高三一轮复习每日一练6
- 格式:doc
- 大小:27.00 KB
- 文档页数:1
第三周[周一]1.(2023·长春模拟)已知a ∈R ,i 为虚数单位,若a -i3+i a 等于()A .-3 B.13C .3D .-13答案A 解析因为a -i 3+i =(a -i )(3-i )(3+i )(3-i )=3a -1-(a +3)i 10=3a -110-a +310i 为实数,则-a +310=0,即a +3=0,所以a =-3.2.(2023·青岛模拟)已知函数f (x )=x 3-12sin x ,若θa =f ((cos θ)sin θ),b =f ((sin θ)sin θ),c=-fa ,b ,c 的大小关系为()A .a >b >cB .b >a >cC .a >c >bD .c >a >b答案A解析因为f (-x )=(-x )3-12sin(-x )3-12sin f (x ),所以f (x )在R 上是奇函数.所以c =-f f 对f (x )=x 3-12sin x 求导得,f ′(x )=3x 2-12cos x ,令g (x )=3x 2-12cos x ,则g ′(x )=6x +12sin x ,当12<x <1时,g ′(x )>0,所以g (x )则当12<x <1时,g (x )>=34-12cos 12>34-12×1>0,即f ′(x )>0,所以f (x )因为θ所以cos θ>12>sin θ,因为y =xsin θ(0,+∞)上单调递增,所以(cos θ)sin θ>(sin θ)sin θ.令h (x )=x ln x +ln 2,则h ′(x )=ln x +1,所以当0<x <1e 时,h ′(x )<0,h (x )单调递减;当x >1e 时,h ′(x )>0,h (x )单调递增.所以h (x )≥=1e ln 1e +ln 2=ln 2-1e ,而2e >e ,即2>1ee ,所以ln 2>1e ,即ln 2-1e >0.所以x ln x >-ln 2,即x x >12,则(sin θ)sin θ>12,所以(cos θ)sin θ>(sin θ)sin θ>12且(cos θ)sin θ<1,所以f ((cos θ)sin θ)>f ((sinθ)sin θ)>即a >b >c .3.(多选)(2023·锦州模拟)如果有限数列{a n }满足a i =a n -i +1(i =1,2,…,n ),则称其为“对称数列”,设{b n }是项数为2k -1(k ∈N *)的“对称数列”,其中b k ,b k +1,…,b 2k -1是首项为50,公差为-4的等差数列,则()A .若k =10,则b 1=10B .若k =10,则{b n }所有项的和为590C.当k=13时,{b n}所有项的和最大D.{b n}所有项的和可能为0答案BC解析{b n}的和S2k-1=50k-k(k-1)2×4×2-50=-4k2+104k-50=-4(k-13)2+626,对于选项A,k=10,则b1=b19=50-4×9=14,故A错误;对于选项B,k=10,则所有项的和为-4×9+626=590,故B正确;对于选项C,{b n}的和S2k-1=-4(k-13)2+626,当k=13时,和最大,故C正确;对于选项D,S2k-1=-4k2+104k-50=0,方程无正整数解,故D错误.4.(2023·大连模拟)甲、乙、丙三人每次从写有整数m,n,k(0<m<n<k)的三张卡片中各摸出一张,并按卡片上的数字取出相同数目的石子,放回卡片算做完一次游戏,然后再继续进行,当他们做了N(N≥2)次游戏后,甲有22粒石子,乙有9粒石子,丙有9粒石子,并且知道最后一次丙摸的是k,那么N=________.答案5解析N次游戏所取卡片数字总和为N(m+n+k)=22+9+9=40,又m+n+k≥1+2+3=6,且m+n+k为40的因数,所以(m+n+k)min=8,且N=2,4,5.当N=2时,m+n+k=20,因为丙得9粒石子,则k≤8,所以甲得石子数小于16,不符合题意;当N=4时,m+n+k=10,因为丙得9粒石子,则k≤6,为了使甲获得石子数最多,k=6,m=1,n=3,此时甲最多得21粒石子,不符合题意;当N=5时,m+n+k=8,因为丙得9粒石子,则k≤5,为了使甲获得石子数最多,k=5,m=1,n=2,此时甲最多得22粒石子,甲、乙、丙三人每次得石子数如表所示,第1次第2次第3次第4次第5次甲55552乙22221丙11115故做了5次游戏,N=5.5.(2023·大连模拟)记△ABC的内角A,B,C的对边分别为a,b,c,已知bc(1+cos A)=4a2.(1)证明:b+c=3a;(2)若a=2,cos A=79,角B的角平分线与边AC交于点D,求BD的长.(1)证明因为bc (1+cos A )=4a 2,所以4a 2,所以bc +b 2+c 2-a 22=4a 2,即(b +c )2=9a 2,所以b +c =3a .(2)解如图,由余弦定理得a 2=b 2+c 2-2bc cos A ,即22=b 2+c 2-2bc ·79=(b +c )2-2bc -149bc ,又b +c =3a =6,所以bc =9,b =c =3,由角平分线定理可得AB BC =AD DC =32,所以AD =35×3=95,在△ABD 中,由余弦定理得BD 2+32-2×953×79,所以BD =465.[周二]1.(2023·娄底模拟)某地春节联欢晚会以“欢乐中国年”为主题,突出时代性、人民性、创新性,节目内容丰富多彩,呈现形式新颖多样.某小区的5个家庭买了8张连号的门票,其中甲家庭需要3张连号的门票,乙家庭需要2张连号的门票,剩余的3张随机分到剩余的3个家庭即可,则这8张门票不同的分配方法的种数为()A .48B .72C .120D .240答案C解析若甲、乙2个家庭的5张票连号,则有A 22·A 44=48(种)不同的分配方法,若甲、乙2个家庭的5张票不连号,则有A 33·A 24=72(种)不同的分配方法,综上,这8张门票共有48+72=120(种)不同的分配方法.2.(2023·保山模拟)折纸艺术起源于中国.折纸艺术是用一张完整的纸用折叠的方法而成就的各种人物、动物或草木的形态的方法.折纸与自然科学结合在一起,不仅成为建筑学院的教具,还发展出了折纸几何学,成为现代几何学的一个分支,是一项具有艺术性的思维活动.现有一张半径为6,圆心为O 的圆形纸片,在圆内选定一点P 且|OP |=4,将圆翻折一角,使圆周正好过点P ,把纸片展开,并留下一条折痕,折痕上到O ,P 两点距离之和最小的点为M ,如此反复,就能得到越来越多的折痕,设点M 的轨迹为曲线C ,在C 上任取一点Q ,则△QOP 面积的最大值是()A .22B .25C .23D .4答案B解析如图所示,设折痕为直线l ,点P 与P ′关于折痕对称,l ∩OP ′=M ,在l 上任取一点B ,由垂直平分线的性质可知|PB |+|BO |=|BP ′|+|BO |≥|OM |+|MP ′|=|OP ′|,当且仅当M ,B 重合时取等号.即折痕上到O ,P 两点距离之和最小的点为M ,且|PM |+|MO |=|OP ′|=6>|OP |=4.故M 的轨迹是以O ,P 为焦点,且长轴长为2a =6的椭圆,焦距2c =|OP |=4,c =2,故短半轴长b =5,所以当Q 为椭圆上(下)顶点时,△QOP 的面积最大,最大值为12×2c ×b =2 5.3.(多选)(2023·湛江模拟)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点A (x 1,y 1)为双曲线C 在第一象限的右支上一点,以A 为切点作双曲线C 的切线交x 轴于点B (x 2,0),则下列结论正确的有()A .0<x 2<aB .∠F 1AB =∠F 2ABC .x 1x 2=abD .