发现了黄金分割常数约0.618,该值也可用三角函数2sin18m =︒( )=A .2 B .C .D .122-12-【答案】C【分析】根据同角三角函数关系和诱导公式,二倍角公式化简求值即可.sin2162sin182cos18==︒⨯︒︒. ()2sin216sin 12sin362sin362sin36380sin 636︒︒︒===︒+-︒︒=-︒故选:C.二、多选题9.下列说法正确的是( )A .若点在第三象限,则α是第二象限角()tan ,cos P ααB .角θ的终边与圆心在原点、半径为r 的圆的交点为()cos ,sin r r θθC (其中r 为半径)2π3r D .钟表时针走过2小时,则时针转过的角的弧度数为3π【答案】ABC【分析】由三角函数在各象限的符号可判断A ;由三角函数的定义可判断B ;由弧长公式可判断C ;由任意角的概念可判断D.【详解】若点在第三象限,则,则α是第二象限角,故A 正确; ()tan ,cos P ααtan 0,cos 0αα<<设角θ的终边与圆心在原点、半径为r 的圆的交点坐标为,由三角函数的定义可知,(),x y ,则,即交点坐标为,故B 正确; cos ,sin y xr rθθ==cos ,sin x r y r θθ==()cos ,sin r r θθ,则弧长为,故C 正确; 2π32π3r 钟表时针走过2小时,则时针转过的角的弧度数为,故D 错误.π3-故选:ABC.10.已知a ,,且,则下列不等式成立的是( ) R b ∈0ab >A .B .C .D .2a b+≥222a b ab +≤2b aa b+≥22ab a ba b +≤+【答案】BC【分析】根据不等式的性质结合基本不等式判断各选项即可确定正误.【详解】对于A ,因为,故当时,不等式不成立,故A 不正确; 0ab >0,0a b <<2a b+≥对于B ,因为,所以恒成立,当且仅当时,等号成立,故B 正确;0ab >222a b ab +≤a b =对于C ,因为,所以,则,当且仅当时,等号成立,故0ab >0,0a b b a >>2b a a b +≥=a b =C 正确;对于D ,因为,所以,当时满足,但,此时222a b ab +≥()24a b ab +≥0,0a b <<0ab >0a b +<,故D 不正确. 22a b aba b+≤+故选:BC.11.将函数的图象向左平移个单位长度,得函数的图())2sin sin 1f x xx x ωωω=+-π4ω()g x 象,若在区间内恰有两个最值(即最大值和最小值),则ω可能的取值为( )()g x π0,2⎛⎫ ⎪⎝⎭A .1B .C .D .7653136【答案】CD【分析】化简,然后根据图像变换得出,根据()π2sin 26f x x ω⎛⎫=- ⎪⎝⎭()π2sin 23x g x ω⎛⎫+ ⎪=⎝⎭得出,最后根据正弦函数性质得出,通过计算得π0,2x ⎛⎫∈ ⎪⎝⎭πππ2,π333x ωω⎛⎫+∈+ ⎪⎝⎭3ππ22π5π3ω<+≤出范围,判断即可. ω【详解】())2sin sin 12cos 2f xx x xx x ωωωωω-=+-=, 1π22cos 22sin 226x x x ωωω⎫⎛⎫=-=-⎪ ⎪⎪⎝⎭⎭向左平移个单位长度,得到函数, π4ω()πππ2sin 22sin 2463x x g x ωωω⎡⎤⎛⎫⎛⎫+-=+ ⎪ ⎪⎢⎥⎝=⎭⎝⎭⎣⎦因为,所以,π0,2x ⎛⎫∈ ⎪⎝⎭πππ2,π333x ωω⎛⎫+∈+ ⎪⎝⎭因为在内恰有两个最值,()g x π0,2⎛⎫⎪⎝⎭所以,解得,故C 、D 满足. 3ππ22π5π3ω<+≤71366ω<≤故选:CD.12.德国著名数学家狄利克雷第一个引入了现代函数的概念,是解析数论的创始人,狄利克雷函数就以其名命名,其解析式为,狄利克雷函数的发现改变了数学家们对“函数是()1,0,x D x x ⎧=⎨⎩是有理数是无理数连续的”的认识,也使数学家们更加认可函数的对应说定义,关于函数有以下四个命题,其中()D x 真命题是( ) A .函数是奇函数 B ., ()D x ,R ∃∈x y ()()()D xy D x D y =+C .函数是偶函数 D .,,()()D D x R x ∀∈Q a ∈()()D a x D a x +=-【答案】BCD【分析】选项A :若是有理数,可得,可知不是奇函数;选项B :当x ()()2D x D x +-=()D xC :分两种情况讨论得,由偶函数的定义判x y ==R,(())1x D D x ∀∈=断;选项D :分两种情况讨论,若是有理数,得;若是无理数,得x ()()1D a x D a x +=-=x .