高中数学人教a版选修2-3 第一章 计数原理 1.1-第2课时含答案
- 格式:doc
- 大小:102.00 KB
- 文档页数:7
选修第一章第课时一、选择题.从甲地到乙地一天有汽车班,火车班,轮船班,某人从甲地到乙地,他共有不同的走法数为( ).种.种.种.种[答案][解析]应用分类加法计数原理,不同走法数为++=(种).故选..(+)(+)(++)完全展开后的项数为( )....[答案][解析]每个括号内各取一项相乘才能得到展开式中的一项,由分步乘法计数原理得,完全展开后的项数为××=..定义集合与的运算*如下:*={(,)∈,∈},若={,,},={,,,},则集合*的元素个数为( )....[答案][解析]显然(,)、(,)等均为*中的元素,确定*中的元素是中取一个元素来确定,中取一个元素来确定,由分步乘法计数原理可知*中有×=个元素.故选..如下图所示,小圆圈表示网络的结点,结点之间的线段表示它们有网线相连.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点向结点传递信息,信息可以分开从不同的路线同时传递,则单位时间内传递的最大信息量为( )....[答案] [解析]因信息可以分开沿不同的路线同时传递,由分类加法计数原理,完成从向传递有四种方法:→→→→→→→→,故单位时间内传递的最大信息量为四条不同网线上信息量的和:+++=,故选..有四位老师在同一年级的个班级中,各教一个班的数学,在数学考试时,要求每位老师均不在本班监考,则安排监考的方法种数是( ).种.种.种.种[答案] [解析]设四个班级分别是、、、,它们的老师分别是、、、,并设监考的是,则剩下的三个老师分别监考剩下的三个班级,共有种不同的方法;同理当监考、时,剩下的三个老师分别监考剩下的三个班级也各有种不同的方法.这样,由分类加法计数原理知共有++=(种)不同的安排方法.另外,本题还可让先选,可从、、中选一个,即有种选法.若选的是,则从剩下的个班级中任选一个,也有种选法,剩下的两个老师都只有一种选法,这样用分步乘法计数原理求解,共有×××=(种)不同的安排方法..从、中选一个数字,从、、中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )....[答案] [解析]()当从中选取时,组成的三位奇数的个位只能奇数,只要不排在个位即可,先排再排中选出的两个奇数,共有××=(个).()当从中选取时,组成的三位奇数的个位只能是奇数,必须在十位,只要排好从中选出的两个奇数.共有×=(个).综上,由分类加法计数原理知共有+=(个).二、填空题.已知直线方程+=,若从、、、、、这个数字中每次取两个不同的数作为、的值,则可表示不同的直线条[答案] [解析]当或中有一个为零时,则可表示出条不同的直线;当≠时,有种选法,有种选法,则可表示出×=条不同的直线.由分类加法计数原理知,共可表示出+=条不同的直线..直线方程+=,若从这个数字中每次取两个不同的数作为,的值,则可表示条不同的直线[答案] [解析]若或中有一个为零时,有条;当≠时有×=条,故共有+=条不同的直线..名乒乓球队员中,有名老队员和名新队员.现从中选出名队员排成、、号参加团体比赛,则入选的名队员中至少有一名老队员,且、号中至少有名新队员的排法有种.(用数字作答)[答案]。
第一章 计数原理1.1分类加法计数原理与分步乘法计数原理 练习(P6) 1、(1)要完成的“一件事情”是“选出1人完成工作”,不同的选法种数是5+4=9;(2)要完成的“一件事情”是“从A 村经B 村到C 村去”,不同路线条数是3×2=6. 2、(1)要完成的“一件事情”是“选出1人参加活动”,不同的选法种数是3+5+4=12;(2)要完成的“一件事情”是“从3个年级的学生中各选1人参加活动”,不同选法种数是3×5×4=60.3、因为要确定的是这名同学的专业选择,并不要考虑学校的差异, 所以应当是6+4-1=9(种)可能的专业选择. 练习(P10)1、要完成的“一件事情”是“得到展开式的一项”.由于每一项都是i j k a b c 的形式,所以可以分三步完成:第一步,取i a ,有3种方法;第二步,取j b ,有3种方法;第三步,取k c ,有5种方法. 根据分步乘法计数原理,展开式共有3×3×5=45(项).2、要完成的“一件事情”是“确定一个电话号码的后四位”. 分四步完成,每一步都是从0~9这10个数字中取一个,共有10×10×10×10=10000(个).3、要完成的“一件事情”是“从5名同学中选出正、副组长各1名”. 第一步选正组长,有5种方法;第二步选副组长,有4种方法. 共有选法5×4=20(种).4、要完成的“一件事情”是“从6个门中的一个进入并从另一个门出去”. 分两步完成:先从6个门中选一个进入,再从其余5个门中选一个出去. 共有进出方法6×5=30(种). 习题1.1 A 组(P12) 1、“一件事情”是“买一台某型号的电视机”. 不同的选法有4+7=11(种). 2、“一件事情”是“从甲地经乙地或经丙地到丁地去”. 所以是“先分类,后分步”,不同的路线共有2×3+4×2=14(条). 3、对于第一问,“一件事情”是“构成一个分数”. 由于1,5,9,13是奇数,4,8,12,16是偶数,所以1,5,9,13中任意一个为分子,都可以与4,8,12,16中的任意一个构成分数. 因此可以分两步来构成分数:第一步,选分子,有4种选法;第二步,选分母,也有4种选法. 共有不同的分数4×4=16(个). 对于第二问,“一件事情”是“构成一个真分数”. 分四类:分子为1时,分母可以从4,8,12,16中任选一个,有4个;分子为5时,分母可以从8,12,16中选一个,有3个;分子为9时,分母从12,16中选一个,有2个;分子为13时,分母只能选16,有1个. 所以共有真分数4+3+2+1=10(个). 4、“一件事情”是“接通线路”. 根据电路的有关知识,容易得到不同的接通线路有3+1+2×2=8(条).5、(1)“一件事情”是“用坐标确定一个点”. 由于横、纵坐标可以相同,因此可以分两步完成:第一步,从A 中选横坐标,有6个选择;第二步,从A 中选纵坐标,也有6个选择. 所以共有坐标6×6=36(个). (2)“一件事情”是“确定一条直线的方程”. 由于斜率不同截距不同、斜率不同截距相同、斜率相同截距不同的直线都是互不相同的,因此可分两步完成:第一步,取斜率,有4种取法;第二步,取截距,有4种取法. 所以共有直线4×4=16(条).习题1.1 B 组(P13) 1、“一件事情”是“组成一个四位数字号码”. 由于数字可以重复,最后一个只能在0~5这六个数字中拨,所以有号码10×10×10×6=6000(个). 2、(1)“一件事情”是“4名学生分别参加3个运动队中的一个,每人限报一个,可以报同一个运动队”. 应该是人选运动队,所以不同报法种数是43.(2)“一件事情”是“3个班分别从5个风景点中选择一处游览”. 应该是人选风景点,故不同的选法种数是35. 1.2排列与组合 练习(P20)1、(1),,,,,,,,,,,ab ac ad ba bc bd ca cb cd da db dc ;(2),,,,,,,,,,,,,,,,,,,ab ac ad ae ba bc bd be ca cb cd ce da db dc de ea eb ec ed .2、(1)4151514131232760A =⨯⨯⨯=; (2)777!5040A ==; (3)4288287652871568A A -=⨯⨯⨯-⨯⨯=; (4)87121277121255A A A A ==.3、4、(1)略. (2)876777787677778788A A A A A A A -+=-+=.5、3560A =(种). 6、3424A =(种). 练习(P25) 1、(1)甲、乙, 甲、丙, 甲、丁, 乙、丙, 乙、丁, 丙、丁;(2)2、ABC ∆,ABD ∆,ACD ∆,BCD ∆.3、3620C =(种). 4、246C =(个). 5、(1)26651512C ⨯==⨯; (2)3887656123C ⨯⨯==⨯⨯;(3)3276351520C C -=-=; (4)328532356210148C C -=⨯-⨯=. 6、()1111(1)!!11(1)![(1)(1)]!!!m m n n m m n n C C n n m n m m n m +++++=⋅==++++-+- 习题1.2 A 组(P27) 1、(1)325454560412348A A +=⨯+⨯=; (2)12344444412242464A A A A +++=+++=.2、(1)315455C =; (2)19732002001313400C C ==; (3)346827C C ÷=; (4)22211(1)(1)(1)22n n n n nn nn n n n CCCC n -++--⋅=⋅=+⋅=.3、(1)12111(1)n n n n n n n n n n n n A A n A A nA n A +-+--=+-==;(2)(1)!!(1)!!(1)!!(1)!!!n n n k n n k n k k k k ++-⋅-+-==-. 4、由于4列火车各不相同,所以停放的方法与顺序有关,有481680A =(种)不同的停法.5、4424A =. 6、由于书架是单层的,所以问题相当于20个元素的全排列,有2020A 种不同的排法.7、可以分三步完成:第一步,安排4个音乐节目,共有44A 种排法;第二步,安排舞蹈节目,共有33A 种排法;第三步,安排曲艺节目,共有22A 种排法. 所以不同的排法有432432288A A A ⋅⋅=(种). 8、由于n 个不同元素的全排列共有!n 个,而!n n ≥,所以由n 个不同的数值可以以不同的顺序形成其余的每一行,并且任意两行的顺序都不同. 为使每一行都不重复,m 可以取的最大值是!n . 9、(1)由于圆上的任意3点不共线,圆的弦的端点没有顺序,所以共可以画21045C =(条)不同的弦;(2)由于三角形的顶点没有顺序,所以可以画的圆内接三角形有310120C =(个).10、(1)凸五边形有5个顶点,任意2个顶点的连线段中,除凸五边形的边外都是对角线,所以共有对角线2555C -=(条);(2)同(1)的理由,可得对角线为2(3) 2n n nC n --=(条).说明:本题采用间接法更方便.11、由于四张人民币的面值都不相同,组成的面值与顺序无关,所以可以分为四类面值,分别由1张、2张、3张、4张人民币组成,共有不同的面值1234 444415C C C C+++=(种).12、(1)由“三个不共线的点确定一个平面”,所确定的平面与点的顺序无关,所以共可确定的平面数是3856C=;(2)由于四面体由四个顶点唯一确定,而与四个点的顺序无关,所以共可确定的四面体个数是410210C=.13、(1)由于选出的人没有地位差异,所以是组合问题,不同的方法数是3510C=. (2)由于礼物互不相同,与分送的顺序有关系,所以是排列问题,不同方法数是3560A=;(3)由于5个人中每个人都有3中选择,而且选择的时间对别人没有影响,所以是一个“可重复排列”问题,不同方法数是53243=;(4)由于只要取出元素,而不必考虑顺序,所以可以分两步取元素:第一步,从集合A中取,有m种取法;第二步,从集合B中取,有n种取法. 所以共有取法mn 种.说明:第(3)题是“可重复排列”问题,但可以用分步乘法计数原理解决.14、由于只要选出要做的题目即可,所以是组合问题,另外,可以分三步分别从第1,2,3题中选题,不同的选法种数有32143224C C C⋅⋅=.15、由于选出的人的地位没有差异,所以是组合问题.(1)225460C C⋅=;(2)其余2人可以从剩下的7人中任意选择,所以共有2721C=(种)选法;(3)用间接法,在9人选4人的选法中,把男甲和女乙都不在内的去掉,就得到符合条件的选法数为449791C C-=;如果采用直接法,则可分为3类:只含男甲;只含女乙;同时含男甲女乙,得到符合条件的方法数为33277791C C C++=;(4)用间接法,在9人选4人的选法中,把只有男生和只有女生的情况排除掉,得到选法总数为444954120C C C--=.