若cos ∠F 1AF 2=13,且F 1B —→=3BF 2—→,则双曲线C 的离心率e =2答案AB解析由x 2a 2-y 2b2=1,得y =b 2a2x 2-b 2(x >a ),所以y ′=b 2a 2x b 2a2x 2-b 2,则在点A (x 1,y 1)处的切线斜率为y ′=b 2a 2x 1b 2a 2x 21-b 2=b 2x 1a 2y 1,所以在点A (x 1,y 1)处的切线方程为y -y 1=b 2x 1a 2y 1(x -x 1),又x 21a 2-y 21b 2=1,化简得切线方程为x 1x a 2-y 1yb 2=1,所以x 1x 2a 2-y 1×0b2=1,所以x 1x 2=a 2,故C 错误;由x 1x 2=a 2,得x 2=a 2x 1,又x 1>a ,所以0<x 2<a ,故A正确;由F 1(-c ,0),F 2(c ,0),得|F 1B |=a 2x 1+c ,|BF 2|=c -a 2x 1,故|F 1B ||BF 2|=a 2x 1+cc -a 2x 1=cx 1+a 2cx 1-a 2,由x 21a 2-y 21b 2=1,得y 21=b 2x 21a 2-b 2,所以|AF 1|=(x 1+c )2+y 21=(x 1+c )2+b2x 21a2-b 2=c 2a2x 21+2cx 1+a 2=cax 1+a ,所以|AF 2|=|AF 1|-2a =cax 1-a ,所以|AF 1||AF 2|=ca x 1+aca x 1-a =cx 1+a 2cx 1-a 2=|F 1B ||BF 2|,设点A 到x 轴的距离为h ,则1AF B S △=12|F 1B |h=12|AF 1||AB |sin ∠F 1AB ,2AF B S △=12|F 2B |h=12|AF 2||AB |sin ∠F 2AB ,12AF BAF BS S △△=|F 1B ||F 2B |=|AF 1|sin ∠F 1AB|AF 2|sin ∠F 2AB,又|AF 1||AF 2|=|F 1B ||BF 2|,所以∠F 1AB =∠F 2AB ,故B 正确;由上可得F 1B —→c ,BF 2—→-a 2x 1,因为F 1B →=3BF 2—→,则a2x 1+c =得x 1=2a 2c,|AF 1|=c a x 1+a =c a ×2a 2c +a =3a ,|AF 2|=c a x 1-a =c a ×2a 2c -a =a ,所以cos ∠F 1AF 2=|AF 1|2+|AF 2|2-|F 1F 2|22|AF 1|·|AF 2|=9a 2+a 2-4c 26a 2=53-23e 2=13,解得e =2,故D 错误.4.(2023·白山模拟)在正四棱锥S -ABCD 中,M 为SC 的中点,过AM 作截面将该四棱锥分成上、下两部分,记上、下两部分的体积分别为V 1,V 2,则V2V 1的最大值是________.答案2解析记正四棱锥S -ABCD 的体积为V ,求V2V 1的最大值,由V 1+V 2=V 为定值知,只需求V 1的最小值,设过AM 的截面分别交SB 和SD 于E ,F ,平面SAC 与平面SBD 的交线为SO ,SO 与AM 相交于G ,如图,则SG =23SO ,令SE SB =x ,SFSD =y ,则SG →=13(SD →+SB →)=13x SE →+13y SF →,即有13x +13y=1,V 1=V S -AFM +V S -AEM =V F -SAM +V E -SAM =SF SD ·V D -SAM +SESB·V B -SAM =y ·12V D -SAC +x ·12V B -SAC=V4(x +y )=V4(x +y+y x +≥V 3,当且仅当x =y =23时取等号,此时V 2V 1=V -V 1V 1=VV 1-1≤V V 3-1=2,所以V 2V 1的最大值是2.5.(2023·济南模拟)已知数列{a n }的前n 项和S n =2n +1-2,数列{b n }满足b n =log 2a n .(1)求数列{a n },{b n }的通项公式;(2)由a n ,b n 构成的n ×n 阶数阵如图所示,求该数阵中所有项的和T n .1b 1,a 1b 2,a 1b 3,…,a 12b 1,a 2b 2,a 2b 3,…,a 23b 1,a 3b 2,a 3b 3,…,a 3…n b 1,a n b 2,a n b 3,…,a n 解(1)因为S n =2n +1-2,当n =1时,S 1=22-2=2,即a 1=2,当n ≥2时,S n -1=2n -2,所以S n -S n -1=2n +1-2-(2n -2),即a n =2n ,经检验,当n =1时,a n =2n 也成立,所以a n =2n ,则b n =log 2a n =log 22n =n .(2)由数阵可知T n =a 1(b 1+b 2+…+b n )+a 2(b 1+b 2+…+b n )+…+a n (b 1+b 2+…+b n )=(a 1+a 2+…+a n )(b 1+b 2+…+b n ),因为S n =2n +1-2,b 1+b 2+…+b n =1+2+…+n =n (1+n )2=n 2+n2,所以T n =(2n +1-2)·n 2+n 2=(2n -1)·(n 2+n ).[周三]1.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若A +B =2π3,a =23,c =5,则sin A等于()A.45B.35C.34D.23答案B解析因为A +B =2π3,所以C =π3,由正弦定理得a sin A =c sin C ,即23sin A =5sin π3,所以sin A =35.2.已知A ,B ,P 是直线l 上不同的三点,点O 在直线l 外,若OP →=mAP →+(2m -3)OB →(m ∈R ),则|PB →||PA →|等于()A .2 B.12C .3D.13答案A 解析∵AP →=OP →-OA →,OP →=mAP →+(2m -3)OB →=m (OP →-OA →)+(2m -3)OB →,整理得(m -1)OP →=mOA →+(3-2m )OB →,当m =1时,0=OA →+OB →显然不成立,故m ≠1,∴OP →=m m -1OA →+3-2m m -1OB →,∵A ,B ,P 是直线l 上不同的三点,∴m m -1+3-2m m -1=1,解得m =2,∴OP →=2OA →-OB →,设PB →=λPA →,λ≠1,∴OB →-OP →=λ(OA →-OP →),∴OP →=λλ-1OA →-1λ-1OB →,∴λλ-1=2,解得λ=2,即|PB →||PA →|=2.3.(多选)(2023·保山模拟)已知函数f 3g (x )的图象关于直线x =π3对称,若f (x )+g (x )=sin x ,则()A .函数f (x )为奇函数B .函数g (x )的最大值是32C .函数f (x )的图象关于直线x =-π6对称D .函数f (x )的最小值为-32答案BC解析因为f3所以f-x )3f 3令t =x 3+π3,则f f (t ),即f f (x ),由g (x )的图象关于直线x =π3对称,可得g (x ),-f (x )+g (x )=f=联立f (x )+g (x )=sin x ,得g (x )=32sinf (x )=12sin 故函数f (x )不是奇函数,函数g (x )的最大值是32,函数f (x )的图象关于直线x =-π6对称,函数f (x )的最小值为-12.4.(2023·鞍山质检)冬季两项是冬奥会的项目之一,是把越野滑雪和射击两种不同特点的竞赛项目结合在一起进行的运动,其中冬季两项男子个人赛,选手需要携带枪支和20发子弹,每滑行4千米射击1次,共射击4次,每次5发子弹,若每有1发子弹没命中,则被罚时1分钟,总用时最少者获胜.已知某男选手在一次比赛中共被罚时3分钟,假设其射击时每发子弹命中的概率都相同,且每发子弹是否命中相互独立,记事件A 为其在前两次射击中没有被罚时,事件B 为其在第4次射击中被罚时2分钟,那么P (A |B )=________.答案13解析由题意得P (B )=C 13C 15C 25C 320,P (AB )=C 15C 25C 320,∴P (A |B )=P (AB )P (B )=C 15C 25C 320÷C 13C 15C 25C 320=13.5.(2023·延边模拟)如图1,在△ABC 中,D ,E 分别为AB ,AC 的中点,O 为DE 的中点,AB =AC =25,BC =4.将△ADE 沿DE 翻折到△A 1DE 的位置,使得平面A 1DE ⊥平面BCED ,如图2.(1)求证:A 1O ⊥BD ;(2)求直线A 1C 和平面A 1BD 所成角的正弦值;(3)若点F 在A 1C 上,是否存在点F ,使得直线DF 和BC 所成角的余弦值为357若存在,求出A 1FA 1C的值;若不存在,请说明理由.