第3章 多元(复)回归分析分解
- 格式:ppt
- 大小:775.50 KB
- 文档页数:36
第三章 多元线性回归模型一、知识点列表二、关键词1、多元线性回归模型的代数和矩阵表示形式 关键词: 多元线性总体回归模型多元线性总体回归模型是指被解释变量y 与多个解释变量12,,,n x x x 之间具有线性关系,是解释变量的多元线性函数。
可以表达为:01122(1,2,3,,)i i i k ki iy x x x i n ββββμ=++++=多元线性回归模型相对于一元线性回归模型来说,其解释变量较多,因而计算公式比较复杂。
必要时需要借助计算机来进行。
2、多元线性回归模型的基本假设 关键词: 线性于参数总体回归模型是关于参数是线性的,因此称其为线性于参数。
关键词:完全共线性在样本中,没有一个自变量是常数,自变量之间也不存在严格(完全)的线性关系。
如果方程中有一个自变量是其他自变量的线性组合,那么我们说这个模型遇到了完全共线性问题。
关键词:零条件数学期望给定解释变量的任何值,误差的期望值为零,即:12(|,,,)0n E u x x x =。
关键词:内生解释变量和外生解释变量如果解释变量满足零条件数学期望,则称该自编为内生解释变量;反之,则为外生解释变量。
关键词:同方差对于解释变量的所有观测值,随机误差项有相同的方差,即:22()(),(1,2,3,,)i i Var u E u i n δ===关键词:无序列相关性随机误差项两两不相关。
即(,)(,)0,(,,1,2,3,,)i i i i Cov u u E u u i j i j n ==≠=关键词:最优线性无偏估计量满足以下假设条件的OLS 估计量称为最优线性无偏估计量:(1)线性与参数;(2)X 固定;(3)X 有变异;(4)不存在完全共线性;(5)零条件数学期望;(6)同方差;(7)无序列相关性。
关键词:经典正态线性回归模型如果回归模型的OLS 估计量为最优线性无偏估计量,并且随机误差项u 服从均值为零,方差为2δ的正态分布,则称该线性回归模型为经典正态线性回归模型。
一、邹式检验(突变点检验、稳定性检验)1.突变点检验1985—2002年中国家用汽车拥有量(t y ,万辆)与城镇居民家庭人均可支配收入(t x ,元),数据见表6.1。
表6.1 中国家用汽车拥有量(t y )与城镇居民家庭人均可支配收入(t x )数据年份 t y (万辆)tx (元)年份 t y (万辆)tx (元)1985 28.49 739.1 1994 205.42 3496.2 1986 34.71 899.6 1995 249.96 4283 1987 42.29 1002.2 1996 289.67 4838.9 1988 60.42 1181.4 1997 358.36 5160.3 1989 73.12 1375.7 1998 423.65 5425.1 1990 81.62 1510.2 1999 533.88 5854 1991 96.04 1700.6 2000 625.33 6280 1992 118.2 2026.6 2001 770.78 6859.6 1993155.77 2577.4 2002968.98 7702.8下图是关于t y 和t x 的散点图:从上图可以看出,1996年是一个突变点,当城镇居民家庭人均可支配收入突破4838.9元之后,城镇居民家庭购买家用汽车的能力大大提高。
现在用邹突变点检验法检验1996年是不是一个突变点。
H0:两个字样本(1985—1995年,1996—2002年)相对应的模型回归参数相等H1:备择假设是两个子样本对应的回归参数不等。
在1985—2002年样本范围内做回归。
在回归结果中作如下步骤(邹氏检验):1、Chow 模型稳定性检验(lrtest)用似然比作chow检验,chow检验的零假设:无结构变化,小概率发生结果变化* 估计前阶段模型* 估计后阶段模型* 整个区间上的估计结果保存为All* 用似然比检验检验结构没有发生变化的约束得到结果如下;(如何解释?)2.稳定性检验(邹氏稳定性检验)以表6.1为例,在用1985—1999年数据建立的模型基础上,检验当把2000—2002年数据加入样本后,模型的回归参数时候出现显著性变化。
第3章 多元线性回归思考与练习参考答案3.1 见教材P64-653.2 讨论样本容量n 与自变量个数p 的关系,它们对模型的参数估计有何影响?答:在多元线性回归模型中,样本容量n 与自变量个数p 的关系是:n>>p 。
如果n<=p 对模型的参数估计会带来很严重的影响。
因为:1. 在多元线性回归模型中,有p+1个待估参数β,所以样本容量的个数应该大于解释变量的个数,否则参数无法估计。
2. 解释变量X 是确定性变量,要求,表明设计矩阵X 中的自变量列之间不相关,即矩阵X 是一个满秩矩阵。
若,则解释变量之间线性相关,是奇异阵,则的估计不稳定。
3.3证明 随机误差项ε的方差σ2的无偏估计。
证明:3.4 一个回归方程的复相关系数R=0.99,样本决定系数=0.9801,我们能断定这个回归方程就很理想吗?答:不能。
复相关系数R 与样本决定系数都是用来表示回归方程对原始数据拟合程度的好坏。
样本决定系数取值在【0,1】区间内,一般来说,越接近1,即取值越大,说明回归拟合的效果越好。
但由于的大小与样本容量n 和自变量个数p 有关,当n 与p 的值接近时,容易接近1,说明中隐含着一些虚假成分。
而当样本容量n 较小,自变量个数p 较大时,尽管很大,但参数估计效果很不稳定。
所以该题中不能仅仅因为很大而断定回归方程很理想。
3.5 如何正确理解回归方程显著性检验拒绝,接受? 答:一般来说,当接受假设时,认为在给定的显著性水平α之下,自变量,,…,对因变量y 无显著性影响,则通过,,…,去推断y 就无多大意义。
此时,一方面可能该问题本应该用非线性模型描述,我们误用线性模型描述了,使得自变量对因变量无显著影响;另一方面可能是在考虑自变量时,由于认识上的局限性把一些影响因变量y 的自变量漏掉了,这就从两个方面提醒我们去重新考虑建模问题。
当拒绝时,也不能过于相信该检验,认为该模型已经很完美。
其实当拒绝H 时,我们只能认为该回归模型在一定程度上说明了自变量,,…,与因变量y 的线性关系。