x初等数论-第一章
- 格式:ppt
- 大小:1.74 MB
- 文档页数:85
本讲中所涉及的数都是整数,所用的字母除特别申明外也都表示整数. ⑪整除设a 、b 是给定的数,0b ≠.若存在整数c ,使得a bc =,则称b 整除a ,记作b a ∣,并称b 是a 的一个约数(或因子),而称a 为b 的一个倍数.如果不存在上述的整数c ,则称b 不能整除a ,记作b a Œ.由整除的定义,容易推出整除的几个简单性质: ①若b ∣c ,且c a ∣,则b a ∣,即整除性质具有传递性. ②若b a ∣,且b c ∣,则()ba c ±∣,即某一个整数倍数的集合关于加法和减法运算封闭.反复应用这一性质,易知:若b a ∣及bc ∣,则对任意整数u 、v 有()b au cv +∣.更一般地,若1a ,2a , ,n a 都是b 的倍数,则12()n ba a a ++ ∣. ③若b a ∣,则或者0a =,或者||a b ≥.因此,若b a ∣且a b ∣,则||||a b =.④(带余除法)对任意两个整数a 、b (0)b >,则存在整数q 和r ,使得a b q r =⋅+,其中0r b <≤,并且q 和r 由上述条件惟一确定.整数q 称为a 被b 除得的(不完全)商,数r 称为a 被b 除得的余数.r 共有b 种可能的取值,若0r =,即为前面说的a 被b 整除.易知,带余除法中的商实际上是a b ⎡⎤⎢⎥⎣⎦(不超过ab的最大整数),而带余除法的核心是关于余数的不等式:0r b <≤.⑤证明b a ∣的基本手法是将a 分解为b 与一个整数之积.在比较初级的问题中,这种数的分解常通过在一些代数式的分解中取特殊值而产生.下面两个整除分解式在这类论证中应用较多. 若n 是正整数,则1221()()n n n n n n x y x y x x y xy y -----=-++++ ;若n 是正奇数,则1221()()n n n n n n x y x y x x y xy y ----+=+-+-+ .⑫最大公约数与最小公倍数最大公约数是数论中的一个重要概念.设a 、b 不全为零,同时整除a 、b 的整数称为它们的公约数.因为a 、b 不全为零,故由整除的性质③推知,a 、b 的公约数只有有限多个,将其中最大的一个称为a 、b 的最大公约数,用符号()a b ,表示. 当()1a b =,时,即a ,b 的公约数只有1±,称a 与b 互素(或互质).对于多于两个的不全为零的整数a ,b , ,c ,可类似的定义它们的最大公约数()a b c ,,,.若()a b c ,,,1=,则称a ,b , ,c 互素.但此时并不能推出a ,b , ,c 两两互素;但反过来,若a ,b , ,c 两两互素,则显然有()a b c ,,,1=. 由定义容易得到最大公约数的一些简单性质:任意改变a 、b 的符号和先后顺序不改变()a b ,的值,4整除即有()()()a b b a a b ±±==,,,;()a b ,作为b 的函数,以a 为周期,即()()a b a a b +=,,. 下面给出最大公约数的若干性质,它们是解决关于公约问题的基础.①设a 、b 是不全为0的整数,则存在整数x 、y ,使得()ax by a b +=,.如果00x x y y =⎧⎨=⎩是满足上式的一组整数,则00x x buy y au =+⎧⎨=-⎩(其中u 为任意整数)也是满足上式的整数.这表明,满足上式的x 、y 有无穷组,并且在0ab >时,可选择x 为正(负)数,此时y 则相应的为负(正)数.特别的,两个整数a 、b 互素的充分必要条件是存在整数x 、y ,使得1ax by +=,这通常称为a 、b 适合的裴蜀(Bezout )等式.事实上,条件的必要性是性质①的特例.反过来,若有x 、y 使等式成立,设()a b d =,,则d a ∣且d b ∣,故d ax ∣及d by ∣,于是()d ax by +∣,即1d ∣,从而1d =. ②若m a ∣,m b ∣,则()m a b ,∣,即a 、b 任一个公约数都是它们的最大公约数的约数.③若0m >,则()()ma mb m a b =,,. ④若()a b d =,,则1a b d d ⎛⎫= ⎪⎝⎭,.因此,由两个不互素的整数,可自然地产生一对互素的整数. ⑤若()1a m =,,()1b m =,,则()1ab m =,.这表明,与一个固定整数互素的整数构成的集合关于乘法封闭.由此可以推出:若()1a b =,,则对任意0k >与()1k a b =,,进而对任意0l >有()1k l a b =,.⑥设bac ∣,若()1b c =,,则b a ∣. ⑦设正整数a 、b 之积是一个整数的k 次幂(2)k ≥.若()1a b =,,则a 、b 都是整数的k 次幂.一般地,设正整数a b c ,,,之积是一个整数的k 次幂,若a b c ,,,两两互素,则a b c ,,,都是整数的k 次幂.下面介绍最小公倍数.