(1)证明因为在△ABC 中,D ,E 分别为AB ,AC 的中点,所以DE ∥BC ,AD =AE .所以A 1D =A 1E ,又O 为DE 的中点,所以A 1O ⊥DE .因为平面A 1DE ⊥平面BCED ,平面A 1DE ∩平面BCED =DE ,且A 1O ⊂平面A 1DE ,所以A 1O ⊥平面BCED ,又BD ⊂平面BCED ,所以A 1O ⊥BD .(2)解取BC 的中点G ,连接OG ,所以OE ⊥OG .由(1)得A 1O ⊥OE ,A 1O ⊥OG .以O 为原点,OG ,OE ,OA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.由题意得,A 1(0,0,2),B (2,-2,0),C (2,2,0),D (0,-1,0).所以A 1B —→=(2,-2,-2),A 1D —→=(0,-1,-2),A 1C —→=(2,2,-2).设平面A 1BD 的法向量为n =(x ,y ,z ).n ·A 1B —→=0,n ·A 1D —→=0,2x -2y -2z =0,-y -2z =0.令x =1,则y =2,z =-1,所以n =(1,2,-1).设直线A 1C 和平面A 1BD 所成的角为θ,则sin θ=|cos 〈n ,A 1C —→〉|=|n ·A 1C —→||n ||A 1C —→|=|2+4+2|1+4+1·4+4+4=223故所求角的正弦值为223.(3)解存在点F 符合题意.设A 1F —→=λA 1C —→,其中λ∈[0,1].设F (x 1,y 1,z 1),则有(x 1,y 1,z 1-2)=(2λ,2λ,-2λ),所以x 1=2λ,y 1=2λ,z 1=2-2λ,从而F (2λ,2λ,2-2λ),所以DF →=(2λ,2λ+1,2-2λ),又BC →=(0,4,0),所以|cos 〈DF →,BC →〉|=|DF →·BC →||DF →||BC →|=4|2λ+1|4(2λ)2+(2λ+1)2+(2-2λ)2=357,整理得16λ2-24λ+9=0,解得λ=34,所以线段A 1C 上存在点F 符合题意,且A 1F A 1C =34.[周四]1.(2023·青岛模拟)已知全集U =R ,A ={x |3<x <7},B ={x ||x -2|<4},则图中阴影部分表示的集合为()A .{x |-2<x ≤3}B .{x |-2<x <3}C .{-1,0,1,2}D .{-1,0,1,2,3}答案A解析|x -2|<4⇒-4<x -2<4⇒-2<x <6,∴B ={x |-2<x <6}.则A ∪B ={x |-2<x <7},图中阴影部分为∁(A ∪B )A ={x |-2<x ≤3}.2.(2023·郴州、湘潭联考)已知圆台的上、下底面的圆周都在半径为2的球面上,圆台的下底面过球心,上底面半径为1,则圆台的体积为()A.53π3B .53πC.73π3D .73π答案C解析设圆台的上底面的圆心为O 1,下底面的圆心为O ,点A 为上底面圆周上任意一点,则O 1A =1,设圆台的高为h ,球的半径为R =OA =2,则h =OO 1=R 2-O 1A 2=4-12=3,所以圆台的体积V =13(4π+4π·π+π)×3=73π3.3.(多选)(2023·白山模拟)某校抽取了某班20名学生的化学成绩,并将他们的成绩制成如下所示的表格.成绩60657075808590人数2335421下列结论正确的是()A .这20人成绩的众数为75B .这20人成绩的极差为30C .这20人成绩的25%分位数为65D .这20人成绩的平均数为75答案AB解析根据表格可知,这20人成绩的众数为75,故A 正确;极差为90-60=30,故B 正确;20×25%=5,所以25%分位数为12×(65+70)=67.5,故C 错误;平均数为60×2+65×3+70×3+75×5+80×4+85×2+9020=74,故D错误.4.已知数列{a n}是各项均为正数的等比数列,S n是它的前n项和,若a3a5=64,且a5+2a6=8,则S6=______.答案126解析设正项等比数列{a n}的公比为q(q>0),由a3a5=64,得a24=a3a5=64,而a4>0,解得a4=8,又a5+2a6=8,则a4q+2a4q2=8,于是2q2+q-1=0,而q>0,解得q=12,a1=a4q3=64,所以S61-12126.5.(2023·大连模拟)国学小组有编号为1,2,3,…,n的n位同学,现在有两个选择题,每人答对第一题的概率为23,答对第二题的概率为12,每个同学的答题过程都是相互独立的,比赛规则如下:①按编号由小到大的顺序依次进行,第1号同学开始第1轮出赛,先答第一题;②若第i(i=1,2,3,…,n-1)号同学未答对第一题,则第i轮比赛失败,由第i+1号同学继续比赛;③若第i(i=1,2,3,…,n-1)号同学答对第一题,则再答第二题,若该同学答对第二题,则比赛在第i轮结束;若该同学未答对第二题,则第i轮比赛失败,由第i+1号同学继续答第二题,且以后比赛的同学不答第一题;④若比赛进行到了第n轮,则不管第n号同学答题情况,比赛结束.(1)令随机变量X n表示n名同学在第X n轮比赛结束,当n=3时,求随机变量X3的分布列;(2)若把比赛规则③改为:若第i(i=1,2,3,…,n-1)号同学未答对第二题,则第i轮比赛失败,第i+1号同学重新从第一题开始作答.令随机变量Y n表示n名挑战者在第Y n轮比赛结束.①求随机变量Y n(n∈N*,n≥2)的分布列;②证明:随机变量Y n的数学期望E(Y n)单调递增,且小于3.(1)解由题设,X3的可能取值为1,2,3,P(X3=1)=23×12=13,P(X3=2)=23×12×12+13×23×12=518,P(X3=3)=1-13-518=718,因此X3的分布列为X3123P13518718(2)①解Y n 的可能取值为1,2,…,n ,每位同学两题都答对的概率为p =23×12=13,则答题失败的概率为1-23×12=23,所以当Y n =k (1≤k ≤n -1,k ∈N *)时,P (Y n =k)-1×13;当Y n =n 时,P (Y n =n)-1,故Y n 的分布列为②证明由①知,E (Y n )=错误-1×13+-1(n ∈N *,n ≥2).E(Y n +1)-E (Y n )=-1×13+(n +--1>0,故E (Y n )单调递增.又E (Y 2)=53,所以E (Y n)=E (Y 2)+[E (Y 3)-E (Y 2)]+[E (Y 4)-E (Y 3)]+…+[E (Y n )-E (Y n -1)],所以E (Y n )=53++…-1=531-233-2-1<3,故E (Y 2)<E (Y 3)<E (Y 4)<E (Y 5)<…<E (Y n )<3.[周五]1.(2023·淄博模拟)已知集合A ={x |2x >1},B ={x |ln x >1},则下列集合为空集的是()A .A ∩(∁RB ) B.(∁R A )∩BC .A ∩B D.(∁R A )∩(∁R B )答案B解析集合A ={x |2x >1}={x |x >0},集合B={x|ln x>1}={x|x>e},所以∁R A={x|x≤0},∁R B={x|x≤e},对于A,A∩(∁R B)={x|0<x≤e},故选项A不满足题意;对于B,(∁R A)∩B=∅,故选项B满足题意;对于C,A∩B={x|x>e},故选项C不满足题意;对于D,(∁R A)∩(∁R B)={x|x≤0},故选项D不满足题意.2.已知函数f(x)的定义域为R,f(x+1)为奇函数,且对∀x∈R,f(x+4)=f(-x)恒成立,则下列选项中不正确的是()A.f(x)为偶函数B.f(3)=0C.f fD.f(x)是以8为周期的函数答案D解析因为f(x+1)为奇函数,所以f(1-x)=-f(1+x)x+2)=-f(-x),2-x)=-f(x),又f(x+4)=f(-x),所以f(2+x)=f(2-x),故-f(-x)=-f(x),所以f(-x)=f(x),f(x)为偶函数,A正确;f(x+1)为奇函数,所以f(1)=0,又f(2+x)=f(2-x),所以f(3)=f(1)=0,B正确;f f f(x)的图象关于点(1,0)对称,所以f f所以f f C正确;又f(x+4)=f(-x)=f(x),所以f(x)是以4为周期的函数,D错误.3.