高中数学指数函数教案2 新人教A版必修1
- 格式:doc
- 大小:280.00 KB
- 文档页数:4
指数函数及其性质一、【教学目标】1.知识与技能:理解指数函数的概念,画出具体指数函数图象,能经过观察图象得出两类指数函数图象的地位关系;在理解函数概念的基础上,能运用所学知识解决简单的数学成绩;2.过程与方法:在教学过程中,利用画板作图加深对指数函数的认识,让先生在数学活动中感受数学思想方法之美、领会数学思想方法之重要;3.情感、态度、价值观:经过本节课自主探求研讨式教学,使先生获得研讨函数的规律和方法;培养先生自动学习、合作交流的认识。
二、【学情分析】指数函数式在先生零碎学习了函数概念,基本掌握函数性质的基础上进行研讨的,是先生对函数概念及其性质的第一次运用.教材在之前的学习中给出链各个理论的例子(GDP的增长成绩和碳14的衰减成绩),曾经让先生感遭到了指数函数的理论背景,但这两个例子的背景对于先生来说有些陌生.本节课先设计两个看似简单的成绩,但能经过得到超出想象的结果来激发先生学习新知的兴味和愿望。
三、【教材分析】本节课是《普通高中课程标准实验教科书·数学1》(人教A版)第二章第一节第二课【(2.1.2)《指数函数及其性质》.根据理论情况,将《指数函数及其性质》划分为三节课指数函数及其性质、指数函数及其性质的运用(1)、指数函数及其性质的运用(2)】,这是第一节“指数函数及其性质”.指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及消费理论中有着广泛的运用,所以指数函数应重点研讨。
四、【教学重难点】1.教学重点:指数函数的概念、底数互为倒数的指数函数的图象关于y轴对称。
2.教学难点:底数a的范围讨论,自变量的取值范围和由函数的图象归纳指数函数的性质。
五、【教学方法】自主预习、合作探求、体验践行。
六、 【教学装备】多媒体装备。
七、 【课时安排】第一课时(新知课)。
八、 【教学过程】(一) 创设情境,引出成绩(约3分钟)师:观察图片,你能说出这是甚么吗?生:国际象棋师:这盘象棋隐含了这么一个故事?生:....师:国王为了奖励发明者达依尔特许愿满足他提的任意一个请求,那么达伊尔提出如下要求在棋盘第一格放2粒大米,第二格放4粒大米,第三格放8粒大米,…按这个规律.最初一格棋盘上的大米数就是我要的.请问:最初一格的大米数是多少呢?生:642师:那么国王能否满足他的要求呢?【学情预设】先生会说能.也有说不能的.教师公布数据领会指数函数的爆炸增长,642粒大米是每年全世界粮食产量的1000多倍,明显国王是满足不了他的请求.师:请写出米粒数与棋盘格数的函数关系式.生:{}2,1,2,,64x y x =∈师: “一尺之棰,日取其半,万世不竭.”这句话来自著名的《庄子·天下篇》,哪位同学能用数学言语来表述它的含义?生:。
指数函数夏津一中高一数学备课组一、教学目标1、知识与技能:了解指数函数模型的实际背景,掌握指数函数的概念和意义,掌握指数函数的图象和性质。
2、过程与方法:通过对指数函数的概念图象性质的学习,培养学生观察、分析、归纳猜想的能力,进一步体会数形结合的思想方法.3、情感、态度和价值观:通过对指数函数的研究,让学生体验从特殊到一般的学习规律,认识数学的应用价值,激发学生学习数学的兴趣,培养学生的创新意识。
二、教学重点、难点重点:指数函数的图像和性质。
难点:指数函数的图象性质与底数a的关系。
突破难点的关键:寻找新知识生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。
三、教学方法与手段本节课采用自主探究、合作交流的教学方法,借助多媒体,引导学生观察、分析、归纳、概括,调动学生参与课堂教学的主动性和积极性。
四、教学过程(一)创设情境问题一、某种细胞分裂时,每次每个细胞分裂为2个,则1个这样的细胞第一次分裂后变为细胞2个,第2次分裂后就得到4个细胞,第3次分裂后就得到8个细胞, ……分裂次数x 与细胞个数y 有什么关系通过学生观察细胞分裂的过程,探究分裂次数与细胞个数的关系,归纳猜想得到y=2x (x ∈N)问题二、一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约为原来的84%。
求出这种物质的剩留量随时间(单位:年)变化的函数关系。