也可以用直接法,分别按照含男生1,2,3人分类,得到符合条件的选法数为132231 545454120C C C C C C++=.16、按照去的人数分类,去的人数分别为1,2,3,4,5,6,而去的人大家没有地位差异,所以不同的去法有12345666666663C C C C C C +++++=(种). 17、(1)31981274196C =; (2)142198124234110C C ⋅=; (3)51982410141734C =; (4)解法1:3141982198125508306C C C =⋅=. 解法2:55200198125508306C C -=. 说明:解答本题时,要注意区分“恰有”“至少有”等词.习题1.2 B 组(P28)1、容易知道,在737C 注彩票中可以有一个一等奖.在解决第2问时,可分别计算37选6及37选8中的一等奖的中奖机会,它们分别是637112324784C =和8371138608020C =. 要将一等奖的机会提高到16000000以上且不超过1500000,即375000006000000nC ≤<, 用计算机可得,6n =,或31n =.所以可在37个数中取6个或31个.2、可以按照I ,II ,III ,IV 的顺序分别着色:分别有5,4,3,3种方法,所以着色种数有5×4×3×3=180(种).3、“先取元素后排列”,分三步完成:第一步,从1,3,5,7,9中取3个数,有35C 种取法;第二步,从2,4,6,8中取2个数,有24C 种取法;第三步,将取出的5个数全排列,有55A 种排法. 共有符合条件的五位数3255457200C C A ⋅⋅=(个). 4、由于甲和乙都没有得冠军,所以冠军是其余3人中的一个,有13A 种可能;乙不是最差的,所以是第2,3,4名中的一种有13A 种可能;上述位置确定后,甲连同其他2人可任意排列,有33A 种排法. 所以名次排列的可能情况的种数是11333354A A A ⋅⋅=.5、等式两边都是两个数相乘,可以想到分步乘法计数原理,于是可得如下分步取组合的方法.在n 个人中选择m 个人搞卫生工作,其中k 个人擦窗,m k -个人拖地,共有多少种不同的选取人员的方法?解法1:利用分步计数原理,先从n 个人中选m 个人,然后从选出的m 个人中再选出k 个人擦窗,剩余的人拖地,这样有m knm C C 种不同的选取人员的方法; 解法2:直接从n 个人中选k 个人擦窗,然后在剩下的n k -个人中选m k -个人拖地,这样,由分步计数原理得,共有k m knn k C C --种不同的人员选择方法. 所以,k m k m knn k n m C C C C --=成立. 说明:经常引导学生从一个排列组合的运算结果或等式出发,构造一个实际问题加以解释,有助于学生对问题的深入理解,检查结果,纠正错误. 1.3二项式定理 练习(P31)1、7652433425677213535217p p q p q p q p q p q pq q +++++++.2、2424236(2)(3)2160T C a b a b =⋅=.3、231(1)(2n rr r n rrr r nn r T C C x --+-=⋅=.4、D . 理由是5105555511010(1)T C x C x -+=-=-. 练习(P35)1、(1)当n 是偶数时,最大值2nn C ;当n 是奇数时,最大值12n nC-.(2)1311111111*********C C C +++=⋅=. (3)12.2、∵0122kn n nn n n n C C C C C ++++++=, 0213n n n n C C C C ++=++∴012knn n n n nC C C C C ++++++0213()()n n n n C C C C =+++++022()2n n n C C =++=∴021222nn n nnnC C C -+++==. 3、略.习题1.3 A 组(P36)1、(1)011222(1)(1)(1)(1)n n n r n rr nn n n n n n C P C P P C P P C P P C P ---+-+-++-++-;(2)0122222nn n nnn n n n C C C C ++++. 2、(1)9965432(9368412612684a a a a a b a a a b =+++2369a b ()27311357752222222172135701682241281283282x x x x x x x x ----=-+-+-+-.3、(1)552(1(122010x x +=++; (2)11114412222(23)(23)192432x x x x x x ---+--=+.4、(1)前4项分别是1,30x -,2420x ,33640x -; (2)91482099520T a b =-; (3)7924T =;(4)展开式的中间两项分别为8T ,9T ,其中78711815((6435T C x y =-=-87811915((6435T C x y =-=5、(1)含51x的项是第6项,它的系数是5510163()28C -=-; (2)常数项是第6项,5105561012()2522T C -=⋅-=-.6、(1)2221221()(1)r n r r r r n rr n n T C x C xx --+=-=- 6、(1)2221221()(1)r n r r r r n rr n n T C x C xx--+=-=- 由220n r -=得r n =,即21()n x x-的展开式中常数项是12(1)n r n nT C +=-(2)!(1)!!nn n n =- 12345(21)2(1)!!nn nn n ⋅⋅⋅⋅⋅⋅-⋅=-…[135(21)][2462](1)!!n n n n n ⋅⋅⋅⋅-⋅⋅⋅⋅=-……[135(21)]2!(1)!!n nn n n n ⋅⋅⋅⋅-⋅⋅=-…135(21)(2)!nn n ⋅⋅⋅⋅-=-…(2)2(1)n x +的展开式共有21n +项,所以中间一项是12135(21)(2)!n nn n n n T C x x n +⋅⋅⋅⋅-==…7、略.8、展开式的第4项与第8项的二项式系数分别是3n C 与7n C ,由37n n n C C -=,得37n =-,即10n =.所以,这两个二项式系数分别是310C 与710C ,即120.习题1.3 B 组(P37)1、(1)∵1122221(1)111n n n n n n n n n n n n C n C n C n C n ----+-=++++++- 1122222n n n n nn n n C n C n C n n ---=+++++2213242(1)n n n n nn n n n C n C n C ----=+++++∴(1)1n n +-能被2n 整除; (2)∵1010991(1001)1-=--1019288291010101010010010010010011C C C C =-⋅+⋅++⋅-⋅+- 1019288210101010010010010010100C C C =-⋅+⋅++⋅-⨯ 1711521381010101000(101010101)C C C =-⋅+⋅++⋅-∴10991-能被1000整除.2、由0112211(21)222(1)2(1)n n n n n n n nnn n n n C C C C C -----=⋅-⋅+⋅++-⋅⋅+-,得112211222(1)2(1)1n n n n n n nn n C C C -----⋅+⋅++-⋅⋅+-=.第一章 复习参考题A 组(P40)1、(1)2n ;说明:这里的“一件事情”是“得到展开式中的一项”. 由于项的形式是i j a b ,而,i j 都有n 种取法. (2)3276525C C ⋅=;(3)1545480A A ⋅=,或2454480A A ⋅=;说明:第一种方法是先考虑有限制的这名歌手的出场位置,第二种方法是先考虑有限制的两个位置.(4)45C ;说明:因为足球票无座,所以与顺序无关,是组合问题. (5)53;说明:对于每一名同学来说,有3种讲座选择,而且允许5名同学听同一个讲座,因此是一个“有重复排列”问题,可以用分步乘法原理解答.(6)54;说明:对角线的条数等于连接正十二边形中任意两个顶点的线段的条数212C ,减去其中的正十二边形的边12条:21212111212542C ⨯-=-=.(7)第1n +项.说明:展开式共有21n +项,且各系数与相应的二项式系数相同.2、(1)1234566666661956A A A A A A +++++=;说明:只要数字是1,2,3,4,5,6中的,而且数字是不重复的一位数、二位数、三位数、四位数、五位数和六位数都符合要求.(2)552240A =.说明:只有首位数是6和5的六位数才符合要求. 3、(1)3856C =; (2)1234555530C C C C +++=.4、468898C C +=. 说明:所请的人的地位没有差异,所以是组合问题. 按照“其中两位同学是否都请”为标准分为两类.5、(1)2(1)2n n n C -=; 说明:任意两条直线都有交点,而且交点各不相同. (2)2(1)2n n n C -=. 说明:任意两个平面都有一条交线,而且交线互不相同.6、(1)59764446024C =; (2)23397442320C C ⋅=; (3)2332397397446976C C C C ⋅+⋅=.7、34533453103680A A A A ⋅⋅⋅=.说明:由于不同类型的书不能分开,所以可以将它们看成一个整体,相当于是3个元素的全排列. 但同类书之间可以交换顺序,所以可以分步对它们进行全排列.8、(1)226x -;说明:第三项是含2x 的项,其系数是22112244553(23)(2)26C C C C ⋅+⋅-⨯+--.(2)18118(9)(rr r r T C x -+=,由题意有1802rr --= 解得12r =,1318564T =;(3)由题意得98102n n n C C C =+,即2!!!9!(9)!8!(8)!10!(10)!n n n n n n ⋅=+---化简得2373220n n -+=,解得14n =,23n =;(4)解法1:设1r T +'是10(1)x -展开式的第1r +项,由题意知,所求展开式中4x 的系数为41T +',31T +'与21T +'的系数之和. 444110()T C x +'=-,333110()T C x +'=-,222110()T C x +'=-,因此,4x 的系数432101010135C C C =-+=. 解法2:原式39(1)(1)x x =-- 3223344999(1)(19)x x C x C x C x =--+-++因此,4x 的系数499135C =+=.9、5555559(561)9+=-+5515454555556565619C C =-⋅++⋅-+551545455555656568C C =-⋅++⋅+由于551545455555656568C C -⋅++⋅+中各项都能被8整除,因此55559+也能被8整除.第一章 复习参考题B 组(P41)1、(1)121121n n n C C -++==,即1(1)212n n +⋅=,解得6n =; (2)1144244224192A A A ⋅⋅=⨯⨯=;说明:先排有特殊要求的,再排其他的. (3)433333⨯⨯⨯=,34444⨯⨯=;说明:根据映射定义,只要集合A 中任意一个元素在集合B可以相同,所以是“有重复排列”问题.(4)2426106500000A ⨯=; (5)481258C -=; 说明:在从正方体的8个顶点中任取4个的所有种数48C 中, 排除四点共面的12种情况,即正方体表面上的6种四点共面的情况,以及如右图中ABC D ''这样的四点共面的其他 6种情况,因此三棱锥的个数为481258C -=(6)1或1-.