(多选)(2023·邵阳模拟)若函数f(x)=2cosωx(cosωx-sinωx)-1(ω>0)的最小正周期为π,则()A.f=-62B.f(x)在π2,3π4上单调递增C.f(x)在0,5π2内有5个零点D .f (x )在-π4,π4上的值域为[-1,1]答案BC解析f (x )=2cos ωx (cos ωx -sin ωx )-1=2cos 2ωx -2cos ωx sin ωx -1=cos 2ωx -sin 2ωx =2cos ωx 由最小正周期为π,可得π=2π2ω,解得ω=1,故f (x )=2cos x对于A ,f =2cos -π12+=2cosπ6=62,故A 错误;对于B ,当x ∈π2,3π4时,2x +π4∈5π4,7π4⊆[π,2π],此时f (x )单调递增,故B 正确;对于C ,令f (x )=2cos x 0,即x 0,所以2x +π4=π2+k π,k ∈Z ,即x =π8+k π2,k ∈Z ,当x ∈0,5π2时,满足要求的有x =π8,x =5π8,x =9π8,x =13π8,x =17π8,故有5个零点,故C 正确;对于D ,当x ∈-π4,π4时,2x +π4∈-π4,3π4,则x ∈-22,1,故f (x )∈[-1,2],所以D 错误.4.(2023·齐齐哈尔模拟)一组数据由8个数组成,将其中一个数由4改为2,另一个数由6改为8,其余数不变,得到新的一组数据,则新数据的方差相比原数据的方差的增加值为________.答案2解析一个数由4改为2,另一个数由6改为8,故该组数据的平均数x 不变,设没有改变的6个数分别为x 1,x 2,…,x 6,原数据的方差s 21=18[(x 1-x )2+(x 2-x )2+…+(x 6-x )2+(4-x )2+(6-x )2],新数据的方差s 22=18[(x 1-x )2+(x 2-x )2+…+(x 6-x )2+(2-x )2+(8-x )2],所以s 22-s 21=18[(2-x )2+(8-x )2-(4-x )2-(6-x )2]=2.5.(2023·苏州调研)已知抛物线y 2=a 2x 的焦点也是离心率为32的椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点F .(1)求抛物线与椭圆的标准方程;(2)设过点F 的直线l 交抛物线于A ,B 两点,交椭圆于C ,D 两点,且A 在B 左侧,C 在D 左侧,A 在C 左侧.设r =|AC |,s =μ|CD |,t =|DB |.①当μ=2时,是否存在直线l ,使得r ,s ,t 成等差数列?若存在,求出直线l 的方程;若不存在,说明理由;②若存在直线l ,使得r ,s ,t 成等差数列,求μ的范围.解(1)由题意知抛物线的焦点F (c ,0),由于e =c a =32,即,则有a 24=32a ,因此a =23,c =3,b =a 2-c 2=3,故抛物线的标准方程为y 2=12x ,椭圆的标准方程为x 212+y 23=1.(2)设l :x =my +3(m ≠0),A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),将直线与抛物线联立,2=12x ,=my +3,整理得y2-12my-36=0,Δ=144m2+36×4>0,1+y2=12m,1y2=-36,于是x1x2=(my1+3)(my2+3)=m2y1y2+3m(y1+y2)+9=9,2+4y2-12=0,=my+3,得到一元二次方程(m2+4)y2+6my-3=0,Δ>0,3+y4=-6mm2+4,3y4=-3m2+4,则|AB|=(x1-x2)2+(y1-y2)2=1+m2·(y1+y2)2-4y1y2=12(m2+1),|CD|=(x3-x4)2+(y3-y4)2=1+m2·(y3+y4)2-4y3y4=1+m236m2(m2+4)2+12m2+48(m2+4)2=43(m2+1)m2+4,|AC|+|DB|=|AB|-|CD|=12(m2+1)-43(m2+1)m2+4.①当μ=2时,s=2|CD|,假设存在直线l,使得r,s,t成等差数列,即|AC|+|DB|=4|CD|,即有12(m2+1)-43(m2+1)m2+4=4×43(m2+1)m2+4,整理得12m2=203-48,方程无解,因此不存在l满足题设.②若存在直线l,使得r,s,t成等差数列,只需使得方程12(m2+1)-43(m2+1)m2+4=2μ×43(m 2+1)m 2+4有解即可.整理得m 2=3+23μ-123,故m 2=3+23μ-123>0,解得μ[周六]1.(2023·泉州质检)已知复数z 满足(1-i)z =4i ,则z ·z 等于()A .-8B .0C .8D .8i 答案C 解析因为(1-i)z =4i ,所以z =4i 1-i =4i (1+i )(1-i )(1+i )=-4+4i 2=-2+2i ,所以z =-2-2i ,因此,z ·z =(-2+2i)(-2-2i)=4+4=8.2.(2023·娄底模拟)已知夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任何平面所截,如果截得两个截面的面积之比为k (常数),那么这两个几何体的体积之比也为k .则椭圆C :x 2a 2+y 2b2=1(a >b >0)绕长轴旋转一周形成的几何体的体积为(注:椭圆的面积S =πab ,其中a ,b 分别为长半轴、短半轴的长)()A.43πa 2b B.43πab 2C.43πa 3 D.43πb 3答案B 解析如图所示,直线y =h 交半椭圆x 2a 2+y 2b2=1(y ≥0)于A ,B 两点,交半圆x 2+y 2=b 2(y ≥0)于C ,D 两点,由题意可得|AB ||CD |==abb2-h2b2-h2=ab,将半椭圆x2a2+y2b2=1(y≥0)和半圆x2+y2=b2(y≥0)绕着x轴旋转一圈后,利用垂直于y轴的平面去截椭球体与球体,设截面面积分别为S,S′,由题意可知SS′=14π·|AB|·|CD|14π·|CD|2=ab,设半椭圆x2a2+y2b2=1(y≥0)绕x轴旋转一圈所得的几何体体积为V,半圆绕x轴旋转一圈所得的几何体体积为V′,则VV′=ab,所以V=abV′=ab·4πb33=4πab23.3.(多选)(2023·青岛模拟)在x的展开式中,下列说法正确的是()A.常数项是1120B.第四项和第六项的系数相等C.各项的二项式系数之和为256D.各项的系数之和为256答案AC解析x的通项公式为T k+1=C k828-k(-1)k x8-2k,对于A,常数项为C4824(-1)4=1120,故A正确;对于B,第四项的系数为C3828-3(-1)3=-1792,第六项的系数为C5828-5(-1)5=-448,故B错误;对于C,因为n=8,所以各项的二项式系数之和为28=256,故C正确;对于D,令x=1,得各项的系数之和为1,故D错误.4.如图是甲烷的球棍结构,它的分子结构为正四面体结构(正四面体是每个面都是正三角形的四面体),碳原子位于正四面体的中心,4个氢原子分别位于正四面体的4个顶点.已知相邻的两个氢原子之间的距离为7,若不计原子大小,该正四面体内放入一个圆柱,使得圆柱的下底面在正四面体的底面内,则当该圆柱的表面积取得最大值时,圆柱的底面半径为____________.答案233+66解析如图,不计原子大小后,设5个原子所确定的四面体为正四面体ABCD ,则其棱长为7,若使圆柱最大,则圆柱的上底面为一个平行于底面的截面所成正三角形的内切圆,设截面正三角形边长为x ,x ∈(0,7),设正四面体的高AO 交截面于F ,连接EF ,BO ,圆柱的高为h ,则EF =32x ×23=33x ,BO =32×7×23=733,AO =763,由几何关系可得AF AO =EF BO ,则AO -h AO =EF BO =x 7,则圆柱的高h=AO =6(7-x )3,圆柱底面半径为r =13×32x =36x ,所以圆柱表面积S =2πr 2+2πrh =+2π×36x ×6(7-x )3=x 2+723πx ,故当x72π4+2时,S 取得最大值,此时r =36x =36×(4+2)=233+66.5.