()()0D a x D a x +=-=【详解】若是有理数,则也是有理数,可得,则不是奇函数,故x x -()()112D x D x +-=+=()D x A 错误;当,,,此x y =()0D xy D D ===()0D x D ==()0D D y ==时,故B 正确;()()()D xy D x D y =+若是有理数,则;若是无理数,,则x ()1,(())(1)1D x D D x D ===x ()0,(())(0)1D x D D x D ===,又,则,因此,所以函数是R,(())1x D D x ∀∈=R x -∈(())1D D x -=(())(())D D x D D x -=()()D D x 偶函数,故C 正确;若是有理数,,则均是有理数,故;若是无理数,x Q a ∈,a x a x +-()()1D a x D a x +=-=x Q a ∈,则均是无理数,故,所以,,,a x a x +-()()0D a x D a x +=-=R x ∀∈Q a ∈()()D a x D a x +=-,故D 正确. 故选:BCD.三、填空题13.定义:角与都是任意角,若满足,则称α与β“广义互余”,已知,若αβπ2αβ+=1sin 2θ=-角与角 “广义互余”,则角___________.(写出满足条件的一个角的值即可) ϕθϕ=ϕ【答案】(答案不唯一) 2π3【分析】根据“广义互余”定义及特殊角三角函数值,求解即可. 【详解】因为,所以或, 1sin 2θ=-π2π6k θ=-+7π2π,Z 6k k θ=+∈根据“广义互余”定义, , π2θϕ+= 所以或, 2π2π3k ϕ=-()2π2πZ 3k k ϕ=--∈可取等,答案不唯一. 2π3ϕ=故答案为:. 2π314.已知是定义在上的奇函数,当时,,则___________.()f x R 0x >()12f x x -=()4f -=【答案】##-0.512-【分析】根据奇函数的定义,结合已知函数解析式求解即可. 【详解】因为为定义在上的奇函数, ()f x R 所以.()()1214442f f --=-=-=-故答案为:.12-15.小明在学习在二分法后,利用二分法研究方程在(1,3)上的近似解,经过两次3410x x -+=二分后,可确定近似解所在的区间为___________. 0x 【答案】3,22⎛⎫⎪⎝⎭【分析】设,计算,,,,得到答案.()341f x x x =-+()10f <()30f >()20f >302f ⎛⎫< ⎪⎝⎭【详解】设,则,,()341f x x x =-+()114120f =-+=-<()333431160f =-⨯+=>,;,, 1322+=()288110f =-+=>12322+=32713610288f ⎛⎫=-+=-< ⎪⎝⎭故近似解所在的区间为.0x 3,22⎛⎫⎪⎝⎭故答案为:3,22⎛⎫⎪⎝⎭四、双空题 16.已知是定义在区间的函数,则函数的零点是___________;若方()1610f x x x=+-()0,∞+()f x 程有四个不相等的实数根,,,,则___________. ()()0f x m m =>1x 2x 3x 4x 1234x x x x +++=【答案】 2,8 20 【分析】解方程,即可求得函数的零点;将方程四16()100f x x x=+-=()y f x =()()0f x m m =>个不相等的实数根问题转化为利用二次方程根与系数的关系,可得结论; 【详解】由题意可知,令,即,解得或, 16()100f x x x=+-=210160x x -+=2x =8x =故函数在内的零点为和;()0,∞+28方程有四个不相等的实数根,, ()()0f x m m =>123,,x x x 4x 即为与的四个交点的横坐标, ()()0,,y f x x ∞=∈+y m =方程即,,即, ()()0f x m m =>|0|161x m x+-=()0,x ∈+∞2|1016|x x mx -+=当即时,方程可转化为即; ()0f x ≥210160x x -+≥21016x x mx -+=2(10)160x m x -++=当时,方程可转化为即; 210160x x -+<21016x x mx -+=-2(10)160x m x --+=故要有四个实数根,则两种情况都有两个不同的实数根, 不妨设为的两根,则,14,x x 2(10)160x m x -++=1410x x m +=+则为的两根,则, 23,x x 2(10)160x m x --+=2310x x m +=-则; 1234101020x x x x m m +++=-++=故答案为: 2,8; 20.