说明:令1x =,这时(12)n x -的值就是展开式中各项系数的和,其值是1,(12)(1)1n n n n -⎧-=-=⎨⎩是奇数,是偶数2、(1)先从1,3,5中选1个数放在末位,有13A 种情况;再从除0以外的4个数中选1个数放在首位,有14A 种情况;然后将剩余的数进行全排列,有44A 种情况. 所以能组成的六位奇数个数为114344288A A A ⋅⋅=. (2)解法1:由0,1,2,3,4,5组成的所有没有重复数字的正整数的个数是1555A A ⋅,其中不大于201345的正整数的个数,当首位数字是2时,只有201345这1个;当首位数字是1时,有55A 个. 因此,所求的正整数的个数是155555(1)479A A A ⋅-+=.解法2:由0,1,2,3,4,5组成的没有重复数字的正整数中,大于201345的数分为以下几种情况:前4位数字为2013,只有201354,个数为1;同理,前3位数字为201,个数为1222A A ⋅;前2位数字为20,个数为1333A A ⋅;首位数字为2,个数为1444A A ⋅;首位数字为3,4,5中的一个,个数为1535A A ⋅;根据分类计数原理,所求的正整数的个数是12131415223344351479A A A A A A A A +⋅+⋅+⋅+⋅=.3、(1)分别从两组平行线中各取两条平行线,便可构成一个平行四边形,所以可以构成的平行四边形个数为221(1)(1)4m n C mn m n ⋅=--; (2)分别从三组平行平面中各取两个平行平面,便可构成一个平行六面体,所以可以构成的平行六面体个数为2221(1)(1)(1)8m n l C C C mnl m n l ⋅⋅=---. 4、(1)先排不能放在最后的那道工序,有14A 种排法;再排其余的4道工序,有44A 种排法. 根据分步乘法计数原理,排列加工顺序的方法共有144496A A ⋅=(种);(2)先排不能放在最前和最后的那两道工序,有23A 种排法;再排其余的3道工序,有33A 种排法,根据分步乘法计数原理,排列加工顺序的方法共有233336A A ⋅=(种).5、解法1:由等比数列求和公式得33342(1)(1)(1)(1)(1)n n x x x x x x+++-+++++++=, 上述等式右边分子的两个二项式中含2x 项的系数分别是33n C +,33C ,因此它们的差23333(611)6n n n n C C +++-=,就是所求展开式中含2x 项的系数. 解法2:原式中含2x 项的系数分别是23C ,24C ,…,22n C +,因此它们的和就是所求展开式中含2x 项的系数. 与复习参考题B 组第2题同理,可得22223334233(611)6n n n n n C C C C C +++++++=-= 第二章 随机变量及其分布2.1离散型随机变量及其分布列练习(P45)1、(1)能用离散型随机变量表示. 可能的取值为2,3,4,5,6,7,8,9,10,11,12.(2)能用离散型随机变量表示. 可能的取值为0,1,2,3,4,5. (3)不能用离散型随机变量表示.说明:本题的目的是检验学生是否理解离散型随机变量的含义. 在(3)中,实际值与规定值之差可能的取值是在0附近的实数,既不是有限个值,也不是可数个值.2、可以举的例子很多,这里给出几个例子:例1 某公共汽车站一分钟内等车的人数;例2 某城市一年内下雨的天数;例3 一位跳水运动员在比赛时所得的分数; 例4 某人的手机在1天内接收到电话的次数.说明:本题希望学生能观察生活中的随机现象,知道哪些量是随机变量,哪些随机变量又是离散型随机变量.练习(P49)1说明:这是一个两点分布的例子,投中看作试验成功,没投中看作试验失败. 通过这样的例子可以使学生理解两点分布是一个很常用的概率模型,实际中大量存在. 虽然离散型随机变量的分布列可以用解析式的形式表示,但当分布列中的各个概率是以数值的形式给出时,通常用列表的方式表示分布列更为方便. 2、抛掷一枚质地均匀的硬币两次,其全部可能的结果为{正正,正反,反正,反反}. 正面向上次数X 是一个离散型随机变量,1(0)({})0.254P X P ====反反 2(1)({}{})0.54P X P ====正反反正 1(2)({})0.25P X P ====正正 因此X 的分布列为说明:这个离散型随机变量虽然简单,但却是帮助学生理解随机变量含义的一个很好的例子. 试验的全部可能的结果为{正正,正反,反正,反反},随机量X 的取值范围为{0,1,2},对应关系为正正→2 正反→1 反正→1 反反→0在这个例子中,对应于1的试验结果有两个,即“正反”和“反正”,因此用随机变量X 不能表示随机事件{正反}. 这说明对于一个具体的随机变量而言,有时它不能表示所有的随机事件.可以通过让学生们分析下面的推理过程存在的问题,进一步巩固古典概型的知识. 如果把X 所有取值看成是全体基本事件,即{0,1,2}Ω=.根据古典概型计算概率的公式有 1(1)({1})3P X P ===. 这与解答的结果相矛盾. 原因是这里的概率模型不是古典概型,因此上面式中的最后一个等号不成立. 详细解释下:虽然Ω中只含有3个基本事件,但是出现这3个基本事件不是等可能的,因此不能用古典概型计算概率的公式来计算事件发生的概率.3、设抽出的5张牌中包含A 牌的张数为X ,则X 服从超几何分布,其分布列为 5448552()i i C C P X i C -==,i =0,1,2,3,4. 因此抽出的5张牌中至少3张A 的概率为(3)(3)(4)0.002P X P X P X ≥==+=≈.说明:从52张牌任意取出5张,这5张牌中包含A 的个数X 是一个离散型随机变量. 把52张牌看成是52件产品,把牌A 看成次品,则X 就成为从含有四件次品的52件产品中任意抽取5件中的次品数,因此X 服从超几何分布.本题的目的是让学生熟悉超几何分布模型,体会超几何分布在不同问题背景下的表现形式. 当让本题也可以用古典概型去解决,但不如直接用超几何分布简单. 另外,在解题中分布列是用解析式表达的,优点是书写简单,一目了然.4、两点分布的例子:掷一枚质地均匀的硬币出现正面的次数X 服从两点分布;射击一次命中目标的次数服从两点分布.超几何分布的例子:假设某鱼池中仅有鲤鱼和鲑鱼两种鱼,其中鲤鱼200条,鲑鱼40条,从鱼池中任意取出5条鱼,这5条鱼包含鲑鱼的条数X 服从超几何分布.说明:通过让学生举例子的方式,帮助学生理解这两个概率模型.习题2.1 A 组(P49)1、(1)能用离散型随机变量表示.设能遇到的红灯个数为X ,它可能的取值为0,1,2,3,4,5.事件{X =0}表示5个路口遇到的都不是红灯;事件{X =1}表示5个路口其中有1个路口遇到红灯,其他4个路口都不是红灯;事件{X =2}表示5个路口其中有2个路口遇到红灯,其他3个路口都不是红灯;事件{X =3}表示5个路口其中有3个路口遇到红灯,剩下2个路口都不是红灯;事件{X =4}表示5个路口其中有4个路口遇到红灯,另外1个路口都不是红灯;事件{X =5}表示5个路口全部都遇到红灯.(2)能用离散型随机变量表示.定义 12345X ⎧⎪⎪⎪=⎨⎪⎪⎪⎩,成绩不及格,成绩及格,成绩中,成绩良,成绩优则X 是一个离散型随机变量,可能的取值为1,2,3,4,5.事件{X =1}表示该同学取得的成绩为不及格;事件{X =2}表示该同学取得的成绩为及格;事件{X =3}表示该同学取得的成绩为中;事件{X =4}表示该同学取得的成绩为良;事件{X =5}表示该同学取得的成绩为优.说明:本题是考查学生是否理解离散型随机变量的含义. 在(2)中,需要学生建立一个对应关系,因为随机变量的取值一定是实数,但这个对应关系不是唯一的,只要是从五个等级到实数的意义映射即可.2、某同学跑1 km 所用时间X 不是一个离散型随机变量. 如果我们只关心该同学是否能够取得优秀成绩,可以定义如下的随机变量:01km 4min 11km 4minY >⎧=⎨≤⎩,跑所用的时间,跑所用的时间 它是离散型随机变量,且仅取两个值:0或1.事件{1}Y =表示该同学跑1 km 所用时间小于等于4 min ,能够取得优秀成绩;事件{0}Y =表示该同学跑1 km 所用时间大于4 min ,不能够取得优秀成绩.说明:考查学生在一个随机现象中能否根据关心的问题不同定义不同的随机变量,以简化问题的解答. 可以与教科书中电灯泡的寿命的例子对比,基本思想是一致的.3、一般不能. 比如掷一枚质地均匀的硬币两次,用随机变量X 表示出现正面的次数,则不能用随机变量X 表示随机事件{第1次出现正面且第2次出现反面}和{第1次出现反面且第2次出现正面}. 因为{X =1}={第1次出现正面且第2次出现反面}∪{第1次出现反面且第2次出现正面},所以这两个事件不能分别用随机变量X 表示.说明:一个随机变量是与一个事件域相对应的,一个事件域一般是由部分事件组成,但要满足一定的条件. 对离散型随机变量,如果它取某个值是由几个随机变量组成,则这几个随机事件就不能用随机变量表示,比如从一批产品中依次取出几个产品,用X 表示取出的产品中次品的个数,这时我们不能用X 表示随机事件{第i 次取出次品,其他均为合格品}.4、不正确,因为取所有值的概率和不等于1.说明:考查学生对分布列的两个条件的理解,每个概率不小于0,其和等于1,即 (1)0i p ≥,1,2,,i n =; (2)11ni i p ==∑.5、射击成绩优秀可以用事件{X ≥8}表示,因此射击优秀的概率为P {X ≥8}=(8)(9)(10)0.280.290.220.79P X P X P X =+=+==++=说明:本题知识点是用随机变量表示随机事件,并通过分布列计算随机事件的概率.6、用X 表示该班被选中的人数,则X 服从超几何分布,其分布列为104261030()i i C C P X i C -==, i =0,1,2,3,4. 该班恰有2名同学被选到的概率为 2842610304!26!1902!2!8!18!(2)0.31230!60910!20!C C P X C ⨯⨯⨯====≈⨯. 说明:本题与49页练习的第3题类似,希望学生在不同背景下能看出超几何分布模型.习题2.1 B 组(P49)1、(1)设随机抽出的3篇课文中该同学能背诵的 篇数为X ,则X 是一个离散型随机变量,它可能的取值为0,1,2,3,且X 服从超几何分布,分布列为即(2112(2)(2)(3)0.667263P X P X P X ≥==+==+==. 说明:本题是为了让学生熟悉超几何分布模型,并能用该模型解决实际问题.2、用X 表示所购买彩票上与选出的7个基本号码相同的号码的个数,则X 服从超几何分布,其分布列为 7729736()i i C C P X i C -==, i =0,1,2,3,4,5,6,7. 至少中三等奖的概率为52617072972972977736363697(5)0.00192752C C C C C C P X C C C ≥=++=≈. 说明:与上题类似同样是用超几何分布解决实际问题,从此题的结算结果可以看出至少中三等奖的概率近似为1/1000.2.2二项分布及其应用练习(P54)1、设第1次抽到A 的事件为B ,第2次抽到A 的事件为C ,则第1次和第2次都抽到A 的事件为BC .解法1:在第1次抽到A 的条件下,扑克牌中仅剩下51张牌,其中有3张A ,所以在第1次抽到A 的条件下第2次也抽到A 的概率为3()51P C B =. 解法2:在第1次抽到A 的条件下第2次也抽到A 的概率为()433()()45151n BC P C B n B ⨯===⨯. 解法3:在第1次抽到A 的条件下第2次也抽到A 的概率为43()35251()451()515251P BC P C B P B ⨯⨯===⨯⨯. 说明:解法1是利用缩小基本事件范围的方法计算条件概率,即分析在第1次抽到A 的条件下第2次抽取一张牌的随机试验的所有可能结果,利用古典概型计算概率的公式直接得到结果. 解法2实际上是在原来的基本事件范围内通过事件的计数来计算条件概率. 第3种方法是利用条件概率的定义来计算. 这里可以让学生体会从不同角度求解条件概率的特点.2、设第1次抽出次品的时间为B ,第2次抽出正品的事件为C ,则第1次抽出次品且第2次抽出正品的事件为BC .