分析:最初的质量为1,时间变量用x 表示,剩留量用y 表示, 经过1年,y=0.841 经过2年,y=0.842 经过3年,y=0.843…… 经过x 年,y=0.84x (x ∈N*) (二) 引入概念引导学生从结构式、底数、指数三个方面观察y=2xy=0.84x 得到这类函数的特点是底数为常数,指数为 自变量 指数函数的定义:一般地,函数y=a x(a>0,a ≠1,x ∈R)叫做指数函数。
如:函数 y=2x y=(1/2)x y=10x 都是指数函数,它们的定义域都是实数集R ,提醒学生指数函数的定义是形式定义,如y=3×2x y=10x+5不是指数函数讨论: y= a x 在x ∈R 的前提下,为什么规定a>0,a ≠1 (1)若a<0, a x 不一定有意义.如a=-2,当x=1/2,(1)若a=0,则当x>0时,a x =0; x ≤0时,a x 无意义. (3)若a=1,则对于任意x ∈R,a x =1为常量。
【新教材】4.2.1 指数函数的概念(人教A 版)指数函数与幂函数是相通的,本节在已经学习幂函数的基础上通过实例总结归纳指数函数的概念,通过函数的三个特征解决一些与函数概念有关的问题.课程目标1、通过实际问题了解指数函数的实际背景;2、理解指数函数的概念和意义.数学学科素养1.数学抽象:指数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用指数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结指数函数概念.重点:理解指数函数的概念和意义;难点:理解指数函数的概念、教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、 情景导入在本章的开头,问题(1)中时间与GDP 值中的 ,请问这两个函数有什么共同特征. 要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、 预习课本,引入新课x 1.073(20)xy x x =∈≤与问题(2)中时间t 和C-14含量P的对应关系t 1P=[(2y =a x (a >0,且a ≠1) 阅读课本111-113页,思考并完成以下问题1. 指数函数的概念是什么?2. 指数函数解析式的特征?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、 新知探究1、指数函数的定义函数叫做指数函数,其中x 是自变量,函数的定义域为R. 2.指数函数解析式的3个特征( 1)底数a 为大于0且不等于1的常数、( 2)自变量x 的位置在指数上,且x 的系数是1.( 3)a x 的系数是1.四、典例分析、举一反三题型一 判断一个函数是否为指数函数例1 判断下列函数是否为指数函数(1)22x y += (2)(2)x y =-(3)2x y =- (4)x y π=【答案】由指数函数的定义易知(1)(2)(3)不是指数函数,(4)是指数函数.解题技巧:(判断一个函数是否为指数函数)( 1)需判断其解析式是否符合y =a x ( a >0,且a ≠1)这一结构特征、( 2)看是否具备指数函数解析式具有的三个特征、只要有一个特征不具备,则该函数不是指数函数、 跟踪训练一1. 判断下列函数是否为指数函数(1)2y x = (2)24y x = (3)x y x = (4)(1)xy a =- (a >1,且2a ≠) 【答案】(1)(2)(3)不是指数函数,(4)是指数函数.题型二 指数函数的概念例2 (1)已知指数函数(>0且≠1)的图象过点(3,π),求( 2)已知函数y=( a 2-3a+3)a x是指数函数,求a 的值.()x f x a =a a (0),(1),(3)f f f -的值.【答案】( 1),, ( 2) 2【解析】(1)将点(3,π),代入得到,即,解得:,于是,所以, ,.(2)由y=( a 2-3a+3)a x是指数函数,可得{a 2-3a +3=1,a >0,且a ≠1,解得{a =1或a =2,a >0,且a ≠1,故a=2.解题技巧:(利用指数函数定义求参数)跟踪训练二 1. 已知指数函数图象经过点P( -1,3),则f( 3)= .2. 已知函数f( x)=( a 2-2a+2)( a+1)x 为指数函数,则a= .【答案】1. 127 2. 1 【解析】1. 设指数函数为f ( x )=a x ( a>0且a ≠1),由题意得 a -1=3,解得a=13,所以f ( x )=(13)x ,故f ( 3)=(13)3=127.2. 函数f ( x )=( a 2-2a+2)( a+1)x是指数函数,∴{a 2-2a +2=1,a +1>0,a +1≠1,解得a=1.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计 0(0)1f π==13(0)f π==11(3)f ππ--==()x f x a =(3)f π=3a π=13a π=3()x f x π=0(0)1f π==13(0)f π==11(3)f ππ--==七、作业课本118页习题4.2中 1题2题5题本节主要学习了一类新的函数:指数函数。