(2023·柳州模拟)已知函数f (x )=2sin x -ax ,a ∈R .(1)当a =1时,求g (x )=f (x )-ln(x +1)在区间0,π6上的最小值;(2)证明:sin 12+sin 13+sin 14+…+sin 1n >ln n +12(n>1且n ∈N *).(1)解由题意知当a=1时,g (x )=2sin x -x -ln(x +≤x 则g ′(x )=2cos x -1-1x +1,令u (x )=2cos x -1≤x 则u ′(x )=-2sin x +1(x +1)2,令v (x )=-2sin x ≤x 则v ′(x )=-2cos x -2(x +1)3<0,所以v (x )在区间0,π6上单调递减,即u ′(x )在区间0,π6上单调递减.又u ′(0)=1,u 1+1<0,所以u ′(0)·u ,故存在x 0u ′(x 0)=0,所以u (x )(即g ′(x ))在区间(0,x 0)上单调递增,0又g ′(0)=0,g =3-1-1π6+1>0,g ′(x )>0,所以g (x )在区间0,π6上单调递增,最小值为g (0)=0.(2)证明由(1)可知g (x )=2sin x -x -ln(x +1)≥g (0)=0在区间0,12上恒成立,所以2sin x ≥x -ln(x +1),令h (x )=x -ln(x +≤x 则h (0)=0,h ′(x )=1-1x +1=x x +1≥0,所以h (x )在区间0,12上单调递增,所以当0<x ≤12时,h (x )>0,即x -ln(x +1)>0,x >ln(x +1),所以2sin x≥x+ln(x+1)>2ln(x+1),即sin x>ln(x+1),12上恒成立,所以sin 12sin13+sin14+…+sin1n>ln32+ln 43+…+lnn+1n=·43·…ln n+12.。
仿真模拟卷〔六〕第一局部听力(略)第二局部英语知识运用(共两节,总分为35分)第一节单项填空(共15小题;每一小题1分,总分为15分)请认真阅读下面各题,从题中所给的A、B、C、D四个选项中,选出最优选项。
1.—I feel so upset.I’m afraid I’ll be fired for the terrible economic crisis.—!Things are not so bad as they seem.A.Go aheadB.Good luckC.No problemD.Cheer up2.The witness an important detail when describing the accident.A.brought aboutB.kept offC.left outD.ran into3.—How did you find your trip to Water Park in the summer of 2016?—I thoroughly enjoyed it.It was than I expected.A.even much interestingB.far more interestingC.so far interestingD.far from interesting4.How happy we are!The winter holiday we have been looking forward soon.A.has comeB.to have comeC.to comingD.to will come5.Health care workers are at the risk of getting infectious diseases because of their to patients.A.exposureB.discriminationC.guidanceD.response6.With so many friends me,I had no difficulty in finishing the work on time.A.to helpB.helpedC.helpingD.have helped7.“Could we put off the meeting?〞 she asked.“,〞he answered politely.“This is the only day everyone is available.〞A.Not likelyB.Not exactlyC.Not nearlyD.Not really8.The debate here will be limited in two main respects, the time available.A.in view ofB.in return forC.in addition toD.in comparison with9.The new supermarket has announced that the first to purchase goods on the opening day get a big prize.A.mustB.shallC.wouldD.could10.Jack is late again.It is of him to keep others waiting.A.normalB.ordinaryC mon D.typical11.Experts warn that medical waste from hospitals,if properly,may lead to the spread of disease.A.not handledB.not being handledC.not to be handledD.not having handled12.The troopsout of that country by the end of next month and they were sent there3 years ago.A.have withdrawnB.will withdrawC.had withdrawnD.will have withdrawn13.It is reported that more than half of surveyed on the website say they are content with their current life.A.whomB.themC.onesD.those14.Had I taken my umbrella with me when I came out in the morning,I wet now.A.shouldn’t have beenB.hadn’t beenC.wasn’tD.shouldn’t be15.It’s always a good idea to have a second key somewhere you lose the first one.A.in caseB.now thatC.even thoughD.as long as第二节完形填空(共20小题;每一小题1分,总分为20分)请认真阅读下面短文,从短文后各题所给的A、B、C、D四个选项中,选出最优选项。
一.基础知识(30分)1.下列句子中,划线词语使用不恰当的一句是()A.在当前国际金融危机的背景下,中国和沙特处境相似,两国的许多主张不谋而合,在二十国集团、世界银行等框架下开展了有效的沟通与合作。
B.现在的娱乐方式越来越多,百姓的欣赏水平也提高了,守着电视机过年的观众日渐减少,“春晚”真叫人担忧。
央视春晚都扛不住,更何况鱼目混珠的地方春晚。
C.我们的某些规章制度还不很健全,有的“聪明人”便打起了擦边球,以此谋取私利。
D.《红楼梦》里贾赦竟打上了鸳鸯的主意,鸳鸯说:“家生女怎么样?牛不吃水强按头?我不愿意,难道杀我的老娘不成?”答案.B(鱼目混珠:比喻用假的冒充真的。
应该为“良莠不齐”;A不谋而合:没有事先商量,而彼此的见解或行动完全一致;C擦边球:比喻做在规定的界限边缘而不违反规定的事。
D牛不吃水强按头:比喻强迫人做不愿作的事)2.下列各项中,划线的成语使用恰当的一项是()A.这真是大人不见小人怪,我犯了这点儿小错误,经理没有批评我,你倒挑起我的毛病来了。
B.几年前,歌星臧天朔带头签署了《演艺人社会责任自律宣言》,但墨迹未干,他却因“涉恶”嫌疑被警方带走,前后判若云泥,真是不可思议。