解法1:在第1次抽出次品的条件下,剩下的99件产品中有4件次品,所以在第1次抽出次品的条件下第2次抽出正品的概率为95()99P C B =. 解法2:在第1次抽出次品的条件下第2次抽出正品的概率为()59595()()59999n BC P C B n B ⨯===⨯. 解法3:在第1次抽出次品的条件下第2次抽出正品的概率为595()9510099()599()9910099P BC P C B P B ⨯⨯===⨯⨯. 说明:与上题类似,可以用不同方法计算条件概率.3、例1 箱中3张奖券中只有1张能中奖,现分别由3人无放回地任意抽取,在已知第一个人抽到奖券的条件下,第二个人抽到奖券的概率或第三个人抽到奖券的概率,均为条件概率,它们都是0.例2 某班有45名同学,其中20名男生,25名女生,依次从全班同学中任选两名同学代表班级参加知识竞赛,在第1名同学是女生的条件下,第2名同学也是女生的概率.说明:这样的例子很多,学生举例的过程可以帮助学生理解条件概率的含义. 练习(P55)1、利用古典概型计算的公式,可以求得()0.5P A =,()0.5P B =,()0.5P C =,()0.25P AB =,()0.25P BC =,()0.25P AC =,可以验证()()()P AB P A P B =,()()()P BC P B P C =,()()()P AC P A P C =.所以根据事件相互独立的定义,有事件A 与B 相互独立,事件B 与C 相互独立,事件A 与C 相互独立.说明:本题中事件A 与B 相互独立比较显然,因为抛掷的两枚硬币之间是互不影响的. 但事件B 与C 相互独立,事件A 与C 相互独立不显然,需要利用定义验证, 从该习题可以看出,事件之间是否独立有时根据实际含义就可做出判断,但有时仅根据实际含义是不能判断,需要用独立性的定义判断.2、(1)先摸出1个白球不放回的条件下,口袋中剩下3个球,其中仅有1个白球,所以在先摸出1个白球不放回的条件下,再摸出1个白球的概率是1/3.(2)先摸出1个白球后放回的条件下,口袋中仍然有4个球,其中有2个白球,所以在先摸出1个白球后放回的条件下,再摸出1个白球的概率是1/2.说明:此题的目的是希望学生体会有放回摸球与无放回摸球的区别,在有放回摸球中第2次摸到白球的概率不受第1次摸球结果的影响,而在无放回摸球中第2次摸到白球的概率受第1次摸球结果的影响.3、设在元旦期间甲地降雨的事件为A ,乙地降雨的事件为B .(1)甲、乙两地都降雨的事件为AB ,所以甲、乙两地都降雨的概率为()()()0.20.30.06P AB P A P B ==⨯= (2)甲、乙两地都不降雨的事件为AB ,所以甲、乙两地都不降雨的概率为 ()()()0.80.70.56P AB P A P B ==⨯= (3)其中至少一个地方降雨的事件为()()()AB AB AB ,由于事件AB ,AB 和AB 两两互斥,根据概率加法公式和相互独立事件的定义,其中至少一个地方降雨的概率为()()()0.060.20.70.80.30.44P AB P AB P AB ++=+⨯+⨯=.说明:与例3类似,利用事件独立性和概率的性质计算事件的概率,需要学生复习《数学3(必修)》中学过的概率性质.4、因为()()A AB AB =,而事件AB 与事件AB 互斥,利用概率的性质得到()()()P A P AB P AB =+所以()()()P AB P A P AB =-.又因为事件A 与B 相互独立.故 ()()()()()(1())()()P AB P A P A P B P A P B P A P B =-=-=..类似可证明A 与B ,A 与B .。
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.以下四个命题,属于组合问题的是()A.从3个不同的小球中,取出2个排成一列B.老师在排座次时将甲、乙两位同学安排为同桌C.在电视节目中,主持人从100位幸运观众中选出2名幸运之星D.从13位司机中任选出两位开同一辆车往返甲、乙两地【解析】从100位幸运观众中选出2名幸运之星,与顺序无关,是组合问题.【答案】 C2.某新农村社区共包括8个自然村,且这些村庄分布零散,没有任何三个村庄在一条直线上,现要在该社区内建“村村通”工程,共需建公路的条数为() A.4B.8C.28D.64【解析】由于“村村通”公路的修建,是组合问题.故共需要建C28=28条公路.【答案】 C3.组合数C r n(n>r≥1,n,r∈N)恒等于()A.r+1n+1C r-1n-1B.(n+1)(r+1)C r-1n-1C.nr C r-1n-1D.nr Cr-1n-1【解析】nr Cr-1n-1=nr·(n-1)!(r-1)!(n-r)!=n!r!(n-r)!=C r n.【答案】 D4.满足方程C x2-x16=C5x-516的x值为() A.1,3,5,-7 B.1,3 C.1,3,5 D.3,5【解析】依题意,有x2-x=5x-5或x2-x+5x-5=16,解得x=1或x=5;x=-7或x=3,经检验知,只有x=1或x=3符合题意.【答案】 B5.异面直线a,b上分别有4个点和5个点,由这9个点可以确定的平面个数是()A.20 B.9C.C39D.C24C15+C25C14【解析】分两类:第1类,在直线a上任取一点,与直线b可确定C14个平面;第2类,在直线b上任取一点,与直线a可确定C15个平面.故可确定C14+C15=9个不同的平面.【答案】 B二、填空题6.C03+C14+C25+…+C1821的值等于________.【解析】原式=C04+C14+C25+…+C1821=C15+C25+…+C1821=C1721+C1821=C1822=C422=7 315.【答案】7 3157.设集合A={a1,a2,a3,a4,a5},则集合A中含有3个元素的子集共有________个.【解析】从5个元素中取出3个元素组成一组就是集合A的子集,则共有C35=10个子集.【答案】108.10个人分成甲、乙两组,甲组4人,乙组6人,则不同的分组种数为________.(用数字作答)【解析】从10人中任选出4人作为甲组,则剩下的人即为乙组,这是组合问题,共有C410=210种分法.【答案】210三、解答题9.从1,2,3,4,5,6六个数字中任选3个后得到一个由这三个数组成的最小三位数,则可以得到多少个不同的这样的最小三位数?【解】从6个不同数字中任选3个组成最小三位数,相当于从6个不同元素中任选3个元素的一个组合,故所有不同的最小三位数共有C36=6×5×43×2×1=20个.10.(1)求式子1C x5-1C x6=710C x7中的x;(2)解不等式C m-18>3C m8.【解】(1)原式可化为:x!(5-x)!5!-x!(6-x)!6!=7·x!(7-x)!10·7!,∵0≤x≤5,∴x2-23x+42=0,∴x=21(舍去)或x=2,即x=2为原方程的解.(2)由8!(m-1)!(9-m)!>3×8!m!(8-m)!,得19-m>3m,∴m>27-3m,∴m>274=7-14.又∵0≤m-1≤8,且0≤m≤8,m∈N,即7≤m≤8,∴m=7或8.[能力提升]1.已知圆上有9个点,每两点连一线段,若任意两条线的交点不同,则所有线段在圆内的交点有()A.36个B.72个C.63个D.126个【解析】此题可化归为圆上9个点可组成多少个四边形,所有四边形的对角线交点个数即为所求,所以交点为C49=126个.【答案】 D2.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型和乙型电视机各1台,则不同的取法共有() 【导学号:97270017】A.140种B.84种C.70种D.35种【解析】可分两类:第一类,甲型1台、乙型2台,有C14·C25=4×10=40(种)取法,第二类,甲型2台、乙型1台,有C24·C15=6×5=30(种)取法,共有70种不同的取法.【答案】 C3.对所有满足1≤m<n≤5的自然数m,n,方程x2+C m n y2=1所表示的不同椭圆的个数为________.【解析】∵1≤m<n≤5,所以C m n可以是C12,C13,C23,C14,C24,C34,C15,C25,C35,C45,其中C13=C23,C14=C34,C15=C45,C25=C35,∴方程x2+C m n y2=1能表示的不同椭圆有6个.【答案】 64.证明:C m n=nn-mC m n-1.【证明】nn-mC m n-1=nn-m·(n-1)!m!(n-1-m)!=n!m!(n-m)!=C m n......................................使用本文档删除后面的即可致力于打造全网一站式文档服务需求,为大家节约时间文档来源网络仅供参考欢迎您下载可以编辑的word文档谢谢你的下载本文档目的为企业和个人提供下载方便节省工作时间,提高工作效率,打造全网一站式精品需求!欢迎您的下载,资料仅供参考!(本文档收集于网络改编,由于文档太多,审核难免疏忽,如有侵权或雷同,告知本店马上删除)。
选修第一章一、选择题.若(-)的展开式中各项系数之和为,则展开式的常数项是( ).第项.第项.第项.第项[答案][解析]令=,得出(-)的展开式中各项系数和为(-)=,解得=;∴(-)的展开式通项公式为:-·(-)=(-)·-··-,+=·()令-=,解得=.∴展开式的常数项是+=,即第项.故选..若+·-+…+·+是的倍数,则自然数为( ).奇数.偶数.的倍数.被除余的数[答案][解析]+·-+…+·+=(+++…+++)-=(+)+-=(+-)是的倍数,∴+为偶数,∴为奇数..(·潍坊市五校联考)已知(-)的展开式中,常数项为,则的值可以为( ) ....[答案][解析]通项+=()-(-)=(-)-,当=时为常数项,即(-))=,经检验=..若为正实数,且(-)的展开式中各项系数的和为,则该展开式第项为( ) ..-..-[答案][解析]由条件知,(-)=,∴-=±,∵为正实数,∴=.∴展开式的第项为:=·()·(-)=-·-=--,故选..(湖北高考)若二项式(+)的展开式中的系数是,则实数=( )....[答案][解析]二项式(+)的通项公式为+=()-()=--,令-=-,得=.故展开式中的系数是=,解得=..(·南安高二检测)除以的余数是( )....[答案][解析]=()=(-)=-++…+-=(-+…+-)+,∴除以的余数是.故选.二、填空题.若展开式的各项系数之和为,则=,其展开式中的常数项为(用数字作答)[答案][解析]令=,得=,得=,则+=·()-·=·-,令-=,=.故常数项为=..已知(-)展开式中常数项为,其中实数是常数,则展开式中各项系数的和是[答案]或[解析]+=-(-)=(-)··-,令-=得=,由条件知,=,∴=±,令=得展开式各项系数的和为或..在二项式(+)的展开式中,各项系数之和为,各项二项式系数之和为,且+=,则=[答案][解析]由题意可知,=,=,由+=,得+=,∴=,∴=.三、解答题.设(-)=+++…+(∈)()求+++…+的值.()求+++…+的值.()求+++…+的值.[解析]()令=,得:+++…+=(-)=-①()令=-,得:-+-…-=②。
