页岩气井场快速识别评价技术
- 格式:pdf
- 大小:477.25 KB
- 文档页数:5
今天给大家推送此文,是该规范的编制部门国土资源部矿产资源储量评审中心的两位老师写的,原文发在“中国矿业报”6月12日上。
烟花未对内容有任何改动。
谢谢原文作者。
么么~2014年4月17日,国土资源部以公告形式,批准发布了由全国国土资源标准化技术委员会审查通过的《页岩气资源/储量计算与评价技术规范(DZ/T0254-2014)》(以下简称《规范》),并于2014年6月1日实施。
这是我国第一个页岩气行业标准,是规范和指导我国页岩气勘探开发的重要技术规范,是加快推进我国页岩气勘探开发的一项重大举措。
《规范》的发布实施是我国非常规油气领域的一件大事,必将对我国页岩气资源储量管理和页岩气勘探开发产生重要影响。
《规范》的重要意义2011年12月,国务院批准页岩气为新发现矿种,确立了页岩气作为我国第172个矿种的法律地位。
国土资源部将页岩气按独立矿种进行管理,对页岩气探矿权实行招标出让,有序引入多种投资主体,通过竞争取得探矿权,实行勘查投入承诺制和区块退出机制,以全新的管理模式,促进页岩气勘探开发,促使页岩气勘探开发企业加大勘查投入,尽快落实储量,形成规模产量,从而推动页岩气产业健康快速发展。
继2012年3月国家发展改革委员会、国土资源部、财政部、国家能源局共同发布《页岩气发展规划(2011-2015年)》之后,国家有关部门又相继出台了加强页岩气资源勘查开采和监督管理、页岩气开发利用补贴、页岩气开发利用减免税、页岩气产业政策以及与页岩气相关的天然气基础设施建设与运营管理、油气管网设施公平开放监督管理、建立保障天然气稳定供应长效机制等一系列政策规定,为页岩气勘探开发创造了宽松政策环境。
与此同时,其他有关页岩气环保、用水、科技和对外合作等政策措施也在加紧制定中。
目前,我国页岩气勘探开发已进入了实质性发展阶段,重庆涪陵、四川长宁等地区已开始转入页岩气商业性开发。
截至2013年底,全国共设置页岩气探矿权52个,面积16.4万平方千米。
页岩气评价标准据张金川教授页岩气有经济价值的开发必备条件:(1)岩石组成一般为30-50%的粘土矿物、15-25%的粉砂质(石英颗粒);(2)泥地比不小于50%;(3)有机碳含量一般小于30%;(4)TOC:底限0.3%,一般不小于2%;(5)Ro:0.4%-2.2%,高可至4.0%;(6)净厚度:不小于6m;一般在30m以上。
(7)岩石物性:Ф≤10%,Ф含气=1-5%,K取决于裂缝发育程度;(8)吸附气含量:吸附态20%-90%之间,一般50%±;(9)含气量:1-10m3/t;(10)经济开发深度:不大于3800(4000)m页岩气成藏并具有工业价值的基本条件是:气藏埋藏较浅且泥页岩厚度较大,母质丰富且生气强度较大以及裂缝发育等。
据侯读杰教授TOC:一般>4%,有机碳含量大于3%;(据Burnaman(2009)TOC一般不小于2%)Ro:一般在1.1%以上,Ro为1.1%~3.0%厚度:高有机质丰度泥岩(Corg>3.0%)连续厚度15m以上,如有机质丰度低,则须提高其厚度值;矿物含量:石英、方解石、长石等矿物含量大于25%岩石物性:Ф≤10%,Ф含气=1-5%,K取决于裂缝发育程度;地层含气:广泛的饱含气性,吸附态一般>40%;深度:<4000MTOC含量、富有机质页岩厚度与有机质成熟度被认为是决定页岩气区带经济可行性的关键因素(Rokosh et al,2009)。
聂海宽内部控制因素:TOC:具有工业价值的页岩气藏TOC>1%,随着开采技术的进步,有机碳下限值可能会降低至0.3%;(Schmoker认为产气页岩的有机碳含量(平均)下限值大约为2%;Bowker则认为获得一个有经济价值的勘探目标有机碳下限值为2.5%~3%。