五、解答题17.从①,②,③,这三个条件中任选101x A xx ⎧⎫-=<⎨⎬+⎩⎭11222xA x ⎧⎫⎪⎪⎛⎫=<<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭{}2log (1)1A x x =+<一个,补充在下面的问题横线处,并进行解答.问题:已知集合___________,集合. {}221B x a x a =-≤≤+(1)当时,求,;12a =-A B ⋃()R A B ð(2)若,求实数a 的取值范围.A B B ⋃=【答案】(1),.512A B x x ⎧⎫⋃=-≤<⎨⎬⎩⎭(){}R 01A B x x ⋂=<<ð(2) []0,1【分析】(1)若选①:先根据分式不等式的解法求解出集合,代入的值求解出集合,然后根A a B 据集合的运算求解;若选②:先根据指数函数的单调性求解出集合,代入的值求解出集合,A a B 然后根据集合的运算求解;若选③:先根据对数函数的单调性求解出集合,代入的值求解出集A a 合,然后根据集合的运算求解;B (2)根据得到,由此列出关于的不等式组,求解出的取值范围.A B B ⋃=A B ⊆a a 【详解】(1)若选①:因为, ()(){}{}10110111x A xx x x x x x ⎧⎫-=<=+-<=-<<⎨⎬+⎩⎭当时,,12a =-502B x x ⎧⎫=-≤≤⎨⎬⎩⎭因为,所以,{}11A x x =-<<512A B x x ⎧⎫⋃=-≤<⎨⎬⎩⎭又因为或,所以.R {B x x =<ð52-0}x >(){}R 01A B x x ⋂=<<ð若选②:,{}11111121122222x x A x x x x -⎧⎫⎧⎫⎪⎪⎪⎪⎛⎫⎛⎫⎛⎫=<<=<<=-<<⎨⎬⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎪⎪⎪⎩⎭⎩⎭当时,,12a =-502B x x ⎧⎫=-≤≤⎨⎬⎩⎭因为,所以,{}11A x x =-<<512A B x x ⎧⎫⋃=-≤<⎨⎬⎩⎭又因为或,所以.R {B x x =<ð52-0}x >(){}R 01A B x x ⋂=<<ð若选③:,{}{}{}{}222log (1)1log (1)log 201211A x x x x x x x x =+<=+<=<+<=-<<当时,,12a =-502B x x ⎧⎫=-≤≤⎨⎬⎩⎭因为,所以,{}11A x x =-<<512A B x x ⎧⎫⋃=-≤<⎨⎬⎩⎭又因为或,所以.R {B x x =<ð52-0}x >(){}R 01A B x x ⋂=<<ð(2)由(1)可知,, {}11A x x =-<<因为,所以,故,A B B ⋃=A B ⊆B ≠∅所以,解得:,21211221a a a a -≤-⎧⎪+≥⎨⎪-≤+⎩01a ≤≤故实数的取值范围为.a []0,118.人脸识别技术在各行各业的应用改变着人类的生活,所谓人脸识别,就是利用计算机分析人脸视频或者图像,并从中提取出有效的识别信息,最终判别对象的身份,在人脸识别中为了检测样本之间的相似度主要应用距离的测试,常用测量距离的方式有曼哈顿距离和余弦距离.若二维空间有两个点,,则曼哈顿距离为:,余弦相似度为:()11,A x y ()22,B x y ()1212,d A B xx y y =-+-()cos ,A B =()1cos ,A B -(1)若,,求A ,B 之间的曼哈顿距离和余弦距离;()1,2A -34,55B ⎛⎫⎪⎝⎭(),d A B (2)已知,,,若,,()sin ,cos M αα()sin ,cos N ββ()sin ,cos Q ββ-()1cos ,5M N =()2cos ,5M Q =求的值tan tan αβ【答案】(1),1451(2) 3-【分析】(1)根据公式直接计算即可.(2)根据公式得到,,计算得到答案.1sin sin cos cos 5αβαβ+=2sin sin cos cos 5αβαβ-=【详解】(1), ()3414,12555d A B =--+-=,故余弦距离等于 ()34cos ,55A B ==()1cos ,1A B -=(2)()cos ,M N =;1sin sin cos cos 5αβαβ=+=()cos ,M Q =+2sin sin cos cos 5αβαβ=-=故,,则. 3sin sin 10αβ=1cos cos 10αβ=-sin sin tan tan 3cos cos αβαβαβ==-19.