高中数学第一章计数原理1.1分类加法计数原理与分步乘法计数原理第2课时分类加法计数原理与分步乘法计数原理的应用练习(含解析)新人教A版选修23A级基础巩固一、选择题1.植树节那天,四位同学植树,现有3棵不同的树,若一棵树限1人完成,则不同的植树方法种数有( )A.1×2×3 B.2×3×4C.34D.43解析:完成这件事分三步.第一步,植第一棵树,有4种不同的方法;第二步,植第二棵树,有4种不同的方法;第三步,植第三棵树,也有4种不同的方法.由分步乘法计数原理得:N=4×4×4=43,故选D.答案:D2.从1,2,3,4,5五个数中任取3个,可组成不同的等差数列的个数为( ) A.2 B.4C.6 D.8解析:分两类:第一类,公差大于0,有以下4个等差数列:①1,2,3,②2,3,4,③3,4,5,④1,3,5;第二类,公差小于0,也有4个.根据分类加法计数原理可知,可组成的不同的等差数列共有4+4=8(个).答案:D3.三人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有( )A.4种B.5种C.6种D.12种解析:若甲先传给乙,则有甲→乙→甲→乙→甲,甲→乙→甲→丙→甲,甲→乙→丙→乙→甲3种不同的传法;同理,甲先传给丙也有3种不同的传法,故共有6种不同的传法.答案:C4.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系中,第一、二象限不同点的个数为( )A.18 B.16 C.14 D.10解析:分两类:一是以集合M中的元素为横坐标,以集合N中的元素为纵坐标有3×2=6个不同的点,二是以集合N中的元素为横坐标,以集合M中的元素为纵坐标有4×2=8个不同的点,故由分类加法计数原理得共有6+8=14个不同的点.答案:C5.有6种不同的颜色,给图中的6个区域涂色,要求相邻区域不同色,则不同的涂色方法共有( )A.4 320种B.2 880种C.1 440种D.720种解析:第1个区域有6种不同的涂色方法,第2个区域有5种不同的涂色方法,第3个区域有4种不同的涂色方法,第4个区域有3种不同的涂色方法,第5个区域有4种不同的涂色方法,第6个区域有3种不同的涂色方法,根据分步乘法计数原理,共有6×5×4×3×4×3=4 320种不同的涂色方法.答案:A二、填空题6.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________.(用数字作答)解析:甲、乙、丙均有7中不同的站法,故不考虑限制的不同站法有7×7×7=343种,其中三个人站在同一级台阶上有7种站法,故符合本题要求的不同站法有343-7=336.答案:3367.甲、乙、丙3个班各有三好学生3,5,2名,现准备推选2名来自不同班的三好学生去参加校三好学生代表大会,共有________种不同的推选方法.解析:分为三类:第一类,甲班选一名,乙班选一名,根据分步乘法计数原理,选法有3×5=15(种);第二类,甲班选一名,丙班选一名,根据分步乘法计数原理,选法有3×2=6(种);第三类,乙班选一名,丙班选一名,根据分步乘法计数原理,选法有5×2=10(种).综合以上三类,根据分类加法计数原理,不同选法共有15+6+10=31(种).答案:318.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)解析:若不考虑数字2,3至少都出现一次的限制,对个位,十位,百位,千位,每个“位置”都有两种选择,所以共有24=16个四位数,然后再减去“2 222,3 333”这两个数,故共有16-2=14个满足要求的四位数.答案:14三、解答题9.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人.(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1人去献血,有多少种不同的选法?解:从O型血的人中选1人有28种不同的选法,从A型血的人中选1人有7种不同的选法,从B型血的人中选1人有9种不同的选法,从AB型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,“任选1人去献血”这件事情都可以完成,所以用分类加法计数原理,不同的选法有28+7+9+3=47(种).(2)要从四种血型的人中各选1人,即从每种血型的人中各选出1人后,“各选1人去献血”这件事情才完成,所以用分步乘法计数原理,不同的选法有28×7×9×3=5 292(种).10.若直线方程Ax+By=0中的A,B可以从0,1,2,3,5这五个数字中任取两个不同的数字,则方程所表示的不同直线共有多少条?解:按A或B能否为0分两类:第1类,当A或B为0时,表示的直线为y=0或x=0,共2条.第2类,当A,B不为0时,直线Ax+By=0被确定需分两步完成.第1步,确定A的值,有4种不同的方法;第2步,确定B的值,有3种不同的方法.由分步乘法计数原理知,共可确定4×3=12条直线.由分类加法计数原理知,方程所表示的不同直线共有2+12=14条.B级能力提升1.我国足球超级联赛(中超)的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分,一球队打完15场,积分33分,若不考虑顺序,该队胜、负、平的情况有( ) A.3种B.4种C.5种D.6种解析:设该队胜、负、平的场数分别为x,y,z,则依题意有x+y+z=15,3x+y=33,则y是3的倍数,列举为x=9,y=6,z=0;x=10,y=3,z=2,x=11,y=0,z=4,故根据分类加法计数原理得,该队胜、负、平的情况有3种.答案:A2.用4种不同的颜色涂图中的矩形A,B,C,D,要求相邻的矩形涂色不同,则不同的涂色方法共有________种.解析:C处有4种涂色方案,D处有3种涂法,B处有3种涂法,A处有2种涂法.由分步乘法计数原理得共有4×3×3×2=72种不同涂法.答案:723.某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A,B,C,A1,B1,C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有多少种?解:第一步,在点A1,B1,C1上安装灯泡,A1有4种方法,B1有3种方法,C1有2种方法,4×3×2=24,即共有24种方法.第二步,从A,B,C中选一个点安装第4种颜色的灯泡,有3种方法.第三步,再给剩余的两个点安装灯泡,共有3种方法,由分步乘法计数原理可得,安装方法共有4×3×2×3×3=216(种).。
选修第一章第课时一、选择题.名同学合影,站成前排人后排人,现摄影师要从后排人中抽人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )....[答案][解析]第一步从后排人中抽人有种抽取方法,第二步前排共有个位置,先从中选取个位置排上抽取的人,有种排法,最后把前排原人按原顺序排在其他个位置上,只有种安排方法,∴共有种排法..从编号为、、、的四种不同的种子中选出种,在块不同的土地上试种,每块土地上试种一种,其中号种子必须试种,则不同的试种方法有( ).种.种.种.种[答案][解析]先选后排=,故选..把、、、、、这六个数,每次取三个不同的数字,把其中最大的数放在百位上排成三位数,这样的三位数有( ).个.个.个.个[答案][解析]先选取个不同的数有种方法,然后把其中最大的数放在百位上,另两个不同的数放在十位和个位上,有种排法,故共有=个三位数..某同学有同样的画册本,同样的集邮册本,从中取出本赠送给位朋友,每位朋友本,则不同的赠送方式共有( ).种.种.种.种[答案][解析]分两类:第一类,取出两本画册,两本集邮册,从人中选取人送画册,则另外两人送集邮册,有种方法.第二类,本集邮册全取,取本画册,从人中选人送画册,其余送集邮册,有种方法,∴共有+=种赠送方法..(·青岛高二检测)从甲、乙等名志愿者中选出名,分别从事,,,四项不同的工作,每人承担一项.若甲、乙二人均不能从事工作,则不同的工作分配方案共有( ).种.种.种.种[答案][解析]解法:根据题意,分两种情形讨论:①甲、乙中只有人被选中,需要从甲、乙中选出人,担任后三项工作中的种,由其他三人担任剩余的三项工作,有=种选派方案.②甲、乙两人都被选中,则在后三项工作中选出项,由甲、乙担任,从其他三人中选出人,担任剩余的两项工作,有··=种选派方案,综上可得,共有+=种不同的选派方案,故选.解法:从甲、乙以外的三人中选一人从事工作,再从剩余四人中选三人从事其余三项工作共有=种选法..如图,用种不同的颜色涂入图中的矩形、、、中,(四种颜色可以不全用也可以全用)要求相邻的矩形涂色不同,则不同的涂法有( ).种.种.种[答案][解析]解法:()种颜色全用时,有=种不同涂色方法.()种颜色不全用时,因为相邻矩形不同色,故必须用三种颜色,先从种颜色中选种,涂入、、中,有种涂法,然后涂,可以与(或)同色,有种涂法,∴共有=种,∴共有不同涂色方法+=种.解法:涂有种方法,涂有种方法,涂有种方法,涂有种方法,故共有×××=种涂法.二、填空题.一排个座位分给人坐,要求任何两人都不得相邻,所有不同排法的总数有种[答案][解析]对于任一种坐法,可视个空位为个人为则所有不同坐法的种数可看作个和的一种编码,要求不得相邻故从个形成的个空档中选个插入即可.∴不同排法有=种..将支不同的笔全部放入两个不同的笔筒中,每个笔筒中至少放两支笔,有种放法(用数字作答)[答案][解析]设有,两个笔筒,放入笔筒有四种情况,分别为支,支,支,支,一旦笔筒的放法。
1.2.2组合课时过关·能力提升基础巩固1.的值为()A.72解析:B.36C.30D.42=15+21=36.答案:B2.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案共有()A.16种B.36种C.42种D.60种解析:若选择了2个城市,则有=36种投资方案;若选择了3个城市,则有=24种投资方案,因此共有36+24=60种投资方案.答案:D3.某高校外语系有8名志愿者,其中有5名男生,3名女生,现从中选3人参加某项测试赛的翻译工作,若要求这3人中既有男生,又有女生,则不同的选法共有()A.45种B.56种C.90种D.120种解析:用排除法,不同的选法种数为=45.答案:A4.氨基酸的排列顺序是决定蛋白质多样性的原因之一,某肽链由7种不同的氨基酸构成,若只改变其中3种氨基酸的位置,其他4种不变,则不同的改变方法的种数为() A.210 B.126 C.70D.35解析:从7种中取出3种有=35种取法,比如选出a,b,c3种,再都改变位置有b,c,a和c,a,b两种改变方法,故不同的改变方法有2×35=70种.答案:C5.在某次数学测验中,学号i(i=1,2,3,4)的四位同学的考试成绩f(i)∈{90,92,93,96,98},且满足f(1)<f(2)≤f(3)<f(4),则这四位同学的考试成绩的所有可能的情况为()A.9种B.5种C.23种D.15种答案:D6.某书店有11种杂志,2元1本的有8种,1元1本的有3种.小张用10元钱买杂志(每种至多买1本,10元钱刚好用完),则不同买法的种数为.(用数字作答)解析:由已知分两类情况:(1)买5本2元的买法种数为(2)买4本2元的、2本1元的买法种数为-=5可知,右边=()+()=故不同的买法种数为=266.答案:2667.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为.(用数字作答)解析:若不选0,则可组成没有重复数字的四位数的个数为=72.若选0,则可组成没有重复数字的四位数的个数为=108.则共可组成没有重复数字的四位数的个数为108+72=180.答案:1808.从7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有种.(用数字作答)解析:第一步安排周六有种方法,第二步安排周日有种方法,故不同的安排方案共有=140种.答案:1409.用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有个.(用数字作答)解析:分两种情况:第一类:个位、十位和百位上各有一个偶数,有=90个.第二类:个位、十位和百位上共有两个奇数一个偶数,有=234个,共有90+234=324个.答案:32410.8人排成一排,其中甲、乙、丙3人中有2人相邻,问这3人不同时排在一起的排法有多少种?解:先排甲、乙、丙以外的5人有种排法;再从甲、乙、丙3人中选2人排在一起并插入已排好的5人的6个间隔中有种排法,余下的1人可以插入另外5个间隔中有种排法,由分步乘法计数原理知,共有=21600种排法.11.(1)求证:+2--;(2)解:方程:3--(1)证明由组合数的性质-----=左边.右边=左边,所以原式成立.(2)解:原式可变形为3=5,--即----=5(x-4)(x-5),所以(x-3)(x-6)=5×4×2=8×5.