“指数函数”(第二课时)教学设计--人教A版必修一第二章教学内容分析:1.课程标准要求(1)通过具体实例(如细胞的分裂,考古中所用的14C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。
(2)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
(3)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。
2.教材分析指数函数是高中阶段在学习了函数的概念、表示方法和性质后所学的第一种新的函数模型。
本节课是在学习了函数的一般性质和简单的指数运算的基础上进行的,不仅可以加深学生对函数概念的理解和认识,使学生得到较系统的函数知识和研究函数的方法,也为后续学习对数函数、幂函数、三角函数奠定了良好的基础。
指数函数不仅在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材。
学情分析:1.学生的知识基础分析:学生已经积累了研究一次函数、二次函数的一般经验;学习了函数的概念“对应说”;熟悉数形结合研究函数性质的方法。
2.学生的认知能力分析:學生初步掌握了用函数的观点来分析问题和解决问题,初步掌握了简单的指数运技能,具备了进行指数运算的能力。
在思维特征上,学生对数形结合、由特殊到一般的数学思想方法认识还不深刻,需要进一步的提高。
教学目标:1.理解指数函数的概念,掌握指数函数的图象和性质的简单应用。
2.经历从具体实例中抽象、概括指数函数的过程,培养数学建模的能力,感知数学应用的广泛性。
3.通过指数函数性质的归纳,体验从特殊到一般的学习规律,体会数学的理性、严谨及数与形的和谐统一美,认识事物之间的普遍联系与相互转化。
教学重点、难点:教学重点:指数函数的概念和性质。
教学难点:底数的变化对指数函数性质的影响。
教学进程:一、直接引入新课教师行为:生活中很多例子都能用数学有效的描述,今天我们来学习一类在实际中应用非常广泛的函数,先来看看它们是怎样和生活中的实例联系的。
人教版全日制高中《数学》第一册(上)P70—74一、教材分析1.教材背景指数函数是在学习了函数的现代定义及其图象、性质,掌握了研究函数的一般思路,并将幂指数从整数扩充到实数X围之后,学习的第一个重要的基本初等函数,是《函数》一章的重要内容。
本节内容分三课时完成,第一课时学习指数函数的概念、图象、性质;第二、三课时为指数函数性质的应用,本课为第一课时。
2.本课的地位和作用本节内容既是函数内容的深化,又是今后学习对数函数的基础,具有非常高的实用价值,在教材中起到了承上启下的关键作用。
在指数函数的研究过程中蕴含了数形结合、分类讨论、归纳推理、演绎推理等数学思想方法,通过学习可以帮助学生进一步理解函数,培养学生的函数应用意识,增强学生对数学的兴趣。
二、重难点分析根据新课程标准及对教材的分析,确定本节课重难点如下:重点:本节课是围绕指数函数的概念和图象,并依据图象特征归纳其性质展开的。
因此本节课的教学重点是掌握指数函数的图象和性质。
难点:1、对于1>a 和10<<a 时函数图象的不同特征,学生不容易归纳认识清楚。
因此,弄清楚底数a 对函数图象的影响是本节的难点之一。
2、底数相同的两个函数图象间的关系。
三、目标分析1.知识技能目标掌握指数函数的概念、图象和性质。
2.过程性目标通过自主探索,让学生经历“特殊→一般→特殊〞的认知过程,完善认知结构,领会数形结合、分类讨论、归纳推理等数学思想方法。
3.情感、价值观目标让学生感受数学问题探索的乐趣和成功的喜悦,体会数学的理性、严谨及数与形的和谐统一美,展现数学实用价值及其在社会进步、人类文明发展中的重要作用。
四、学情分析1.有利因素学生刚刚学习了函数的定义、图象、性质,已经掌握了研究函数的一般思路,对于本节课的学习会有很大帮助。