)成熟度:变化范围较大,一般>0.4%厚度:具有良好页岩气开发商业价值的页岩厚度下限为9m;据李延钧教授等页岩埋深:小于3000m,深于3000m作为资源潜力区页岩单层厚度:大于30m有机碳含量(TOC):2.0%以上硅质含量:>35%,易于形成微裂缝;储层物性:K≥10-3mD、Ф≥4%有机质成熟度(Ro):1.4%-3.0%李教授根据以上六项页岩气评价指标提出了页岩气分级评价标准如下图所示:据Rimrock Energy,2008页岩气优选标准1ft=0.3048M= How we look for in a gas shale?(Rimrock Energy,2008)Burnaman(2009)认为:对于页岩气的形成而言,拥有高TOC的页岩的连续厚度至少为45m(150ft)。
页岩气地质特征及选区评价页岩气是一种以页岩为主要储层,通过先进的水平钻井和压裂技术开发出来的天然气,其地质特征主要包括储层、控矿构造和含气性等方面。
为了更好地评价页岩气的开发潜力,需要对其选区进行全面综合评价。
储层特征是评价一块页岩气选区开发潜力的重要指标之一,一般分为物性、成分和孔隙结构三个方面。
物性指储层的密度、孔隙度、渗透率、压缩系数等物理特性;成分指储层的有机质含量、有机质类型、排泄类型等化学特性;孔隙结构指储层孔隙的大小、形态和连通性等。
页岩气储层的物性特征通常表现为低渗透率、低孔隙度、低渗透性和高岩石压缩系数等,需要通过水平井和压裂技术进行有效地刺激和提高产能。
在早期选区评价中,通过钻井获取的储层岩心、测井资料和岩相描述等信息,可以较为全面地识别储层特征,但随着技术的不断进步,地震勘探、微地震监测和地下水力学等新技术也被应用于储层特征评价,提高了评价的可靠性。
控矿构造是指影响页岩气储层形成、聚集和保存的因素,主要包括构造、沉积环境和地质历史等方面。
选区评价中要全面分析控矿构造的特点,了解地质构造对页岩气聚集和分布的影响,进而确定开发策略和方案。
页岩气储层的聚集规律一般与构造沉降相对稳定、受构造变形较小、沉积相相对一致的地层区域有较好的相关性。
因此,通过对构造形态、沉积相和断裂发育等方面的综合分析,可以确定最有利于开发的区域。
含气性是指含气岩石在压力释放时所释放的气体,也是评价选区开发潜力的重要指标之一。
含气性受储层岩石物性和构造背景的影响较大,具体表现为含气压力、含气饱和度和气体组成等方面。
页岩气开发中,矿区内不同井的含气性差异较大,需要通过大量的数据采集和分析,针对不同地层与井段开展智能化优化生产。
综上所述,页岩气地质特征及选区评价涉及多个学科领域的知识,需要开展全面而系统的研究和应用,才能更好地确立合适的开发方案和科学的管理策略。
附件页岩气资源/储量计算与评价技术要求(试行)(征求意见稿)2012年7月目次前言1 范围2 规范性引用标准3 总则4 术语和定义5 页岩气地质储量计算6 地质储量计算参数确定7 未发现原地资源量估算8 技术可采储量计算9 经济评价和经济可采储量计算10 储量综合评价附录A(规范性附录)页岩气储量计算参数名称、符号、单位及取值有效位数的规定附录B(规范性附录)页岩气探明地质储量计算关于储层的基本井控要求附录C(规范性附录)页岩气田储量规模和品位等分类页岩气资源/储量计算与评价技术要求(试行)1 范围本要求规定了页岩气资源/储量分类分级及定义、储量计算方法、储量评价的技术要求。
本要求适用于地面钻井开发时的页岩气资源/储量计算,适用于页岩气的资源勘查、储量计算、开发设计及报告编写;可以作为页岩气矿业权转让、证券交易以及其他公益性和商业性矿业活动中储量评估的依据。
2 规范性引用文件下列标准中的条款通过本要求的引用而成为本要求的条款。
凡是注日期的引用标准,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本要求,然而,鼓励根据本要求达成协议的各方研究是否使用这些文件的最新版本。
凡是不注日期的引用标准,其最新版本适用于本要求。