所以x=11或x=-2(舍去负根).经检验,x=11符合题意,所以方程的解为x=11.能力提升15.个不同的球放入4个不同的盒子中,每个盒子中至少有一个球,若甲球必须放入A盒,则不同的放法种数是()A.120B.72C.60D.36解析:将甲球放入A盒后分两类:一类是除甲球外,A盒还放其他球,共=24种放法;另一类是A盒中只有甲球,则其他4个球放入另外三个盒中,有=36种放法.故总的放法有24+36=60种.答案:C2.某科技小组有6名学生,现从中选出3人去参加展览,至少有1名女生入选的不同选法有16种,则该小组中的女生人数为()A.2B.3C.4D.5解析:设男生有x人,则女生有(6-x)人.依题意得=16,即x(x-1)(x-2)+16×6=6×5×4.解得x=4,故女生有2人.答案:A3.已知一组曲线y=ax3+bx+1,其中a为2,4,6,8中的任意一个,b为1,3,5,7中的任意一个.现从这些曲线中任取两条,它们在x=1处的切线相互平行的组数为()A.9B.10C.12D.14解析:y'=ax2+b,曲线在x=1处切线的斜率k=a+b.切线相互平行,则需它们的斜率相等,因此按照在x=1处切线的斜率的可能取值可分为五类完成.第一类:a+b=5,则a=2,b=3;a=4,b=1.故可构成两条曲线,有组.第二类:a+b=7,则a=2,b=5;a=4,b=3;a=6,b=1.可构成三条曲线,有组.第三类:a+b=9,则a=2,b=7;a=4,b=5;a=6,b=3;a=8,b=1.可构成四条曲线,有组.第四类:a+b=11,则a=4,b=7;a=6,b=5;a=8,b=3.可构成三条曲线,有组.第五类:a+b=13,则a=6,b=7;a=8,b=5.可构成两条曲线,有组.故共有=14组曲线,它们在x=1处的切线相互平行.答案:D4.考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于()A B C D解析:甲、乙各能连成=15条直线,如图,其中有6对平行线,所求概率P=故选D.答案:D5.如图,一只电子蚂蚁在网格线上由原点O(0,0)出发,沿向上或向右方向爬至点(m,n)(m,n∈N*),记可能的爬行方法总数为f(m,n),则f(m,n)=.解析:从原点O出发,只能向上或向右方向爬行,记向上为1,向右为0,则爬到点(m,n)需m个0和n个1.这样爬行方法总数f(m,n)是m个0和n个1的不同排列方法数.m个0和n个1共占(m+n)个位置,只要从中选取m个放0即可.故f(m,n)=答案:6.如图,工人在安装一个正六边形零件时,需要固定六个位置的螺丝,第一阶段,首先随意拧一个螺丝,接着拧它对角线上的(距离它最远的,下同)螺丝,再随意拧第三个螺丝,第四个也拧它对角线上的螺丝,第五个和第六个以此类推,但每个螺丝都不要拧死;第二阶段,将每个螺丝拧死,但不能连续拧相邻的2个螺丝.则不同的固定方式有种.(用数字作答)答案:28807.在如图所示的四棱锥中,顶点为P,从其他的顶点和各棱中点中取3个,使它们和点P在同一平面内,则不同的取法种数为.(用数字作答)解析:满足要求的点的取法可分为三类:第一类,在四棱锥的每个侧面上除点P外任取3点,有4种取法;第二类,在两个对角面上除点P外任取3点,有2种取法;第三类,过点P的侧棱中,每一条上的三点和与这条棱异面的两条棱的中点也共面,有4种取法.因此,满足题意的不同取法共有4+2+4=56种.答案:56★8.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,求与信息0110至多有两个对应位置上的数字相同的信息个数.解:与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类,与信息0110恰有两个对应位置上的数字相同,即从4个位置中选2个位置相同,其他2个不同有=6个信息.第二类,与信息0110恰有一个对应位置上的数字相同,即从4个位置中选1个位置相同,其他3个不同有=4个信息.第三类,与信息0110没有一个对应位置上的数字相同,即4个位置中对应数字都不同,有=1个信息.由分类加法计数原理知,与信息0110至多有两个对应位置上的数字相同的信息个数为6+4+1=11.★9.在6名内科医生和4名外科医生中,内科主任和外科主任各1名,现要组成5人医疗小组送医下乡,依下列条件各有多少种选派方法?(1)有3名内科医生和2名外科医生;(2)既有内科医生,又有外科医生;(3)至少有1名主任参加;(4)既有主任,又有外科医生.解:(1)先选内科医生有种选法,再选外科医生有种选法,故选派方法的种数为=120.(2)既有内科医生,又有外科医生,正面思考应包括四种情况,内科医生去1人,2人,3人,4人,易得出选派方法的种数为=246.若从反面考虑,则选派方法的种数为=246.(3)分两类:一是选1名主任有种方法;二是选2名主任有种方法,故至少有1名主任参加的选派方法的种数为=196.若从反面考虑:至少有1名主任参加的选派方法的种数为=196.(4)若选外科主任,则其余可任选,有种选法.若不选外科主任,则必选内科主任,且剩余的四人不能全选内科医生,有种选法.故有选派方法的种数为=191.。
第1课时 排列与排列数公式[A 组 学业达标]1.4·5·6·…·(n-1)·n 等于( ) A .A 4n B .A n -4n C .n !-4!D .A n -3n解析:因为A mn =n(n -1)(n -2)…(n-m +1),所以A n -3n =n(n -1)(n -2)…[n-(n -3)+1]=n·(n-1)·(n-2)·…·6·5·4.答案:D2.将5本不同的数学用书放在同一层书架上,则不同的放法有( ) A .50种 B .60种 C .120种D .90种解析:5本书进行全排列,A 55=120种. 答案:C3.有5名同学被安排在周一至周五值日,已知同学甲只能在周一值日,那么5名同学值日顺序的编排方案共有( )A .12种B .24种C .48种D .120种解析:∵同学甲只能在周一值日,∴除同学甲外的4名同学将在周二至周五值日,∴5名同学值日顺序的编排方案共有A 44=24(种).答案:B4.已知A 2n +1-A 2n =10,则n 的值为( ) A .4 B .5 C .6D .7解析:因为A 2n +1-A 2n =10,则(n +1)n -n(n -1)=10,整理得2n =10,即n =5. 答案:B5.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是( )A .9B .10C .18D .20解析:lg a -lg b =lg a b ,从1,3,5,7,9中任取两个数分别记为a ,b ,共有A 25=20种,其中lg 13=lg3 9,lg31=lg93,故其可得到18种结果.答案:C6.计算A67-A56A45=________.解析:因为A67=7×6×A45,A56=6×A45,所以原式=36A45A45=36.答案:367.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言.(用数字作答)解析:根据题意,得A240=1 560,故全班共写了1 560条毕业留言.答案:1 5608.8种不同的菜种,任选4种种在不同土质的4块地上,有________种不同的种法.(用数字作答) 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地上,则本题即为从8个不同元素中任选4个元素的排列问题.所以不同的种法共有A48=8×7×6×5=1 680(种).答案:1 6809.某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,则一共可以表示多少种不同的信号.解析:第1类,挂1面旗表示信号,有A13种不同方法;第2类,挂2面旗表示信号,有A23种不同方法;第3类,挂3面旗表示信号,有A33种不同方法.根据分类加法计数原理,可以表示的信号共有A13+A23+A33=3+3×2+3×2×1=15(种).10.一条铁路线原有n个车站,为了适应客运需要,新增加了2个车站,客运车票增加了58种,问原有多少个车站?现有多少车站?解析:由题意可知,原有车票的种数是A2n种,现有车票的种数是A2n+2种,∴A2n+2-A2n=58,即(n+2)(n+1)-n(n-1)=58.解得n=14.故原有14个车站,现有16个车站.[B组能力提升]11.将3张不同的电影票全部分给10个人,每人至多一张,则不同的分法种数是( )A.1 260 B.120C.240 D.720解析:相当于3个元素安排在10个位置上,共有A310=720种分法,故选D.答案:D12.下列各式中与排列数A mn 相等的是( ) A.n !n -m +1!B .n(n -1)(n -2)…(n-m) C.nA mn -1n -m +1 D .A 1n A m -1n -1 解析:∵A mn =n !n -m !,而A 1n ·A m -1n -1=n·n -1![n -1-m -1]!=n !n -m !,∴A m n =A 1n ·A m -1n -1.答案:D13.满足不等式A 7nA 5n>12的n 的最小值为________.解析:由排列数公式得n !n -5!n -7!n !>12,即(n -5)(n -6)>12,解得n >9或n <2.又n≥7,所以n >9,又n ∈N *,所以n 的最小值为10. 答案:1014.四张卡片上分别标有数字“2”“0”“1”“1”,则由这四张卡片可组成不同的四位数的个数为________.解析:这四张卡片可组成的四位数是2011、2101、2110、1021、1012、1102、1120、1201、1210共9个. 答案:915.根据要求完成下列各题. (1)计算:A 59+A 49A 610-A 510;(2)解方程 :3A x8=4A x -19.解析:(1)原式=5A 49+A 495A 510-A 510=6A 494A 510=6A 4940A 49=640=320. (2)由排列数公式,原方程可化为3×8!8-x !=4×9!10-x !,化简得3=4×910-x 9-x,即x 2-19x +78=0,解得x 1=6,x 2=13. 因为x≤8,所以原方程的解是x =6.16.(1)求由1,2,3,4这四个数字组成的首位数字是1,且恰有三个相同数字的四位数的个数. (2)从0,1,2,3这四个数字中,每次取出3个不同的数字排成一个三位数,写出其中大于200的所有三位数.解析:(1)本题要求首位数字是1,且恰有三个相同的数字,用树形图表示为:由此可知共有12个.(2)大于200的三位数的首位是2或3,于是大于200的三位数有:201,203,210,213,230,231,301,302,310,312,320,321.第2课时排列的综合应用[A组学业达标]1.A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法有( ) A.60种B.48种C.36种D.24种解析:把A,B视为一人,且B排在A的右边,则本题相当于4人的全排列,故有A44=24种排法.答案:D2.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ) A.192种B.216种C.240种D.288种解析:根据甲、乙的位置要求分类解决,分两类.第一类,甲在最左端,有A55=5×4×3×2×1=120(种)方法;第二类,乙在最左端,有4A44=4×4×3×2×1=96(种)方法.所以共有120+96=216(种)方法.答案:B3.5名男生与5名女生排成一排,男生甲与男生乙之间有且只有2名女生,且女生不排在两端,这样的排列种数为( )A.5 760 B.57 600C.2 880 D.28 800解析:先选2名女生放在男生甲与男生乙之间,并捆绑在一起看作一个大元素,从大元素和另外的3名男生中选2个排在两端,剩下的和女生全排列,故有A22·A25·A24·A55=57 600(种)排法.