2.不利因素本节内容思维量较大,对思维的严谨性和分类讨论、归纳推理等能力有较高要求,学生学习起来有一定难度。
五、教法学法根据对教材、重难点、目标及学生情况的分析,本着教法为学法服务的宗旨,确定以下教法、学法:探究发现式教学法、类比学习法,并利用多媒体辅助教学。
人教版高一数学《指数函数》教案15篇人教版高一数学《指数函数》教案15篇人教版高一数学《指数函数》教案(1)课题:§2.1.2指数函数及其性质教学任务:(1)使学生了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;(2)理解指数函数的的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性和特殊点;(3)在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程、数形结合的方法等.教学重点:指数函数的的概念和性质.教学难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质.教学过程:一、引入课题(备选引例)1.(合作讨论)人口问题是全球性问题,由于全球人口迅猛增加,已引起全世界关注.世界人口2000年大约是60亿,而且以每年1.3%的增长率增长,按照这种增长速度,到2050年世界人口将达到100多亿,大有“人口爆炸”的趋势.为此,全球范围内敲起了人口警钟,并把每年的7月11日定为“世界人口日”,呼吁各国要控制人口增长.为了控制人口过快增长,许多国家都实行了计划生育.我国人口问题更为突出,在耕地面积只占世界7%的国土上,却养育着22%的世界人口.因此,中国的人口问题是公认的社会问题.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.按照上述材料中的1%的增长率,从2000年起,x年后我国的人口将达到2000年的多少倍?到2050年我国的人口将达到多少?你认为人口的过快增长会给社会的发展带来什么样的影响?2.上一节中GDP问题中时间x与GDP值y的对应关系y=1.073x(x∈N*,x≤20)能否构成函数?3.一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x年为自变量,残留量y的函数关系式是什么?4.上面的几个函数有什么共同特征?二、新课教学(一)指数函数的概念一般地,函数叫做指数函数(exponential function),其中x是自变量,函数的定义域为R.注意:指数函数的定义是一个形式定义,要引导学生辨析;注意指数函数的底数的取值范围,引导学生分析底数为什么不能是负数、零和1.巩固练习:利用指数函数的定义解决(教材P68例2、3)(二)指数函数的图象和性质问题:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?研究方法:画出函数的图象,结合图象研究函数的性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.探索研究:1.在同一坐标系中画出下列函数的图象:(1)(2)(3)(4)(5)2.从画出的图象中你能发现函数的图象和函数的图象有什么关系?可否利用的图象画出的图象?3.从画出的图象(、和)中,你能发现函数的图象与其底数之间有什么样的规律?4.你能根据指数函数的图象的特征归纳出指数函数的性质吗?5.利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;(4)当时,若,则;(三)典型例题例1.(教材P56例6).解:(略)例2.(教材P57例7)解:(略)巩固练习:(教材P59习题A组第7题)三、归纳小结,强化思想本节主要学习了指数函数的图象,及利用图象研究函数性质的方法.四、作业布置1.必做题:教材P59习题2.1(A组)第5、6、8、12题.2.选做题:教材P60习题2.1(B组)第1题.人教版高一数学《指数函数》教案(2)3.1.2指数函数的概念教学设计一、教学目标:知识与技能:理解指数函数的概念,能够判断指数函数。