给定函数,,.()12xf x ⎛⎫= ⎪⎝⎭()241g x x x =-++x ∈R (1)在同一直角坐标系中画出函数和的图象;()f x ()g x(2),用表示,中的最大者,记为,试判断x ∀∈R ()M x ()f x ()g x ()()(){}max ,M x f x g x =()M x 在区间的单调性. (],a -∞【答案】(1)答案见解析(2)答案见解析【分析】(1)根据指数函数与一元二次函数的图像得出答案;(2)根据图像结合的定义得出其单调性,即可分类讨论的范围得出答案.()M x a 【详解】(1),图象如图所示,()f x ()g x(2)由(1)及的定义得,在单调递减,在单调递增,在单调递()M x ()M x (],0-∞[]0,2[)2,+∞减所以当时,在单调递减,0a ≤()M x (],a -∞当时,在单调递减,在单调递增,02a <≤()M x (],0-∞[]0,a 当时,在单调递减,在单调递增,在单调递减.2a >()M x (],0-∞[]0,2[]2,a 20.小美同学用“五点法”画函数在某一个周期内的图象时,列()()sin 0,2f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭表并填入了部分数据,如下表.x ωϕ+0 2π π 32π 2πx 3π56π ()sin A x ωϕ+0 3 -3 0(1)请将上表数据补充完整并求出函数的解析式;()f x (2)若,求函数的单调递增区间: ()16g x f x π⎛⎫++ ⎪⎝⎭=()g x(3)若,求不等式成立的x 的取值集合. ()16g x f x π⎛⎫++ ⎪⎝⎭=()52g x ≥【答案】(1)表格答案见解析, ()π3sin 26f x x ⎛⎫=- ⎪⎝⎭(2)单调递增区间为, ,36k k ππππ⎡⎤-++⎢⎥⎣⎦k ∈Z (3) 3x k x k k πππ⎧⎫≤≤+∈⎨⎬⎩⎭Z ,【分析】(1)根据五点法列式求得解析式参数; (2)写出解析式,由整体法求单调区间;()g x (3)由整体法解不等式.【详解】(1)根据表中已知数据可得,由得,再由解得3A =12π5ππ263ω⨯=-2ω=ππ232ϕ⨯+=,所以. π6ϕ=-()π3sin 26f x x ⎛⎫=- ⎪⎝⎭表格数据补全如下:x ωϕ+0 2π π 32π 2πx 12π3π712π 56π 1312π ()sin A x ωϕ+0 3 0 -3 0(2)由题意, ()13sin 2166g x f x x ππ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭由,,解得,,222262k x k πππππ-+≤+≤+k ∈Z 36k x k ππππ-+≤≤+k ∈Z 所以函数的单调递增区间为,, ()g x ,36k k ππππ⎡⎤-++⎢⎥⎣⎦k ∈Z (3)由,即, ()53sin 2162g x x π⎛⎫=++ ⎪⎝⎭≥1sin 262x π⎛⎫+≥ ⎪⎝⎭所以,解得,, 5222666k x k πππππ+++≤≤3k x k πππ≤≤+k ∈Z 所以不等式成立的x 的取值集合为. 3x k x k k πππ⎧⎫≤≤+∈⎨⎬⎩⎭Z ,21.2022年10月31日下午,长征五号B 运载火箭点火起飞,成功将中国空间站的第二个实验舱“梦天实验舱”送入预定轨道,发射任务取得圆满成功.作为“空间站舱段运输专列”,长征五号B 运载火箭是我国目前近地轨道运载能力最大的火箭,具有强大的“爆发力”和“带货能力”.在不考虑空气阻力的条件下,火箭的最大速度v (单位:)可用公式进行计算,其中(单km/s 0ln M v v m=0v 位:)是喷流相对速度,m (单位;吨)是火箭(除推进剂外)的质量,M (单位;吨)是推km/s 进剂和火箭质量的总和,称为总质比.