设a 、b 是两个非零整数,一个同时为a 、b 倍数的数称为它们的一个公倍数.a 、b 的公倍数有无穷多个,其中最小的正数称为a 、b 的最小公倍数,记作[]a b ,.对于多个非零整数a b c ,,,,可类似地定义它们的最小公倍数[]a b c ,,,. ⑧a 与b 的任意公倍数都是[]a b ,的倍数.对于多于两个整数的情形,类似的结论也成立. ⑨两个整数a 、b 的最大公约数与最小公倍数满足()[]||a b a b ab =,,. 思考:对于多于两个整数的情形,类似的结论不成立,请举出例子.⑩若a b c ,,,两两互素,则有[]||a b c ab c = ,,,.由此以及性质⑧可知若ad ∣,b d ∣, ,c d ∣,且a b c ,,,两两互素,则有ab c d ∣.⑬素数及唯一分解定理大于1的整数n 总有两个不同的正约数:1和n .若n 仅有这两个正约数(称为n 没有真约数),则称n 为素数(或质数).若n 有真约数,即n 可表示为a b ⋅的形式(这里a 、b 为大于1的整数),则称n 为合数.于是,正整数被分成三类,数1单独作一类,素数类及合数类.素数在正整数中特别重要,我们常用字母p 表示素数.由定义易得出下面的基本结论: ①大于1的整数必有素约数.②设p 是素数,n 是任意一个整数,则或者p 整除n ,或者p 与n 互素.事实上,p 与n 的最大公约数()p n ,必整除p ,故由素数的定义推知,或者()1p n =,,或者()p n p =,,即或者p 与n 互素,或者p n ∣.③设p 是素数,a 、b 为整数.若p ab ∣,则a 、b 中至少有一个数被p 整除.特别地可以推出,若素数p 整除(1)n a n ≥,则pa ∣. ④素数有无穷多个.思考:如何证明素数有无穷多个?(提示:用反证法,假设素数只有有限多个,为12k p p p ,,,,考虑数121k N p p p =+ ,利用性质⑬.①)⑤每个大于1的正整数都可以分解为有限个素数的积;并且,若不计素因数在乘积中的次序,这样的分解是唯一的.将n 的素因数分解中的相同的素因子收集在一起,可知每个大于1的正整数n 可惟一的表示为1212k a a a k n p p p = ,其中12k p p p ,,,是互不相同的素数,12k a a a ,,,是正整数,这称为n 的标准分解.⑥n 的全部正约数为1212k b b b k p p p ,其中i b 是满足0(12)i i b a i k = ,,,≤≤的任意整数. 由此易知,若记()n τ为n 的正约数的个数,()n σ为n 的正约数之和,则有12()(1)(1)(1)k n a a a τ=+++ ,121111212111()111k a a a k k p p p n p p p σ+++---=⋅---. 虽然素数有无穷多个,但它们在自然数中的分布却极不规则.给定一个大整数,判断它是否为素数,通常是极其困难的,要作出其标准分解,则更加困难.证明某些特殊形式的数不是素数(或者给出其为素数的必要条件),是初等数论中较为基本的问题,在数学竞赛中尤为常见.处理这类问题的基本方法是应用各种分解技术,指出所涉及数的一个真约数.【例 1】 证明:⑪设0m n >≥,有22(21)1)n m+-∣(2;⑫对正整数n ,记()S n 为n 的十进制表示中各个数位数码之和,则99()n S n ⇔∣∣. ⑬设p 和q 均为自然数,使得111112313181319p q =-+--+ ,证明:p 可被1979整除.【解析】 ⑪11112222221(21)[(2)21]mn n m n n ++-++-=-+++ 122(21)(21)n m+⇒--∣,又122221(21)(21)n nn+-=-+,从而122(21)(21)nn ++-∣. 于是由整除的传递性,有22(21)1)nm+-∣(2.⑫设101010k k n a a a =⨯++⨯+ ,其中09i a ≤≤,且0k a ≠,则01()k S n a a a =+++ .于是有1()(101)(101)k k n S n a a -=-++- .对1i k ≤≤,由整除分解式知9(101)i -∣,故上式右端k 个加项中的每一个都是9的倍数,从而由整除的性质知,它们的和也被9整除,即9(())n S n -∣.由此容易推出结论的两个方面. ⑶11111112231319241318p q ⎛⎫⎛⎫=++++-+++ ⎪ ⎪⎝⎭⎝⎭ 11111112313192659⎛⎫⎛⎫=++++-+++ ⎪ ⎪⎝⎭⎝⎭11111166013196611318989990⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111197966013196611318989990⎛⎫=⨯+++ ⎪⨯⨯⨯⎝⎭【点评】 整除的性质②提供了证明12()n ba a a +++ ∣的一种基本的想法,我们可以试着去证明更强的(也往往是更容易证明的)命题:1i n ∀≤≤,有i ba ∣.