《指数函数及其性质(一)》教案一、教学目标:1.知识与技能了解指数函数模型的实际背景,理解指数函数的概念,掌握指数函数的图象,根据图象理解和掌握指数函数的性质.2.过程与方法能借助计算器或计算机画出具体指数函数的图象,探索指数函数图象特征.通过观察,进而研究指数函数的性质.3.情感、态度与价值观在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣,努力培养学生的创新意识.二、教学重难点:1.教学重点:指数函数的概念和图象.2.教学难点:指数函数的概念和图象及性质.三、教学方法:采用观察、分析、归纳、抽象、概括,自主探究,合作交流的教学方法,通过各种教学媒体(如计算机或计算器),调动学生参与课堂教学的主动性和积极性.四、教学过程:教学环节教学内容师生互动设计意图复习引入1. 在本章的开头,问题(1)中时间x与GDP值中的1.073(20)xy x x=∈≤与问题(2)中时间t和C-14含量P的对应关系]t51301P=[()2,请问这两个函数有什么共同特征.2. 这两个函数有什么共同特征学生思考回答函数的特征.由实际问题引入,不仅能激发学生的学习兴趣,而且可以培养学生解决实际问题的能157301][()]2t P =t57301把P=[()变成2,从而得出这两个关系式中的底数是一个正数,自变量为指数,即都可以用x y a =(a >0且a ≠1来表示).力.形成概念 理解概念 指数函数的定义一般地,函数x y a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R.回答:在下列的关系式中,哪些不是指数函数,为什么?(1)22x y += (2)(2)x y =- (3)2x y =- (4)xy π= (5)2y x = (6)24y x =(7)x y x = (8)(1)xy a =- (a >1,且2a ≠) 小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,x a 是一个确定的实数,所以函数的定义域为实数集R.000,0x x a a x a ⎧>⎪=⎨≤⎪⎩x当时,等于若当时,无意义若a <0, 如1(2),,8x y x x =-=1先时,对于=等等,6在实数范围内的函数值不存在.若a =1, 11,x y == 是一个常量,没有研究的意义,只有满足(0,1)x y a a a =>≠且的形式才能称为指数函数,a 为常数, 如:,,x y x =1xxy=2-3,y=253,31x x y y +==+等等,不符合(01)x y a a a =>≠且的形式, 所以不是指数函数 .学生独立思考,交流讨论,教师巡视,并注意个别指导,学生探讨分析,教师点拨指导.由特殊到一般,培养学生的观察、归纳、概括的能力.使学生进一步理解指数函数的概念.深化概念我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 下面我们通过 先来研究x y a =(a >1)的图象,学生列表计算,描点、作图.通过列表、计算使学生用计算机完成以下表格,并且用计算机画出函数2x y =的图象 x 3.00- 2.50-2.00- 1.50- 1.00-00.000.50 1.00 1.50 2.002xy = 18-1412124再研究x y a =(0<a <1)的图象,用计算机完成以下表格并绘出函数1()2x y =的图象.从图中我们看出12()2x x y y ==与的图象有什么关系?通过图象看出12()2x x y y y ==与的图象关于轴对称,实质是2x y =上的点(x ,y )x y x,y y 1与=()上点(-)关于轴对称.2讨论:12()2x x y y ==与的图象关于y 轴对称,所以这x2.50- 2.00- 1.50- 1.00- 0.00 1.00 1.50 2.00 2.50 1()2x y =14121 2 4教师动画演示.学生观察、归纳、总结,教师诱导、点评. 体会、感受指数函数图象的化趋势,通过描点,作图培养学生的动手实践能力.不同情况进行对照,使学生再次经历从特殊到一般,由具体到抽象的思维过程.培养学生的归纳概括能力.两个函数是偶函数,对吗?②利用电脑软件画出115,3,(),()35x x x x y y y y ====的函数图象.问题:从画出的图象中,你能发现函数的图象与底数间有什么样的规律.从图上看x y a =(a >1)与x y a -=两函数图象的特征——关于y 轴对称.应用 举例 例1(P 66 例6)已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求(0),(1),(3)f f f -的值.