C.近些年,某些地区拓宽马路,扩建广场,竞相上马各种形象工程的做法蔚然成风,人民群众对此意见很大。
D.求学期间,他春风得意,事事顺心.没料到踏人社会后,几桩生意下来,就被骗得血本无归,于是他总是感叹遇人不淑,命途多舛。
答案 B(判若云泥:比喻差别悬殊就像云彩和泥土的距离那样大。
合乎语境,使用恰当。
A. “大人不见小人怪”旧谓位高或有德者对位低或无德者的过错不见怪,语境中“小人”是自己,非“你”。
C.蔚然成风:形容一种事物逐渐盛行,形成风气。
感情色彩不当。
D.项张冠李戴,“遇人不淑”指女子嫁了一个品质不好的丈夫。
)3、下列各句中,划线的词语运用正确的一句是()A.我国不少理工科院校把大学语文排斥在必修课之外,而近年来,外国留学生报考HSK(中国汉语水平考试)的人数大幅度上升,真可谓“外来的和尚好念经”。
2018年高考语文一轮复习每日一题(第01周)周末培优编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考语文一轮复习每日一题(第01周)周末培优)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考语文一轮复习每日一题(第01周)周末培优的全部内容。
2017年7月8日周末培优1.【2015年高考重庆卷】下列词语中,字形和加点字的读音全都正确的一组是( ) A.亲和力声名鹊起闹别.(biè)扭称.(chēng)心如意B.倒胃口皇天后土瞭.(liǎo)望哨金蝉脱壳.(qiào)C.哈蜜瓜明眸皓齿撑.(chēng)场面姹.(chà)紫嫣红D.敞篷车异彩纷呈差.(chà)不多白雪皑皑.(ái)D【解析】A项,“称"读chèn;B项,“瞭”读liào;C项,“蜜"应为“密”。
2.【2014年高考福建卷改编】阅读第二段,完成后面的题目。
二十四节气令我们惊叹和叫绝的,除了与物候、时令的奇异吻合和准确对应,还有它的一个个具有田园风味和充满诗歌韵味的名称,它们体现了汉语的简约性和表意美。
这真让我们这些后世的汉语使用者不仅感到骄傲,也感到惭愧。
“惊蛰”,两个汉字并列一起,即神奇地构成了生动的画面和无穷的故事. 你可以暇想:在远方那一声初始的雷鸣中,万千沉睡的幽暗生灵被唤醒了,它们睁开惺忪的双眼,不约而同,向圣贤一样的太阳(chǎng)开了各自的门户。
仿佛为了响应这一富于“革命”意味的节气,天,豁然晴朗了。
整面天空像一个深隐林中的蓝色湖泊。
高考语文一轮复习每日一题(第04周)周末培优不分版本XXXX年7月29日周末培优1.以下各句中,没有语病的一句是〔〕A.英国一所小学近日宣布,将不再给学生布置家庭作业,以降低老师们的工作压力,使他们将更多的精力投入到教案准备中,从而提高课堂效率。
B.据国务院有关部门的统计数据显示,截至XXXX年5月,全国县以上新城新区超过3500个,试问,这些新城新区谁来住?C.位于陕西省西安市蓝田县的白鹿原影视城通过入口雕塑、作品故事主题浮雕等多种形式,展现了白鹿原特别是陕西地方文学这道靓丽的风景。
D.为更好地效劳青年创业者,组委会举办了青年创业论坛,邀请了一些知名互联网企业创始人与青年创业者共同探讨移动互联网时代青年创业的机遇问题。
D2.以下各句中,没有语病、表意明确的一项为哪一项〔〕A.基层宣传思想文化工作者要按照“紧跟中央、安心热爱、钻研求索、积极作为〞的要求,坚决贯彻中央决策部署和工作,努力创造无愧于党与人民的业绩。
B.除法律明确规定外,强制隔离戒毒所不得对外提供戒毒人员档案信息。
同时,禁止对戒毒人员为对象进行戒毒药物试验等。
C.《光明中学考试规那么》已经正式实施,该规那么对学生考试作弊行为做出了详细的规定,使学校有效地遏制了学生的作弊行为。
D.各地将把零就业家庭、经济困难家庭、残疾人家庭等的就业困难的未就业高校毕业生列为重点工作对象,提供“一对一〞个性化就业帮扶,确保其实现就业。
D【解析】A项,搭配不当,“贯彻〞与“工作〞不搭配,可删去“和工作〞。
B项,句式杂糅,“对戒毒人员……〞与“以戒毒人员为对象〞两者杂糅到了一起,可删去“为对象〞或将“禁止〞后的“对〞3.下面文字中有三处语病和一处标点符号使用错误,请写出相应句子的序号,并对错误加以修改。
①“全国国民阅读调查〞由中国新闻出版研究院组织开展的调查工程,到目前为止已经开展了11次。
②中国新闻出版研究院去年在全国七十多个城市进行了入户问卷调查,收回有效问卷40600份。
题组层级快练 6.3等比数列一、单项选择题1.(2021·泰安模拟)若等比数列{a n }的各项均为正数,a 2=3,4a 32=a 1a 7,则a 5等于( ) A.34 B.38 C .12 D .24 2.在等比数列{a n }中,a 2a 6=16,a 4+a 8=8,则a 20a 10等于( )A .1B .-3C .1或-3D .-1或33.(2020·广州模拟)已知等比数列{a n }的前n 项和S n 满足4S 5=3S 4+S 6,且a 2=1,则a 4=( ) A.127 B .27 C.19D .9 4.(2021·益阳市、湘潭市高三调研)已知等比数列{a n }中,a 5=3,a 4a 7=45,则a 7-a 9a 5-a 7的值为( )A .3B .5C .9D .255.(2021·天津市河西区月考)设{a n }是公比为q 的等比数列,则“q>1”是“{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.《张丘建算经》中“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里路,问每天走的里数为多少?”则该匹马第一天走的里数为( )A.128127B.44 800127C.700127D.17532 7.(2021·深圳一模)已知等比数列{a n }的前n 项和S n =a·3n -1+b ,则a b =( )A .-3B .-1C .1D .38.在14与78之间插入n 个数组成等比数列,若各项总和为778,则此数列的项数为( )A .4B .5C .6D .79.(2021·广东惠州一中月考)已知数列{a n }是等比数列,且a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n ) D.323(1-2-n ) 10.等比数列{a n }的前n 项和为S n ,若a 1=a 2+2a 3,S 2是S 1与mS 3的等比中项,则m =( ) A .1 B.97 C.67 D.12二、多项选择题11.已知正项等比数列{a n }满足a 4=4,a 2+a 6=10,则公比q =( ) A.12 B. 2 C .2 D.22 12.已知等比数列{a n }中,满足a 1=1,q =2,则( ) A .数列{a 2n }是等比数列B .数列⎩⎨⎧⎭⎬⎫1a n 是递增数列C .数列{log 2a n }是等差数列D .数列{a n }中,S 10,S 20,S 30仍成等比数列 三、填空题与解答题13.已知等比数列{a n }满足a 1=12,a 2a 8=2a 5+3,则a 9=________.14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.15.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.16.(2020·课标全国Ⅲ,文)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m.17.(2021·华大新高考联盟质检)设等比数列{a n }的前n 项和为S n ,若a 3a 11=2a 52,且S 4+S 12=λS 8,则λ=________.18.(2021·四川成都一诊)已知数列{a n }满足a 1=-2,a n +1=2a n +4. (1)证明:数列{a n +4}是等比数列; (2)求数列{|a n |}的前n 项和S n .6.3等比数列 参考答案1.答案 D 2.答案 A解析 由a 2a 6=16,得a 42=16⇒a 4=±4.又a 4+a 8=8,可得a 4(1+q 4)=8,∵q 4>0,∴a 4=4.∴q 2=1,a 20a 10=q 10=1. 3.答案 D解析 因为4S 5=3S 4+S 6,所以3S 5-3S 4=S 6-S 5,即3a 5=a 6,故公比q =3.