这一更强的命题当然不一定成立,即使在它不成立的时候,上述想法仍有一种常常有效的变通:将12n a a a +++ 适当的分组成为12k c c c ++ ,而(12)i bc i k = ,,,∣. 例1⑫的证明,实际上给出了更强的结论,9())n n S n ∀-,∣(,即()(m od 9)S n n ≡.有些情形,我们能够由正整数十进制表示中的数字的性质,推断这个整数能否被另一个整数整除,这样的结论,常称为整除的数字特征.被2、3、5、10整除的数的数字特征是显而易见的.【变式】 设1k ≥是一个奇数,证明:(2)12)k k k n n n ∀++++ ,Œ(.【解析】1n =结论显然成立.设2n ≥,记所涉及的和为A ,则 22(2)(3(1))(2)k k k k k k A n n n =++++-+++ .因为k 是正奇数,故由整除分解式可知,对每个2i ≥,数(2)k k i n i ++-被(2)2i n i n ++-=+整除,故2A 被2n +除得的余数是2,从而A 不可能被2n +整除(注意22n +>).【点评】 论证中我们应用了“配对法”,这是数论中变形和式的一种常用手法.【变式】 设m 、n 为正整数,2m >,证明:(21)(21)m n -+Œ. 【解析】 当n m =时,结论平凡;当n m <时,结果可由1212121n m m -++<-≤推出来(注意2m >,并运用整除的性质③); 当n m >的情形可化为上述特殊情形:由带余除法,n mq r =+,0r m <≤,而0q >.由于21(21)221n mq r r +=-++,由整除分解式知(21)(21)m mq --∣;而0r m <≤,故由上面证明了的结论知(21)(21)m r -+Œ(注意0r =时,结论平凡).从而当n m >时也有(21)(21)m r -+Œ.这就证明了本题结论.【例 2】 设10a m n >>,,,证明:()(11)1m n m n a a a --=-,,. 【解析】 设(11)m n D a a =--,.通过证明()(1)m n a D -,∣及()(1)m n D a -,∣来推导出()1m n D a =-,,这是数论中证明两数相等的常用手法.∵()m n m ,∣,()m n n ,∣,由整除分解式即知()(1)(1)m n m a a --,∣,以及()(1)(1)m n n a a --,∣,故可知,()1m n a -,整除(11)m n a a --,,即()(1)m n a D -,∣. 为了证明()(1)m n D a -,∣,设()d m n =,. ∵0m n >,,∴可以选择0u v >,使得mu nv d -=.∵(1)m D a -∣,∴(1)mu D a -∣.同样,(1)nv D a -∣.故()mu nv D a a -∣,从而由mu nv d -=,得(1)nv d D a a -∣. 此外,因1a >,及(1)m D a -∣,故()1D a =,,进而()1nv D a =,.于是,从()mu nv D a a -∣可导出(1)d D a -∣,即()(1)m n D a -,∣. 综上所述,可知()1m n D a =-,.【变式】 记2210kk F k =+,≥.证明:若m n ≠,则()1m n F F =,. 【解析】 论证的关键是利用(2)n m F F -∣(例1⑪),即存在一个整数x 使得2m n F xF +=.不妨设m n >,()m n d F F =,,则由存在一个整数x 使得2m n F xF +=,推出2d ∣,所以1d =或2.但n F 显然是奇数,故必须1d =.【点评】(0)k F k ≥称为费马(Fermat )数.本变式表明,费马数两两互素,这是费马数的一个有趣的基本性质.利用这一性质,可以证明素数有无穷多个的结论.无穷数列{}(0)k F k ≥中的项两两互素,所以每个k F 的素约数与这个数列中其他项的素约数不同,因此素数必然有无穷多个.【变式】 设0m n >,,22()mn m n +∣,则m n =. 【解析】 设()m n d =,,则11m m d n n d ==,,其中11()1m n =,.于是,条件转化为221111()m n m n +∣,故有22111()m m n +∣,从而211m n ∣.但11()1m n =,,故211()1m n =,.结合211m n ∣,可知必须11m =.同理11n =,因此m n =.【点评】 对两个给定的不全为零的整数,我们常借助它们的最大公约数,并应用性质⑵-④,产生两个互素的整数,以利用互素的性质作进一步论证(参见性质⑵-⑤,⑵-⑥.就本题而言,由于mn 为二次式,22m n +为二次齐次式,上述手段的实质是将问题化归成m 、n 互素这种特殊情形.在某些问题中,已知的条件(或者已经证明的结论)c a ∣并不使用,我们可以试着选取c 的一个恰当的约束b ,并从c a ∣过度到较弱的结论b a ∣,以期望后者提供适宜于进一步论证的信息.在本例中,我们就是由221111()m n m n +∣产生了211m n ∣,进而推导出11m =.