例1分析:要求(0),(1),(3)f f f -的值,,,xa x π13只需求出得出f()=()再把0,1,3分别代入x ,即可求得(0),(1),(3)f f f -. 解:将点(3,π),代入()x f x a =得到(3)f π=,即3a π=,解得:13a π=,于是3()x f x π=,所以0(0)1f π==, f(1)=31π=3π , 11(3)f ππ--==.学生思考、解答、交流,教师巡视,注意个别指导,发现带有普遍性的问题,应及时提到全体学生面前供大家讨论. 巩固所学知识,培养学生的数形结合思想和创新能力. 0归纳总结1、理解指数函数(0),xy a a=>101a a><<注意与两种情况2、解题利用指数函数的图象,可有利于清晰地分析题目,培养数型结合与分类讨论的数学思想 .学生先自回顾反思,教师点评完善.通过师生的合作总结,使学生对本节课所学知识的结构有一个明晰的认识,形成知识体系.形成概念概念深化图象特征a>1 0<a<1向x轴正负方向无限延伸:函数的定义域为R图象关于原点或y轴不对称:非奇非偶函数函数图象都在x轴上方:函数的值域为R+函数图象都过定点(0,1):0a=1自左向右,图象逐渐上升:增函数自左向右,图象逐渐下降:减函数在第一象限内的图象纵坐标都大于1:x>0,x a>1在第一象限内的图象纵坐标都小于1:x>0,x a<1在第二象限内的图象纵坐标都小于1:x<0,x a<1在第二象限内的图象纵坐标都大于1:x<0,x a>1问题:指数函数xy a=(a>0且a≠1),当底数越大时,函数图象间有什么样的关系.师:引导学生观察指数函数的图象,归纳出图象的特征.生:从渐进线、对称轴、特殊点、图象的升降等方面观察指数函数的图象,归纳出图象的特征.师:帮助学生完善.师:画出几个图象提出问题.生:画出几个底数不同的指数函数图象,得到指数函数xy a=(a>0且a≠1),当底数越大时,在第一象限的函数图象越高.(底大图高)通过分析图象,得到图象特征,从而进一步得到指数函数的性质。
3.1.2指数函数
教学目标:1.使学生掌握指数函数的概念,图象和性质.
(1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域.
(2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质.
2. 通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.
教学重点:指数函数的图象、性质。
指数函数的图象性质与底数a 的关系 教学过程:
(1)通过问题:某种细胞分裂时,由1个分裂成2个,2个分裂成4个……1个这样的细胞
分裂x 次后,得到的细胞个数y 与x 的函数关系式是y =2x
引出指数函数的概念:一般地,函数y=a x
(a>0且a ≠1)叫做指数函数,其中x 是自变量,函数定义域是R.
(2)指数函数的图像和性质: ① 通过描点画函数图像:
首先我们来画y=2x
的图象。
再来研究0<a<0 的情部,例如, 我们来画 的图象,即画y=2-x
的图象。
可得x,y
的对应值,用描点法画出图象。
也可根据y=2-x 的图象与y=2x 的图象关于y 轴对称,由y=2x 的图象对称得到y=2-x
,如图
②由于图象是形的特征,所以先从几何角度看它们有什么特征.教师可列一个表,如下:
x
y )2
1(
然后总结:
(3)例子
1、比较下列各组数的大小:
(1)和; (2)和;
(3)和; (4)和,
2、(1)指数函数①②满足不等式,则它们的图象是( ).
分析:此题应首先根据底数的范围判断图象的升降性,再根据两个底数的大小比较判断对应的曲线.
解:由可知①②应为两条递减的曲线,故只可能是或,进而再判
断①②与和的对应关系,此时判断的方法很多,不妨选特殊点法,令,①②对应的
函数值分别为和,由可知应选.
(2)曲线分别是指数函数,和的图象,则
与1的大小关系
是 ( ).
分析:首先可以根据指数函数单调性,确定,在轴右侧
令,对应的函数值由小到大依次为,故应选.
说明:这种类型题目是比较典型的数形结合的题目,第(1)题是由数到形的转化,第(2)题则是由图到数的翻译,它的主要目的是提高学生识图,用图的意识.
课堂练习:第99页练习A, 第100页练习B
小结:本节学习了根式、分数指数幂的概念以及利用分数指数的运算性质进行指数的运算.课后作业:第100页习题3-1A第2、3、4题。