由等比数列的通项公式得a 4=a 2q 4-2=1×32=9.故选D. 4.答案 D解析 设等比数列{a n }的公比为q ,则a 4a 7=a 5q ·a 5q 2=9q =45,所以q =5,所以a 7-a 9a 5-a 7=a 5q 2-a 7q 2a 5-a 7=q 2=25.故选D. 5.答案 D 6.答案 B解析 由题意知每日所走的路程成等比数列{a n },且公比q =12,S 7=700,由等比数列的求和公式得a 1⎝⎛⎭⎫1-1271-12=700,解得a 1=44 800127.故选B.7.答案 A 8.答案 B解析 ∵q ≠1⎝⎛⎭⎫14≠78,∴S n =a 1-a n q 1-q ,∴778=14-78q1-q ,解得q =-12,78=14×⎝⎛⎭⎫-12n +2-1,∴n =3.故该数列共5项. 9.答案 C解析 因为等比数列{a n }中,a 2=2,a 5=14,所以a 5a 2=q 3=18,所以q =12.由等比数列的性质,易知数列{a n a n+1}为等比数列,其首项为a 1a 2=8,公比为q 2=14,所以要求的a 1a 2+a 2a 3+…+a n a n +1为数列{a n a n +1}的前n项和.由等比数列的前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎝⎛⎭⎫1-14n 1-14=323(1-4-n ).故选C. 10.答案 B解析 设等比数列{a n }的公比为q ,由a 1=a 2+2a 3,得a 1=a 1q +2a 1q 2,解得q =-1或q =12,当q =-1时,S 2=0,这与S 2是S 1与mS 3的等比中项矛盾.当q =12时,S 1=a 1,S 2=32a 1,mS 3=74a 1m ,由S 2是S 1与mS 3的等比中项,得S 22=S 1×mS 3,94a 12=m ×74a 12,所以m =97.故选B.11.答案 BD解析 因为a 4=4,a 2+a 6=10,所以a 4q 2+a 4q 2=10,得2q 4-5q 2+2=0,得q 2=2或q 2=12,又q>0,所以q =2或q =22.故选BD. 12.答案 AC解析 等比数列{a n }中,a 1=1,q =2,所以a n =2n -1,S n =2n -1. 于是a 2n=22n -1,1a n =⎝⎛⎭⎫12n -1,log 2a n =n -1,故数列{a 2n }是等比数列,数列⎩⎨⎧⎭⎬⎫1a n 是递减数列,数列{log 2a n }是等差数列.因为S 10=210-1,S 20=220-1,S 30=230-1,S 20S 10≠S 30S 20,所以S 10,S 20,S 30不成等比数列(应是S 10,S 20-S 10,S 30-S 20成等比数列).故选AC. 13.答案 18解析 方法一:设数列{a n }的公比为q ,由a 2a 8=2a 5+3,得a 12q 8=2a 1q 4+3,又a 1=12,所以q 8-4q 4-12=0,解得q 4=6或q 4=-2(舍去),所以a 9=a 1q 8=12×62=18.方法二:根据等比数列的性质可得a 2a 8=a 52,又a 2a 8=2a 5+3,所以a 52-2a 5-3=0,解得a 5=3或a 5=-1.因为a 1>0,所以a 5=a 1q 4>0,所以a 5=3.因为a 1a 9=a 52,所以a 9=a 52a 1=18.14.答案 -2解析 由S 3+3S 2=0,即a 1+a 2+a 3+3(a 1+a 2)=0,即4a 1+4a 2+a 3=0,即4a 1+4a 1q +a 1q 2=0,即q 2+4q +4=0,所以q =-2. 15.答案 -2 2n -1-12解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q|=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12.16.答案 (1)a n =3n -1 (2)6解析 (1)设{a n }的公比为q ,则a n =a 1q n -1.由已知得⎩⎪⎨⎪⎧a 1+a 1q =4,a 1q 2-a 1=8,解得a 1=1,q =3,所以{a n }的通项公式为a n =3n -1. (2)由(1)知log 3a n =n -1. 故S n =n (n -1)2. 由S m +S m +1=S m +3得m(m -1)+(m +1)m =(m +3)(m +2),即m 2-5m -6=0. 解得m =-1(舍去)或m =6. 17.答案 83解析 ∵数列{a n }是等比数列,a 3a 11=2a 52,∴a 72=2a 52,∴q 4=2. ∵S 4+S 12=λS 8,∴a 1(1-q 4)1-q +a 1(1-q 12)1-q =λa 1(1-q 8)1-q ,∴1-q 4+1-q 12=λ(1-q 8), 将q 4=2代入计算可得λ=83.18.答案 (1)证明见解析 (2)S n =2n +1-4n +2 解析 (1)证明:∵a 1=-2,∴a 1+4=2. ∵a n +1=2a n +4,∴a n +1+4=2a n +8=2(a n +4), ∴a n +1+4a n +4=2, ∴{a n +4}是以2为首项,2为公比的等比数列. (2)由(1)可知a n +4=2n ,∴a n =2n -4. 当n =1时,a 1=-2<0,∴S 1=|a 1|=2; 当n ≥2时,a n ≥0,∴S n =-a 1+a 2+…+a n =2+(22-4)+…+(2n -4)=2+22+…+2n -4(n -1)=2(1-2n )1-2-4(n -1)=2n +1-4n +2.又当n =1时,上式也满足. ∴S n =2n +1-4n +2.。
每日一练6
1.设a >1,且)2(log ),1(log )1(log 2a p a n a m a a a =-=+=,则p n m ,,的大小关系为(B )
(A) n >m >p (B) m >p >n (C) m >n >p (D) p >m >n
2.对于函数①()()
12lg +-=x x f ,②()()22-=x x f ,③()()2cos +=x x f .判断如下三个命题的真假:命题甲:()2+x f 是偶函数;命题乙:()()2,∞-在区间x f 上是减函数,在区间()+∞,2上是增函数;命题丙:()()x f x f -+2在()+∞∞-,上是增函数.能使命题甲、乙、丙均为真的所有函数的序号是(D )
A.①③
B.①②
C. ③
D. ②
3.函数())1,0(13log ≠>-+=a a x y a 的图象恒过定点A,若点A 在直线01=++ny mx 上,其中0>mn ,则n
m 21+的最小值为 8 . 4.函数π()3sin 23f x x ⎛⎫=- ⎪⎝
⎭的图象为C ,如下结论中正确的是 ①②③(写出所有正确结论的编号..). ①图象C 关于直线11π12x =
对称;②图象C 关于点2π03⎛⎫ ⎪⎝⎭
,对称; ③函数()f x 在区间π5π1212⎛⎫- ⎪⎝⎭
,内是增函数;④由3sin 2y x =的图角向右平移π3个单位长度可以得到图象C . 5.在数列{}n a 中,12a =,1431n n a a n +=-+,n ∈*N . (Ⅰ)证明数列
{}n a n -是等比数列;
(Ⅱ)求数列{}n a 的前n 项和n S ; (Ⅲ)证明不等式14n n S S +≤,对任意n ∈*
N 皆成立.。