已知X 型火箭的喷流相对速度为2. M mkm/s (1)已知X 型火箭的质量约为115吨,推进剂的质量约为736吨,利用给出的参考数据求X 型火箭的最大速度; (2)经过材料更新和技术改进,X 型火箭的喷流相对速度提高到了原来的2倍,总质比变为原来的14,若要使火箭的最大速度至少增加1,求在材料更新和技术改进前总质比的最小整数值. km/s 参考数据:,,.ln 6.4 1.86≈ln 7.42≈0.51.64e 1.65<<【答案】(1)4km/s (2)27【分析】(1)将,,代入计算即可;02v =115m =115736851M =+=(2)由题意,经过材料更新和技术改进后,X 型火箭的喷流相对速度为4,总质比为,km/s 4M m 要使火箭的最大速度至少增加1,则需,解不等式即可. km/s 4ln 2ln 14M M m m-≥【详解】(1)由题意,,,,02v =115m =115736851M =+=所以, 0851ln 2ln 2ln 7.44115M v v m ===≈所以X 型火箭的最大速度约为4.km/s (2)由题意,经过材料更新和技术改进后,X 型火箭的喷流相对速度为4,总质比为, km/s 4M m 要使火箭的最大速度至少增加1,则需, km/s 4ln 2ln 14M M m m -≥所以,整理得, 22ln ln 14M M m m ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦≥2ln 116M m ≥所以,则, 0.5e 16M m ≥0.516e M m≥由参考数据知,,所以,0.51.64e 1.65<<0.526.2416e 26.4<<所以材料更新和技术改进前总质比的最小整数值为27.22.设是函数定义域内的一个子集,若存在,使得成立,则称是A ()y f x =0x A ∈()00f x x =0x 的一个“不动点”,也称在区间上存在不动点,例如的“不动点”满足()f x ()f x A ()21g x x =-,即的“不动点”是.设函数,.()00021g x x x =-=()g x 01x =()()12log 426x x f x a -=+⋅-[]1,2x ∈(1)若,求函数的不动点;2a =()f x (2)若函数在上不存在不动点,求实数的取值范围.()f x []1,2a 【答案】(1)4log 6(2)()4,+∞【分析】(1)根据不动点的定义求解方程即可得函数的不动点;()f x (2)若函数在上不存在不动点,则转化为方程在上无解,整体换()f x []1,214262x x x a -+⋅-=[]1,2元再进行参变分离即可列不等式得实数的取值范围,再检验其是否满足对数函数的定义域即可.a 【详解】(1)根据题目给出的“不动点”的定义,可知:当时,,2a =()()12log 4226x x f x x -=+⋅-=得,所以,所以,4262x x x +-=46x =[]4log 61,2x =∈所以函数在上的不动点为.()f x []1,2x ∈4log 6(2)根据已知,得在区间上无解,()12log 426x x a x -+⋅-=[]1,2所以在上无解,14262x x x a -+⋅-=[]1,2令,,所以, 2x t =[]2,4t ∈262a t t t +-=即在区间上无解, 21602a t t ⎛⎫+--= ⎪⎝⎭[]2,4所以在区间上无解, 612a t t-=-[]2,4设,所以在区间上单调递增, ()6g t t t=-()g t []2,4故 ()51,2g t ⎡⎤∈-⎢⎥⎣⎦所以或,所以或, 5122a ->112a -<-3a <-4a >又因为在区间上恒成立,14260x x a -+⋅->[]1,2所以在区间上恒成立, 2226x x a -<-[]1,2所以,则12a-<-2a >综上,实数a 的取值范围是.()4,+∞。
cba 21左视图主视图D CBA2014云南省中考数学试题满分100分,考试时间:一. 选择题(每小题3分,共24分) 1. |71-|=( ). A. 71- B. 71C . 7-D . 72.下列运算正确的是( ).A.532523x x x =+ B.050= C.6123=- D.623)(x x = 3.不等式组⎩⎨⎧≥+-01012x x 的解集是( ).A.x >21 B.211 x ≤- C. x <21D.1-≥x 4.如图是某几何体的三视图,则这个几何体是( ).A. 圆柱B. 正方体C. 圆锥 D.球第4题图 第10题图 第13题图5.一元二次方程022=--x x 的解是( ).A.11=x ,22=xB. 11=x ,22-=xC. 11-=x ,22-=x D . 11-=x ,22=x6.