GB/T 19492—2004石油天然气资源/储量分类D Z/T 0217—2005石油天然气储量计算规范D Z/T 0216—2002煤层气资源/储量规范SY/T 5386-2000石油探明储量计算细则(裂缝性油气藏部分)SY/T 6098-2000天然气可采储量计算方法GB/T 19559—2008 煤层气含量测定方法GB/T 13610—2003 《气体组分分析方法》SY/T 5895-93石油工业常用量和单位(勘探开发部分)3 总则3.1 页岩气资源/储量分类体系采用GB/T 19492—2004 《石油天然气资源/储量分类》分类体系。
3.2 从页岩气田发现直至气田废弃的各个勘探开发阶段,油气田的经营者,应根据勘探开发阶段,依据地质、工程资料的变化和技术经济条件的变化,分阶段适时进行储量计算、复算、核算和结算。
川南页岩气水平井导向及断层识别技术摘要】页岩气水平井地质导向工作要充分利用好高伽玛优质页岩储层段的随钻伽马、气测、元素和地震剖面、区域构造等资料,依据相应变化特征来识别、判断、卡准目的层在横向的展部和走向,重构地质模型并结合地质、工程特点设计最佳井轨迹,页岩气水平井控制技术将轨迹整体划分为造斜段和水平段来控制,造斜段设置多级控制点确保中靶,着陆模式分三种:①储层比设计的提前,②储层与设计一致,③储层比设计延后。
其中②、③种模式居优。
水平段轨迹调整以大“S”形绕“中轴线”穿。
对于地质构造复杂区,A靶着陆着是难点, 探寻优质页岩层顶部,一般选择小于地层倾角4-5°的方式,效果较好。
【关键词】水平井;地质导向;页岩气;随钻伽马;着陆模式;0.引言页岩气的形成和富集有着自身独特的特点,往往分布在盆地内厚度较大、分布广的页岩烃源岩地层中。
较常规天然气相比,页岩气开发具有开采寿命长、生产周期长和能够长期地以稳定的速率产气的优点。
通过水平井规模开发方式,提高优质页岩遇率,增加储层裸露面积,从而达到有效挖掘储层天然气,增加单井气产量,减少勘探开发成本的目的。
水平井导向技术紧贴生产实际,具备了较强的实用性和适用性,已成石油工程最重要的关键技术手段之一。
1.水平井造斜段轨迹控制1.1设置多级控制点确保中靶利用已钻井、直井段或者区域已获资料建立垂直剖面,依据目的层随钻GR及元素录井变化差异设置控制点,以A靶点以上多个控制点控制轨迹,根据控制点到A靶的垂厚,再加上水平位移上构造变化高度,将相应控制点投到水平井轨迹上去。
根据随钻GR与XRF变化每到一个控制点,对比实钻和设计误差,及时对A靶点垂深、地层倾角等关键参数进行预测修正,控制中靶,探寻优质页岩层顶部,一般选择小于地层倾角4-5°的方式,效果较好。
1.2水平井轨迹着陆模式A靶点着陆有三种可能模式(如图),第一种优质页岩储层比设计的提前,井轨迹将以大于90°井斜上翘,然后进入水平段,轨迹会有一个较大狗腿度的拐点,增大水平段钻井摩阻,后期轨迹出现多次调整困难。
[收稿日期]2011-05-25 [作者简介]张新华(1971-),男,1994年大学毕业,博士(后),高级工程师,现主要从事录井资料处理、新技术应用、录井动态跟踪与页岩气方面的研究工作。
页岩气井场快速识别评价技术 张新华,陆黄生,王志战 (中国石化石油工程技术研究院,北京100101)[摘要]针对当前世界范围内研究热点之一的页岩气资源,对钻井过程中的页岩气快速评价方法进行了初步探讨。
首先对页岩气录井评价要素进行了分析;然后论述了页岩气录井评价手段。
通过常规及特殊录井技术的应用实例,说明了录井技术在获得页岩储层的有机质含量、成熟度、矿物组成、脆度、含气量等评价要素方面的重要作用。
建议尽快形成页岩气录井技术系列,以便对页岩气藏做出快速准确评价,加快勘探开发节奏。
[关键词]页岩气;井场;快速识别;录井;技术系列[中图分类号]T E132.2[文献标识码]A [文章编号]1000-9752(2011)10-0048-05页岩气是烃源岩中未运移出去的以吸附、游离或者水溶方式存在的天然气[1~5]。