故选B.答案:B4.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A.144个B.120个C.96个D.72个解析:当五位数的万位为4时,个位可以是0,2,此时满足条件的偶数共有2A34=48(个);当五位数的万位为5时,个位可以是0,2,4,此时满足条件的偶数共有3A34=72(个).所以比40 000大的偶数共有48+72=120(个).答案:B5.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼15飞机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有( )A.12种B.18种C.24种D.48种解析:把甲、乙看作1个元素和另一飞机全排列,调整甲、乙,共有A22·A22种方法,再把丙、丁插入到刚才“两个”元素排列产生的3个空位中,有A23种方法,由分步乘法计数原理可得总的方法种数为A22·A22·A23=24.答案:C6.把5件不同产品摆成一排.若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.解析:先将A,B捆绑在一起,有A22种摆法,再将它们与其他3件产品全排列,有A44种摆法,共有A22A44种摆法.而A,B,C这3件产品在一起,且A,B相邻,A,C相邻有2A33种摆法.故A,B相邻,A,C不相邻的摆法有A22A44-2A33=36(种).答案:367.从班委会的5名成员中选出3名分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种.(用数字作答)解析:文娱委员有3种选法,则安排学习委员、体育委员有A24=12种方法.由分步乘法计数原理知,共有3×12=36种选法.答案:368.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________.解析:5张参观券全部分给4人,分给同一人的2张参观券连号,方法数为:1和2,2和3,3和4,4和5,四种连号,其他号码各为一组,分给4人,共有4×A44=96(种).答案:969.分别求出符合下列要求的不同排法的种数.(1)6名学生排3排,前排1人,中排2人,后排3人;(2)6名学生排成一排,甲不在排头也不在排尾;(3)6人排成一排,甲、乙不相邻.解析:(1)分排与直排一一对应,故排法种数为A66=720.(2)甲不能排头尾,让受特殊限制的甲先选位置,有A14种选法,然后其他5人排,有A55种排法,故排法种数为A14A55=480.(3)甲、乙不相邻,第一步除甲、乙外的其余4人先排好;第二步,甲、乙在已排好的4人的左、右及之间的空位中排,共有A44A25=480(种)排法.10.7名班委中有A,B,C三人,有7种不同的职务,现对7名班委进行职务具体分工.(1)若正、副班长两职只能从A,B,C三人中选两人担任,有多少种分工方案?(2)若正、副班长两职至少要选A,B,C三人中的一人担任,有多少种分工方案?解析:(1)先排正、副班长有A23种方法,再安排其余职务有A55种方法,依分步乘法计数原理,知共有A23A55=720(种)分工方案.(2)7人中任意分工方案有A77种,A,B,C三人中无一人任正、副班长的分工方案有A24A55,因此A,B,C三人中至少有一人任正、副班长的方案有A77-A24A55=3 600(种).[B组能力提升]11.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A.24 B.48C.60 D.72解析:第一步,先排个位,有A13种选择;第二步,排前4位,有A44种选择.由分步乘法计数原理,知有A13·A44=72(个).答案:D12.航天员在进行一项太空实验时,先后要实施6个程序,其中程序B和C都与程序D不相邻,则实验顺序的编排方法共有( )A.216种B.288种C.180种D.144种解析:当B,C相邻,且与D不相邻时,有A33A24A22=144种方法;当B,C不相邻,且都与D不相邻时,有A33A34=144种方法,故共有288种编排方法.答案:B13.将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有________种(用数字作答).解析:按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.当C在左边第1个位置时,有A55种,当C在左边第2个位置时有A24·A33种,当C在左边第3个位置时,有A23·A33+A22·A33种.这三种情况的和为240种,乘以2得480.则不同的排法共有480种.答案:48014.在某艺术馆中展出5件艺术作品,其中不同的书法作品2件,不同的绘画作品2件,标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则展出这5件作品的不同方案有________种.解析:把2件书法作品当作一个元素,与其他3件艺术品进行全排列,有2A44=48种方案.其中,2件绘画作品相邻,有2×2A33=24种方案,则该艺术馆展出这5件作品的不同方案有48-24=24种.答案:2415.某次文艺晚会上共演出8个节目,其中2个唱歌、3个舞蹈、3个曲艺节目,求分别满足下列条件的节目编排方法有多少种?(1)一个唱歌节目开头,另一个放在最后压台;(2)2个唱歌节目互不相邻;(3)2个唱歌节目相邻且3个舞蹈节目不相邻.解析:(1)先排唱歌节目有A22种排法,再排其他节目有A66种排法,所以共有A22·A66=1 440种排法.(2)先排3个舞蹈节目,3个曲艺节目有A66种排法,再从其中7个空(包括两端)中选2个排唱歌节目,有A27种插入方法,所以共有A66·A27=30 240种排法.(3)把2个相邻的唱歌节目看作一个元素,与3个曲艺节目排列共A44种排法,再将3个舞蹈节目插入,共有A35种插入方法,最后将2个唱歌节目互换位置,有A22种排法,故所求排法共有A44·A35·A22=2 880种排法.16.从1到9这9个数字中取出不同的5个数进行排列.问:(1)奇数的位置上是奇数的有多少种排法?(2)取出的奇数必须排在奇数位置上有多少种排法?解析:(1)奇数共5个,奇数位置共有3个;偶数共有4个,偶数位置有2个.第一步先在奇数位置上排上奇数共有A35种排法;第二步再排偶数位置,有4个偶数和余下的2个奇数可以排,排法为A26种,由分步乘法计数原理知,排法种数为A35·A26=1 800.(2)因为偶数位置上不能排奇数,故先排偶数位,排法为A24种,余下的2个偶数与5个奇数全可排在奇数位置上,排法为A37种,由分步乘法计数原理知,排法种数为A24·A37=2 520种.第1课时 组合与组合数公式[A 组 学业达标]1.给出下列问题:①从甲、乙、丙3名同学中选出2名分别去参加两个乡镇的社会调查,有多少种不同的选法? ②有4张电影票,要在7人中确定4人去观看,有多少种不同的选法?③某人射击8枪,击中4枪,且命中的4枪均为2枪连中,则不同的结果有多少种? 其中属于组合问题的个数为( ) A .0 B .1 C .2D .3解析:①与顺序有关,是排列问题;②③均与顺序无关,是组合问题. 答案:C2.计算:C 28+C 38+C 29=( ) A .120 B .240 C .60D .480解析:C 28+C 38+C 29=7×82×1+6×7×83×2×1+8×92×1=120.答案:A3.某校开设A 类选修课3门,B 类选修课5门,一位同学要从中选3门.若要求两类课程中各至少选1门,则不同的选法共有( )A .15种B .30种C .45种D .90种解析:分两类,A 类选修课选1门,B 类选修课选2门,或者A 类选修课选2门,B 类选修课选1门,因此,共有C 13·C 25+C 23·C 15=45(种)选法.答案:C4.方程C x14=C 2x -414的解集为( ) A .{4} B .{14} C .{4,6}D .{14,2}解析:由题意知⎩⎪⎨⎪⎧x =2x -4,2x -4≤14,x≤14,或⎩⎪⎨⎪⎧x =14-2x -4,2x -4≤14,x≤14,解得x =4或6.答案:C5.异面直线a ,b 上分别有4个点和5个点,由这9个点可以确定的平面个数是( ) A .20 B .9 C .C 39D .C 24C 15+C 25C 14解析:分两类:第一类,在直线a 上任取一点,与直线b 可确定C 14个平面;第二类,在直线b 上任取一点,与直线a 可确定C 15个平面.故可确定C 14+C 15=9个不同的平面.答案:B6.某班级要从4名男生、2名女生中派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为________.解析:法一:分类完成.第1类,选派1名女生、3名男生,有C 12·C 34种选派方案;第2类,选派2名女生、2名男生,有C 22·C 24种选派方案.故共有C 12·C 34+C 22·C 24=14(种)不同的选派方案.法二:6人中选派4人的组合数为C 46,其中都选男生的组合数为C 44,所以至少有1名女生的选派方案有C 46-C 44=14(种).答案:147.有4名男医生、3名女医生,从中选出2名男医生、1名女医生组成1个医疗小组,则不同的选法共有________种.解析:从4名男医生中选2人,有C 24种选法,从3名女医生中选1人,有C 13种选法.由分步乘法计数原理知,所求选法种数为C 24C 13=18.答案:188.不等式C 2n -n <5的解集为________. 解析:由C 2n -n <5,得n n -12-n <5,∴n 2-3n -10<0. 解得-2<n <5.由题设条件知n≥2,且n ∈N *, ∴n =2,3,4.故原不等式的解集为{2,3,4}. 答案:{2,3,4}9.(1)解方程:A 3m =6C 4m ; (2)解不等式:C x -18>3C x8. 解析:(1)原方程等价于 m(m -1)(m -2)=6×mm -1m -2m -34×3×2×1,∴4=m -3,解得m =7.(2)由已知得⎩⎪⎨⎪⎧x -1≤8,x≤8,∴x≤8,且x ∈N *,∵C x -18>3C x8,∴8!x -1!9-x !>3×8!x !8-x !.即19-x >3x ,∴x >3(9-x),解得x >274, ∴x =7,8.∴原不等式的解集为{7,8}.10.某餐厅供应饭菜,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上不同的选择,则餐厅至少还需准备多少不同的素菜品种?解析:设餐厅至少还需准备x 种不同的素菜.由题意,得C 25·C 2x ≥200,从而有C 2x ≥20,即x(x -1)≥40.又x≥2且x ∈N *,所以x 的最小值为7.故餐厅至少还需准备7种不同的素菜.[B 组 能力提升]11.从8名女生和4名男生中,抽取3名学生参加某档电视节目,若按性别比例分层抽样,则不同的抽取方法数为( )A .224B .112C .56D .28 解析:由分层抽样知,应从8名女生中抽取2名,从4名男生中抽取1名,所以抽取2名女生和1名男生的方法数为C 28C 14=112.答案:B12.楼道里有12盏灯,为了节约用电,需关掉3盏不相邻的灯,则关灯方案有( )A .72种B .84种C .120种D .168种 解析:需关掉3盏不相邻的灯,即将这3盏灯插入9盏亮着的灯形成的10个空当中,所以关灯方案共有C 310=120(种).答案:C13.方程C x 17-C x 16=C 2x +216的解集是________.解析:因为C x 17=C x 16+C x -116,所以C x -116=C 2x +216,由组合数公式的性质,得x -1=2x +2或x -1+2x +2=16,解得x 1=-3(舍去),x 2=5.答案:{5}14.从4台甲型电视机和5台乙型电视机中任意取出3台,其中至少有甲型和乙型电视机各1台,则不同的取法有________种.