据统计,2013年我国用义务教育经费支持了13940000名农民工随迁子女在城市接受义务教育,这个数字用科学记数法表示为( ).A.710394.1⨯ B .71094.13⨯ C .610394.1⨯ D.51094.13⨯ 7.已知扇形的圆心角为45°,半径长为12,则扇形的弧长为( ).A .43πB. π2C. π3 D .π12 8.学校为了丰富学生课余生活开展了一次“爱我云南,唱我云南”的歌咏比赛,共18名同学入围,他们的A. 9.70和9.60B. 9.60和9.60C. 9.60和9.70D. 9.65和9.60 二. 填空题(每小题3分,共18分) 9.计算:28-= .ED CB A10%D AB 25%C 50%10.如图,直线a ∥b ,直线a、b 被直线c 所截,∠1=37°,则∠2= . 11.写出一个图象经过第一、二象限的正比例函数)0(≠=k kx y 的解析式: . 12.抛物线322+-=x x y 的顶点坐标是 .13.如图,在等腰△ABC 中,AB=AC,∠A=36°,BD ⊥AC 于点D ,则∠CBD = . 14.(2014云南)观察规律并填空:(1-212)=12•32=34;(1-212)(1-213)=12•32•23•43=12•43=46=23; (1-212)(1-213)(1-214)=12•32•23•43•34•54=12•54=58;(1-212)(1-213)(1-214)(1-215)=12•32•23•43•34•54•45•65=12•65=610=35;… (1-212)(1-213)(1-214)(1-215)…(1-21n)= .(用含n 的代数式表示,n 是正整数,且n ≥2)三. 解答题(共58分)15.(5分)化简求值:)1(1222x x x x x x -•+--,其中51=x .16.(5分)如图,在△AB C和△ABD 中,A C与BD 相交于点E,A D=BC,∠DAB=∠CBA .求证:AC=B D.17.(6分)将油箱注满k 升油后,轿车可行驶的总路程S (单位:千米)与平均耗油量a (单位:升/千米)之间是反比例函数关系ak=S (k 是不等于0的常数).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S 与平均耗油量a 之间的函数解析式; (2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米? 18.(7分)为了了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A (100分~90分)、B(89分~80分)、C(79分~60分)、D (59分~0分)四个等级进行统计,并将统计结果绘制成如下统计图.请你根据统计图解答以下问题: (1)这次随机抽取的学生共有多少人?(2)请补全条形统计图; (3)这个学校九年级共有1200名学生,若分数为80分(含80分)以上为优秀,请你估计这次九年级学生期末数学考试成绩为优秀的学生大约有多少人?。
高中数学学业水平考试模块复习卷(必修①)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A = {}4,2,1,B = {}的约数是8x x ,则A 与B 的关系是A. A = BB. A B C 。
A B D 。
A ∪B = φ2.集合A = {}52<≤x x,B = {}x x x 2873-≥-则B A CR ⋂)(等于 A 。
φB.{}2<x x C 。
{}5≥x x D. {}52<≤x x3.已知x xx f 2)(3+=,则)()(a f a f -+的值是A 。
0 B. –1 C 。
1 D. 2 4.下列幂函数中过点(0,0),(1,1)的偶函数是A 。
21xy =B. 4x y =C. 2-=x yD.31x y =5.函数322++-=x x y 的单调递减区间是A 。
(—∞,1)B 。
(1, +∞) C. [—1, 1] D 。
[1,3] 6.使不等式02213>--x 成立的x 的取值范围是A. ),23(+∞B. ),32(+∞C. ),31(+∞D.1(,)3-+∞。
7.下列图像表示的函数能用二分法求零点的是( )8.下列各式错误的是A.7.08.033> B 。
6.0log 4.0log 5..05..0> C.1.01.075.075.0<- D.4.1lg 6.1lg >9.如图,能使不等式xx x 2log 22<<成立的自变量x 的取值范围是A 。
0>x B. 2>x c 。