美国是世界上最早对页岩气进行开采的国家[6]。
美国页岩气的成功开发引起了世界范围内对该类资源的重视。
目前,我国对页岩气的研究与勘探开发处于起步阶段。
部分学者对泥页岩油气藏做过一些研究[7~9],但尚未对页岩气资源进行过全面估算。
2005年以来,随着能源需求的急剧增加和国外页岩气资源的成功开发利用,国家层面已经充分认识到页岩气资源的重要性,中石油、中石化及国土资源部加强了我国页岩气资源的调查。
借鉴美国页岩气勘探开发经验及相关资料、文献,对美国页岩气成藏地质条件进行了剖析,总结了页岩气勘探开发技术;在此基础上对四川盆地海相页岩地层页岩气成藏地质条件进行了研究。
据估算认为[7],四川盆地南部下寒武统筇竹寺组页岩气资源量为(7.14~14.6)×1012m 3,而整个四川盆地现有常规天然气资源量为7.2×1012m 3,说明我国页岩气资源量巨大。
页岩气评价标准据张金川教授页岩气有经济价值的开发必备条件:(1)岩石组成一般为30-50%的粘土矿物、15-25%的粉砂质(石英颗粒);(2)泥地比不小于50%;(3)有机碳含量一般小于30%;(4)TOC:底限0.3%,一般不小于2%;(5)Ro:0.4%-2.2%,高可至4.0%;(6)净厚度:不小于6m;一般在30m以上。
(7)岩石物性:Ф≤10%,Ф含气= 1-5%,K取决于裂缝发育程度;(8)吸附气含量:吸附态20% -90%之间,一般50%±;(9)含气量:1-10m3/t;(10)经济开发深度:不大于3800(4000)m页岩气成藏并具有工业价值的基本条件是:气藏埋藏较浅且泥页岩厚度较大, 母质丰富且生气强度较大以及裂缝发育等。
据侯读杰教授TOC:一般>4%,有机碳含量大于3%;( 据Burnaman (2009) TOC一般不小于2% ) Ro:一般在1.1%以上,Ro为1.1%~3.0%厚度:高有机质丰度泥岩(Corg>3.0%)连续厚度15m以上,如有机质丰度低,则须提高其厚度值;矿物含量:石英、方解石、长石等矿物含量大于25%岩石物性:Ф≤10%,Ф含气= 1-5%,K取决于裂缝发育程度;地层含气:广泛的饱含气性,吸附态一般>40%;深度:<4000MTOC含量、富有机质页岩厚度与有机质成熟度被认为是决定页岩气区带经济可行性的关键因素(Rokosh et al,2009)。
聂海宽内部控制因素:TOC:具有工业价值的页岩气藏TOC>1% ,随着开采技术的进步,有机碳下限值可能会降低至0.3%;(Schmoker 认为产气页岩的有机碳含量(平均)下限值大约为2%;Bowker 则认为获得一个有经济价值的勘探目标有机碳下限值为2. 5% ~ 3%。
)成熟度:变化范围较大,一般>0.4%厚 度:具有良好页岩气开发商业价值的页岩厚度下限为9 m;据李延钧教授等页岩埋深:小于3000m,深于3000m 作为资源潜力区页岩单层厚度:大于30 m有机碳含量(TOC):2.0% 以上硅质含量:>35%,易于形成微裂缝;储层物性:K≥ 10-3mD、Ф≥4%有机质成熟度(Ro):1.4%-3.0%李教授根据以上六项页岩气评价指标提出了页岩气分级评价标准如下图所示:据Rimrock Energy, 2008 页岩气优选标准1ft=0.3048M How we look for in a gas shale? (Rimrock Energy, 2008)Burnaman(2009)认为:对于页岩气的形成而言,拥有高TOC的页岩的连续厚度至少为45m(150ft)。
页岩气井场快速识别评价技术
张新华陆黄生王志战中国石化石油工程技术研究院,北京100101
[摘要]针对当前世界范围内研究热点之一的页岩气资源,对钻井过程中的页岩气快速评价方法进行了初
步探讨。