——不等式性质应用1.已知0<<b a ,则( ) A.a1<b1 B.10<<b a C.ab >2b D.a b >ba 2.已知cb a ,,R ∈,则( )A. b a >⇒2ac >2bcB.b a cb ca>⇒>C.b a ab b a 11033<⇒⎭⎬⎫>>D.b a ab b a 11022<⇒⎭⎬⎫>> 3.若b a >,且0<+b a ,则( )A.b a >B.ba11> C. b a < D.ba11< 4.已知0<c ,则( )A.0c >c )21( B.2c >c )21( C.2c <c )21( D.c )21(>(31)c 5.已知b a ,R ∈,则( )A.“b a >”是“22b a >”的必要条件B.“b a >”是“b a -<-11”的充要条件C.“b a >”是b a >的充分条件D.“b a >”是22b a >的必要条件 6.若0<<y x ,则( )A.02<<xy xB. 22y xy x >>C. 022<<y xD. xy y x >>22 7.已知0=++z y x ,且z y x >>,则( )A.yz xy >B. yz xz >C. xz xy >D. y z y x > 8.已知0,0>>>>d c b a 则( )A.0>-cd abB.0>-ad bcC.0>-ab cdD.0>-bd ac—— 一元二次不等式解法1.不等式222x x +<的解集是( )A.),1(+∞B.)0,(-∞C. ),(+∞-∞D. ),0(+∞ 2.不等式3-5x -2x 2<0的解集为( )A.RB.空集C.}213|{<<-x xD.}213|{>-<x x x 或 3.不等式0412<++bx x 的解集为φ,则( ) A.1<b B.11<->b b 或 C.11≤≤-b D.11>-<b b 或4.不等式11622++--x x x x <0的解集为( )A.(+∞-,31)B.(21,∞-)C.(21,31-)D.(31,-∞-) 5.若函数()x f =12++mx mx 的定义域是全体实数,则实数m 的取值范围是 。
人教语文2019高考一轮基础选习题(6)李仕才一、语言基础知识运用1、下列各句中加点成语的使用,全都不正确的一项是( )①郭俊雅表演了一支凳子舞,精准的节奏、优美的舞姿,让大家沉浸在音乐国度里如.梦.初醒..。
②这位代表说的虽不是什么崇论宏议....,但他说的话发自肺腑,句句实在,没有套话和假话,因此我们要更加重视。
③外国媒体臆测解放军新战机隐身性能堪比美国的F22“猛禽”战机,其实这些不经之...谈.是为了继续鼓吹“中国军事威胁论”。
④读者张某来信说:碧江路是条南北走向的马路,门牌号神魂颠倒....,不知情的人很难寻找。
⑤邻里之间的是非大多是由日常生活中的一些琐屑小事引起的,不必寻根究底....,你们还是大事化小、小事化了吧。
⑥身处春秋鼎盛....的时代,我们这些身强力壮的青年应该奋发有为,积极向上,刻苦学习,为国家和社会多做贡献。
A.①②③B.①④⑥C.②③⑤D.①③⑤解析:①如梦初醒:像刚从梦中醒来。
比喻过去一直糊涂,在别人或事实的启发下,刚刚明白过来。
可改为“如痴如醉”。
②崇论宏议:崇,高;宏,大。
指高明宏大的议论或见解。
与语境义相符合。
③不经之谈:不合道理。
没有根据,不合情理的言论。
使用正确。
④神魂颠倒:精神恍惚,颠三倒四,失去常态。
应为“颠三倒四”。
⑤寻根究底:寻找根源,追究底细,弄清来龙去脉。
与语境义相符合。
⑥春秋鼎盛:比喻正当壮年。
应用对象应该是人,不能用于修饰“时代”等,使用对象错误。
答案:B2、下列各项中,没有语病的一项是( )A.11月7日,习近平主席在与马英九会面时指出,尽管两岸同胞经历多少风雨,有过多长时间的隔绝,都没有任何力量能把我们分开。
因为我们是打断骨头连着筋的同胞,是血浓于水的一家人。
B.北京时间14日凌晨,法国巴黎发生多起枪击和爆炸事件。
巴黎检察长莫兰北京时间15日凌晨两点左右召开新闻发布会确认,恐怖袭击目前已造成至少129人左右死亡,352人受伤,其中99人重伤。
每日一练(1-3)1.下列各句中加点的成语使用,全都正确的一项是()①木心研究者陇菲先生认为,《木心谈木心》涉及谋篇布局、遣词造句、焊接文白、应对采访等诸多方面,细心教学生如何写作,可谓金针度人....。
②家长可以参与学校的管理,并提出积极的建议,但绝不能越俎代庖....,学校也不应该在所谓的“家校合作”的名义下,将学校自身事务转嫁给家长。
③北京市水利规划设计研究院副总工程师穆永梅表示,南干渠所有分水口的检修阀、调流阀、流量计全部采用的是钢制管材,可做到滴水不漏....。
④中国彩电产业的发展,基本上已经形成了显示技术派、低价格派、用户派三大阵营分庭抗...礼.的格局,短期来看,这种竞争格局将会保持相对稳定。
⑤现在一些高校的行政管理人员已经到了肆无忌惮的地步,对学者发表的文章深文周纳....,无限上纲上线,试图形成“寒蝉效应”。
⑥高校加强创业教育不能南辕北辙....,过于强调创业之“术”,而忽视创业之“道”,简单地以创业成败论英雄,是违背立德树人这一培养原则的。
A.①②⑤B.①③⑥C.②④⑥D.③④⑤2.下列各句中,没有语病的一句是()A.工信部官网称,随着全球5G试验与商用步伐的加快,中国5G技术研发试验将进一步加强对外开放的力度,探索开展5G试验的国际合作。
B.2016年诺贝尔文学奖颁发给了一个唱歌的美国诗人﹣﹣鲍勃•迪伦,诺奖评委会虽然已经给出了颁奖的理由,可很多人还是有所质疑。
C.在网络社交中,一个笑中带泪的表情符,表意既是清晰的又是暧昧的,因为在不同语境中,它能被解读成苦笑、笑哭了或者是无可奈何等等都可以。
D.中央和地方各级政府将继续实施退耕还林还草和草原生态保护补助奖励等政策,提高天然林保护工程补助和森林生态效益补偿的标准。
3.李明同学说话喜欢引经据典,在下面几种情境讲话时,他引用的古诗文恰当得体的一项是()A.同学张华要到外地去上中专,李明给他送行时说:“‘与君离别意,同是宦游人。
’张华,你一人远走他乡要多多珍重啊!”B.同学刘欣作文时想找一句表现读书乐趣的名句,李明不假思索地说道:“这还不容易,‘谈笑有鸿儒,往来无白丁’嘛!”C.李明和同学一起去春游,面对着满园盛开的梨花,他情不自禁地说道:“真可谓‘忽如一夜春风来,千树万树梨花开’D.李明的同桌张海学习上得过且过,不求甚解,李明意味深长地对他说:“‘学而不思则罔’,你可不能总是浅尝辄止啊!”4.下列对文中加点词语的相关内容的解说,不正确的一项是()A.“大学士”又称内阁大学士、殿阁大学士等,为辅助皇帝的高级秘书官。
高三一轮复习每日一练6
1.下列词语中,没有错别字的一组是(3分)D
A. 脉搏/平添造型/摄像机强档/轻歌慢舞
B. 慈祥/影牒摩挲/万金油返聘/凤毛麟角
C. 峰会/对峙修葺/结骨眼戏谑 /张皇失措
D. 贸然/夜宵竣工/终身制熨贴/扶老携幼
2.下列各句中,加点的词语使用恰当的一句是(3分)D
A. 今年一季度我国旅游接待总人数同比增长12.7%,总收入同比增长19.9%,增长数据令人侧目,显示出我国旅游业良好的发展势头。
B. 4月以来的多轮强降水使鄱阳湖水体面积由668平方公里扩至2370平方公里,以致极大地改善了江豚等珍稀水生动物的生存环境。
C. 国际田联专家诊断,男子110米栏项目仍是刘翔和罗伯斯的天下,刘翔的竞技状态与日俱增,而罗伯斯则稍欠稳定且实力有所下滑。
D. 电视评论的犀利和深刻是主持人思想创造性的外化,主持人只有具备思想的创造性,才能将观点转化为鞭辟入里、发人深省的评说。
3. 下列名句中没有语病的一句是(3分)C
A. 规划提出把合肥建设成为区域型特大中心城市为目标,打造以合肥为核心,包括马鞍山、芜湖、铜陵等城市的大合肥都市圈。
B. 中南大学特批大三学生刘路硕博连读,为其专门制订培养方案,将其作为后备人才,进入侯振挺教授的研究所从事研究工作。
C. 百年来,中华书局一直以传承文明为己任,本着守正出新的原则,整理出版了大批古籍,也推出了许多高水平的学术新着。
D. 对涉及百姓健康和公共利益的研发活动能否进行科学伦理的评价把关,是防止技术滥用、纠正科技应用偏差的重要保证。
4. 请筛选、整合下面文字中的主要信息,拟写一条“年画”的定义。
要求:语言简明,不超过40字。
(5分)
年画是民间很常见的一种图画,大多于农历新年到来时张贴。
年画画面线条单纯,色彩鲜明。
传统年画多为本版水印制作,主要产地有天津杨柳青、苏州桃花坞和山东潍坊等;现代年画则多为机器印制。
年画的常见题材有合家欢、看花灯、胖娃娃、五谷丰登等,也有以神话传说和历史故事为题材的,多含有吉祥喜庆的意义。
年画历史悠久,早在宋代就有相关记载;清代中期,年画尤为盛行;至今还深受人民群众喜爱。
答案:年画是春节时张贴的,画面线条单纯、色彩鲜明含有吉祥喜庆意义的图画。
5.补写出下列名篇名句中的空缺部分。
(6分)
(1)_____,侣鱼虾而友麋鹿,驾一叶之扁舟,。
(苏轼《赤壁赋》)
(2)_____,胡琴琵琶与羌笛。
(岑参《白雪歌送武判官归京》)
(3)_____,雄飞雌从绕林间。
______,愁空山。
(李白《蜀道难》)
(4)此情可待成追忆,_____。
(李商隐《锦瑟》)。