2<x D 。
20<<x 10.已知)(x f 是奇函数,当0>x 时)1()(x x x f +-=,当0<x 时)(x f 等于 A 。
)1(x x --B 。
)1(x x - C. )1(x x +- D 。
2014年普通高等学校招生全国统一考试(课标I 文科卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分.(1)已知集合{}13M x x =-<<, {}21N x x =-<<,则M N = ( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(- (2)若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α (3)设i iz ++=11,则=||z A.21 B. 22 C. 23D. 2 (4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B.26 C. 25 D. 1 (5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数(6)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+A. ADB. 12ADC. 12BCD. BC(7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱9.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M=A .203 B .165 C .72 D .15810.已知抛物线C :x y =2的焦点为F ,()y x A 0,是C 上一点,xF A 045=,则=x 0( )A. 1B. 2C. 4D. 8 11.设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5 (B )3(C )-5或3 (D )5或-3(12)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值 范围是(A )()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞-二、填空题:本大题共4小题,每小题5分(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.(14)甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.(15)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.(16)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
宾川四中2013-2014学年高一11月月考数学试题第I 卷(选择题,共60分)一、单项选择题(每小题5分,共60分。
在每小题给出的四个选项中,只有一个选项是正确的,请将答案填写在答题卡的相应位置)1.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( )A .1B .—1C .1或—1D .1或—1或02.集合{|1,}A y y x x R ==+∈,{|2,},x B y y x R ==∈则A B 为( ) A .{(0,1),(1,2)} B .{0,1} C .{1,2} D .(0,)+∞3.设全集U =R ,A ={x |x >0},B ={x |x >1},则A ∩U B =( ).A .{x |0≤x <1}B .{x |0<x ≤1}C .{x |x <0}D .{x |x >1}4.下列四个图形中,不是..以x 为自变量的函数的图象是( ).A B C D5.方程组⎩⎨⎧=-=+9122y x y x 的解集是( )A .()5,4B .()4,5-C .(){}4,5-D .(){}4,5-6. 下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .},01|{2R x x x x ∈=+-7.以下区间中,一定存在函数53)(3++-=x x x f 的零点的是( )A .]3,2[B .]1,0[C .]2,1[D .]0,1[- 8.