解析:根据结果分类:第一类,两台甲型机,有C 24·C 15=30(种);第二类,两台乙型机,有C 14·C 25=40(种).根据分类加法计数原理,共有C 24·C 15+C 14·C 25=70(种)不同的取法.答案:7015.已知C 4n ,C 5n ,C 6n 成等差数列,求C 12n 的值.解析:由已知得2C 5n =C 4n +C 6n ,所以2·n !5!n -5!=n !4!n -4!+n !6!n -6!, 整理得n 2-21n +98=0,解得n =7或n =14,要求C 12n 的值,故n≥12,所以n =14,于是C 1214=C 214=14×132×1=91. 16.由13个人组成的课外活动小组,其中5个人只会跳舞,5个人只会唱歌,3个人既会唱歌也会跳舞,若从中选出4个会跳舞和4个会唱歌的人去演节目,共有多少种不同的选法?解析:设既会唱歌也会跳舞的人为“多面手”第一类,选会唱歌的4人无多面手:有C 45C 48=350;第二类,选会唱歌的4人中有一个多面手:有C 35C 13C 47=1 050;第三类,选会唱歌的4人中有2个多面手:有C 25C 23C 46=450;第四类,选会唱歌的4人中有3个多面手:有C 15C 33C 45=25.由分类加法计数原理,共有350+1 050+450+25=1 875种.第2课时组合的综合应用[A组学业达标]1.某中学从4名男生和3名女生中推荐4人参加某高校自主招生考试,若这4人中必须既有男生又有女生,则不同的选法共有( )A.140种B.120种C.35种D.34种解析:从7人中选4人共有C47=35(种)方法.又4名全是男生的选法有C44=1(种).故选4人既有男生又有女生的选法种数为35-1=34.答案:D2.平面内有4个红点,6个蓝点,其中只有一个红点和两个蓝点共线,其余任三点不共线,过这十个点中的任两点所确定的直线中,至少过一红点的直线的条数是( )A.28 B.29C.30 D.27解析:可分两类:第一类,红点连蓝点有C14C16-1=23(条);第二类,红点连红点有C24=6(条),所以共有29条.故选B.答案:B3.某科技小组有6名学生,现从中选出3人去参观展览,至少有一名女生入选的不同选法有16种,则该小组中的女生人数为( )A.2 B.3C.4 D.5解析:设男生人数为x,则女生有(6-x)人.依题意:C36-C3x=16.解得x=4,故女生有2人.答案:A4.有5本不同的教科书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是( )A.24 B.48C.72 D.96解析:据题意可先摆放2本语文书,当1本物理书在2本语文书之间时,只需将2本数学书插在前3本书形成的4个空中即可.此时共有A22A24种摆放方法;当1本物理书放在2本语文书一侧时,共有A22A12C12C13种不同的摆放方法.由分类加法计数原理可得共有A22A24+A22A12C12C13=48种摆放方法.答案:B5.将标号分别为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中将标号为1,2的卡片放入同一信封中,则不同的放法共有( )A.12种B.18种C.36种D.54种解析:先将1,2捆绑后放入信封中,有C13种方法,再将剩余的4张卡片放入另外两个信封中,有C24C22种方法,所以共有C13C24C22=18种方法.答案:B6.从7名志愿者中安排6人在周六、周日两天参加社区公益活动,若每天安排3人,则不同的安排方案共有________种.(用数字作答)解析:C67C36C33A22·A22=140.答案:1407.某校开设9门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门,学校规定每位同学选修4门,共有________种不同的选修方案.(用数字作答)解析:分两类:①A、B、C均不选,有C46=15.②A、B、C中选一门,有C13C36=60.∴共有15+60=75种不同选修方案.答案:758.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有________种.(用数字作答)解析:①不选甲、乙,则N1=A44=24(种).②只选甲,则N2=C34C13A33=72(种).③只选乙,则N3=C34C13A33=72(种).④选甲、乙,则N4=C24A23A22=72(种).故N=N1+N2+N3+N4=240(种).答案:2409.某市工商局对35件商品进行抽样检查,鉴定结果有15件假货,现从35件商品中选取3件.(1)恰有2件假货在内的不同取法有多少种?(2)至少有2件假货在内的不同取法有多少种?(3)至多有2件假货在内的不同取法有多少种?解析:(1)从20件真货中选取1件,从15件假货中选取2件,有C120C215=2 100种不同的取法.所以恰有2件假货在内的不同取法有2 100种.(2)选取2件假货有C120C215种,选取3件假货有C315种,共有C120C215+C315=2 555种不同的取法.(3)任意选取3件的种数为C335,因此符合题意的选取方式有C335-C315=6 090(种).所以至多有2件假货在内的不同的取法有6 090种.10.6本不同的书,分给甲、乙、丙三人,每人至少一本,有多少不同的分法.解析:先分组再分配分三类:第一类,“2,2,2”类(先平均分组再分配)C26C24C22·A33=90(种)A33第二类,“1,2,3”类(先非平均分组再分配)C16C25C33·A33=360(种)第三类,“1,1,4”类(先部分平均分组,再分配)C16C15C44·A33=90(种)A22共有90+360+90=540(种).[B组能力提升]11.如果把个位数是1,且恰好有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有( )A.9个B.3个C.12个D.6个解析:当重复数字是1时,有C13·C13个“好数”;当重复数字不是1时,有C13个“好数”.由分类加法计数原理,得“好数”有C13·C13+C13=12个.答案:C12.现有12张不同的卡片,其中红色、黄色、蓝色、绿色卡片各三张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同的取法种数为( )A.135 B.172C.189 D.162解析:不考虑特殊情况,共有C312种取法,取三张相同颜色的卡片,有4种取法,只取两张红色卡片(另一张非红色),共有C23C19种取法.所求取法种数为C312-4-C23C19=189.答案:C13.5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1,2号中至少有1名新队员的排法有________种.解析:当入选的3名队员为2名老队员1名新队员时,有C13C12A22=12种排法;当入选的3名队员为2名新队员1名老队员时,有C12C23A33=36种排法.故共有12+36=48种排法.答案:4814.现有6张风景区门票分配给6位游客,若其中A,B风景区门票各2张,C,D风景区门票各1张,则不同的分配方案共有________种.(用数字作答).解析:从6位游客中选2人去A风景区,有C26种方法,从余下4位游客中选2人去B风景区,有C24种方法,余下2人去C,D风景区,有A22种方法,所以分配方案共有C26C24A22=180(种).答案:18015.从1到6这6个数字中,取2个偶数和2个奇数组成没有重复数字的四位数.试问:(1)能组成多少个不同的四位数?(2)四位数中,2个偶数排在一起的有几个?(3)2个偶数不相邻的四位数有几个?(所得结果均用数值表示).解析:(1)易知四位数共有C23C23A44=216(个).(2)上述四位数中,偶数排在一起的有C23C23A33A22=108(个).(3)由(1)(2)知两个偶数不相邻的四位数有216-108=108(个).16.10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求各有多少种情况出现下列结果:(1)4只鞋子没有成双的;(2)4只鞋子恰有两双;(3)4只鞋子有2只成双,另2只不成双.解析:(1)从10双鞋子中选取4双,有C410种不同选法,每双鞋子中各取一只,分别有2种取法,根据分步乘法计数原理,选取种数为N=C410×24=3 360(种).(2)从10双鞋子中选2双有C210种取法,即有45种不同取法.(3)先选取一双有C110种选法,再从9双鞋中选取2双有C29种选法,每双鞋只取一只各有2种取法,根据分步乘法计数原理,不同取法为N=C110C29×22=1 440种.。
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.5名同学去听同时进行的4个课外知识讲座,每个同学可自由选择,且必须选择一个知识讲座,则不同的选择种数是( )
A.54B.45
C.5×4×3×2 D.5×4
【解析】5名同学每人都选一个课外知识讲座,则每人都有4种选择,由分步乘法计数原理知共有4×4×4×4×4=45种选择.
【答案】 B
2.已知集合M={1,-2,3},N={-4,5,6,7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是( )
A.18 B.17
C.16 D.10
【解析】分两类.
第一类:M中的元素作横坐标,N中的元素作纵坐标,则在第一、二象限内的点有3×3=9(个);
第二类:N中的元素作横坐标,M中的元素作纵坐标,则在第一、二象限内的点有4×2=8(个).
由分类加法计数原理,共有9+8=17(个)点在第一、二象限.
【答案】 B
3.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则四张贺年卡不同的分配方式有( )
A.12种B.9种C.8种D.6种
【解析】设四张贺卡分别记为A,B,C,D.由题意,某人(不妨设A卡的供卡人)取卡的情况有3种,据此将卡的分配方式分为三类,对于每一类,其他人依次取卡分步进行,为了避免重复或遗漏,我们用“树状图”表示如下:BADCCDADAC CADBDABDBA DABCCABCBA
所以共有9种不同的分配方式,故选B.
【答案】 B
图1-1-8
4.将1,2,3,…,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大.当3,4固定在图1-1-8中的位置时,填写空格的方法为( )
A.6种B.12种
C.18种D.24种
【解析】因为每一行从左到右,每一列从上到下分别依次增大,1,2,9只有一种填法,5只能填在右上角或左下角,5填好后与之相邻的空格可填6,7,8任一
个;余下两个数字按从小到大只有一种方法.共有2×3=6种结果,故选A.
【答案】 A
5.体育老师把9个相同的足球放入编号为1,2,3的三个箱子中,要求每个箱子放球的个数不少于其编号,则不同的放球方法有( ) 【97270006】A.8种B.10种
C.12种D.16种
【解析】首先在三个箱子中放入个数与编号相同的球,
这样剩下三个足球,这三个足球可以随意放置,
第一种方法,可以在每一个箱子中放一个,有1种结果;
第二种方法,可以把球分成两份,1和2,这两份在三个位置,有3×2=6种结果;第三种方法,可以把三个球都放到一个箱子中,有3种结果.综上可知共有1+6+3=10种结果.
【答案】 B
二、填空题
6.小张正在玩“QQ农场”游戏,他计划从仓库里的玉米、土豆、茄子、辣椒、胡萝卜这5种种子中选出4种分别种植在四块不同的空地上(一块空地只能种植一种作物),若小张已决定在第一块空地上种茄子或辣椒,则不同的种植方案共有________种.
【解析】当第一块地种茄子时,有4×3×2=24种不同的种法;当第一块地种辣椒时,有4×3×2=24种不同的种法,故共有48种不同的种植方案.【答案】48
7.从集合{0,1,2,3,5,7,11}中任取3个不同元素分别作为直线方程Ax+By+C。