首先对页岩气录井评价要素进行了分析;然后论述了页岩气录井评价手段。
通过常规及特殊录
井技术的应用实例,说明了录井技术在获得页岩储层的有机质含量、成熟度、矿物组成、脆度、含气量
等评价要素方面的重要作用。
建议尽快形成页岩气录井技术系列,以便对页岩气藏做出快速准确评价,
加快勘探开发节奏。
页岩气;井场;快速识别;录井;技术系列
TE132.2A1000-9752 (2011) 10-0048-05
2011-05-25
张新华(1971-),男,1994年大学毕业,博士(后),高级工程师,现主要从事录井资料处理、新技术应用、录井动态跟踪与页岩气方面的研究工作。
手段
3.2
机碳等的判识
@@[1] Curtis J B. Fractured shale-gas systems [J] . AAPG Bulletin, 2002, 86 (11): 1921~1938.
@@[2]张金川,薛会,张德明,等.页岩气及其成藏机理[J].现代地质,2003,17 (4):466.
@@[3] Montgomery S L, Jarvie D M, Bowker K A, et al. Mississippian Barnet Shale, Fort Worth Basin, north-central Texas: Gas shale play with multi-trillion cubic foot potential [J] . AAPG Bulletin, 2005, 89 (2) : 155~175.
@@[4] Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale gas assessment [J] . AAPG Bulletin, 2007, 91 (4): 475~499.
@@[5]李新景,胡素云,程克明.北美裂缝性页岩气勘探开发的启示[J].石油勘探与开发,2007, 34 (4): 392~400.
@@[6]黄玉珍,黄金亮,葛春梅,等.技术进步是推动美国页岩气快速发展的关键[J].天然气工业,2009, 29 (5): 7~10.
@@[7]李建忠,董大忠,陈更生,等.中国页岩气资源前景与战略地位[J].天然气工业,2009, 29 (5): 11~16.
@@[8]王德新,江裕彬,吕从容.在泥页岩中寻找裂缝性油、气藏的一些看法[J].西部探矿工程,1996,8(2): 12~14.
@@[9]赖生华,刘文碧,李德发,等.泥质岩裂缝油藏特征及控制裂缝发育的因素[J].矿物岩石,1998,18 (2): 47~51.
@@[10] Bowker K A. Barnett Shale gas production. Fort Worth Basin: Issues and discussion [J] . AAPG Bulletin, 2007, 91 (4) : 523~533.
@@[11] Burnaman M D, Xia Wenwu, Shelton J. Shale Gas Play Screening and Evaluation Criteria [J] . 中国石油勘探, 2009, 14 (3) : 51~ 64.
@@[12] Xia Wenwu, Michael D B, John S. Geochemistry and Geology Analysis in Shale Gas Play [J] . 中国石油探, 2009, 14 (3) : 34~ 40.
@@[13] Hill D G, Lombardi T E. Fractured gas shale potential in New York [M] . Colorado: Arvada, 2002.
@@[14]侯读杰,张林晔.实用油气地球化学图鉴[M].北京:石油工业出版社,2003.。