已知g(x)=1-2x,,f[g(x)]=)0(122≠-x x x ,则f (21)等于( )A .1B .3C .15D .309.化简65253521a a a a ⋅⎪⎭⎫ ⎝⎛⋅⋅的结果是( )A .aB . 32a C . 2a D . 3a10. 已知集合}01|{2=-=x x A ,则下列式子表示正确的有( )①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个11. 设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a =( ) AB .2 C. D .412. 函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是( )第Ⅱ卷(非选择题,共90分)二、填空题(每空5分,共20分。
正视图
侧视图
俯视图
1
2 5
2 2
3 5 6 3
1
(第4题)
普通高中学业水平考试模拟试卷(五)
数学试卷
一、选择题:
1.若集合{}{}=⋂<+-=<-=B A x x B x x A 则,084,51 ( )
A .{}62<<x x
B .{}6<x x
C .{}
2>x x D .Φ
2. 有一个几何体的三视图如下图所示,这个几何体是一个( )
A.棱台
B.棱锥
C.棱柱
D.圆柱
3. 已知D 、E 、F 分别是ΔABC 的边AB 、BC 、CA 的中点,则下列等式中不正确的是( )
A 、=+
B 、=++
C 、=+
D 、FD D
E DA =+
4.如图是某运动员在某个赛季得分的茎叶统计图,则该运动员得分的中位数是( )
A.2
B.3
C.22
D.23 5.函数1+=x y 的零点是( )
A.0
B.1-
C. )0,0( D .)0,1(- 6.已知一个算法,其流程图右图,则输出的结果是( )
A.10
B.11
C.8
D.9 7.在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c , 若︒
=135A ,︒
=30B ,2=a ,则b 等于( )
A.1
B.2
C.
3 D.2
8.同时抛投两枚质地均匀的硬币,则两枚硬币均正面向上的概率为( )
A.
41 B. 21 C. 4
3
D. 1
9.直线210x y -+=与直线12(1)y x -=+的位置关系是( )
A.平行
B. 垂直
C. 相交但不垂直
D.重合
10.等差数列}{n a 中,27,39963741=++=++a a a a a a ,
则}{n a 前9项的和9S 等于( )A .66
B .99
C .144
D .297
二、 填空题:
11.直线10x y ++=的纵截距是 。
12 .化简)2
3tan(
)2
sin(
)sin(x x x +--π
π
π= 。
13.函数22log x y x =+在区间[]1,4上的最大值是 。
14.防疫站对学生进行身体健康调查,红星中学共有学生1600名,采用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了20人, 则该校的女生人数应是 .
15. x 、y 满足约束条件⎪⎩
⎪
⎨⎧≤≥+≥+-3005x y x y x ,则y x z 42+=最小值 .
三、解答题:
16.设函数54)(2--=x x x f .[2,6]x ∈- (1)画出函数)(x f 的图像 (2)求函数的单调递增区间
S
A
C
B
F
E
17. 已知函数22()cos sin f x x x =-.
(1)求4(π
f 的值及()f x 的最大值;
(2)求()f x 的递减区间。
18. 如图所示,在三棱锥P -ABC 中,E 、F 分别为AC 、BC 的中点。
(1)证明://EF PAB 平面;
(2)若PA PB =,CA CB =,求证:AB PC ⊥。
19.某商场的一种商品每件进价为10元,据调查知每日销售量m (件)与销售单价x (元)之间的函数关系为70m x =-,1070x ≤≤。
设该商场日销售这种商品的利润为y (元)。
(单件利润=销售单价-进价;日销售利润=单件利润⨯日销售量) (1)求函数()y f x =的解析式;
(2)求该商场销售这种商品的日销售利润的最大值。
20.已知等差数列}{n a 满足:26,7753=+=a a a ,}{n a 的前n 项和n S (1)求n a 及n S (2)令1
12
-=n n a b (+∈N n ),求数列}{n b 前n 项和n T。