【变式】 m 个盒子中各若干个球,每一次在其中)(m n n <个盒中加一球.求证:不论开始的分布情况如何,总可按上述方法进行有限次加球后使各盒中球数相等的充要条件是()1m n =,. 【解析】 设()1m n =,,则有u v ∈Z ,使得1(1)(1)un vm v m v =+=-++,此式说明:对盒子连续加球u 次,可使1m -个盒子各增加了v 个,一个增加(1)v +个.这样可将多增加了一个球的盒子选择为原来球数最少的那个,于是经过u 次加球之后,原来球数最多的盒子中的球与球数最少的盒子中的球数之差减少1,因此,经过有限次加球后,各盒球数差为0,达到各盒中的球数相等.用反证法证明必要性.若()1m n d =>,,则只要在m 个盒中放1+m 个球,则不管加球多少次,例如,加球k 次,则这时m 个盒中共有球kn m ++1(个),因为||1d m d n d >,,,所以kn m ++1不可能是d 的倍数,更不是m 的倍数,各盒中的球决不能一样多,因此,必须()1m n =,.【例 3】 设正整数a 、b 、c 的最大公约数为1,并且abc a b=-.证明:a b -是一个完全平方数.【解析】 方法一:设()a b d =,,则1a da =,1b db =,其中11()1a b =,.由于()1a b c =,,,故有()1d c =,. 于是问题中的等式转化为1111da b ca cb =-,由此可见11a cb ∣.因11(,)1a b =,故1a c ∣. 同样可得1b c ∣.再由11(,)1a b =便推出11a b c ∣(参考性质⑵-⑧⑨).设11c a b k =,其中k 是一个正整数.一方面,显然k 整除c ;另一方面,结合1111da b ca cb =-, 得11()d k a b =-,故k d ∣.从而()k c d ,∣.但()1c d =,,故1k =. 因此11d a b =-.故211()a b d a b d -=-=.这就证明了a b -是一个完全平方数. 方法二:记a b k -=,则已知等式可化为2()k c b b -=.记()k b c d -=,. 若1d >,则d 有素因子p .由上式知2p b ∣,故p ∣b .结合()p b c -∣及p k ∣,得出p c ∣及p a ∣,这与()1a b c =,,相违. 因此1d =,进而知k 与c b -都是完全平方数.【变式】 设k 为正奇数,证明:(12)(12)k k k n n ++++++ ∣.【解析】 因为(1)122n n n ++++= ,故问题等价于证明:(1)n n +整除2(12)k k k n +++ .因n 与1n +互素,所以这又等价于证明2(12)k k k n n +++ ∣.事实上,由于k 是奇数,故由整除的分解式,可知2(12)k k k n +++= [1(1)][2(2)][(1)1]2k k k k k k k n n n n +-++-++-++ 是n 的倍数.同理,2(12)[1][2(1)][1]k k k k k k k k k n n n n ++=+++-+++ 是1n +的倍数.【点评】 整除问题中,有时直接证明b a ∣不容易.若b 可分解为11b b b =,其中12()1b b =,,则我们可以将原命题b a ∣分解为等价的两个命题1b a ∣以及2b a ∣.本例应用了这一手法.更一般地,为了证明b a ∣,可将b 分解为若干两两互素的整数12n b b b ,,,之积,而证明等价的(12)i b a i n = ,,,∣(参见性质⑵-⑩).【例 4】 设正整数a 、b 、c 、d 满足ab cd =,证明:a b c d +++不是素数. 【解析】 方法一:由ab cd =,可设a d m c b n ==,其中m 和n 是互素的正整数,由a m c n=意味着有理数ac 的分子、分母约去了某个正整数u 后,得到既约分数mn,因此a my =,c nu =.同理,有正整数使得b nv =,d mv =.因此,()()a bcd m n u v +++=++是大于1的整数之积,从而不是素数. 方法二:由ab cd =,得cd b a=.因此a b c d +++=cd a c d a +++()()a c a d a ++=.因为a b c d +++是整数,故()()a c a d a++也是整数,若它是一个素数,设为p ,则有()()a c a d ap ++=,可见p整除()()a c a d ++,从而p 整除a c +或a d +.不妨设()pa c +∣ ,则a c p +≥,结合⑶-③推出a d a +≤,矛盾.【变式】 设a 、b 是正整数,满足2223a a b b +=+,则a b -和221a b ++都是完全平方数. 【解析】 已知关系式即为2()(221)a b a b b -++=,论证的关键是证明正整数a b -与221a b ++互素.记(221)d a b a b =-++,.若d 有素因子p ,从而由性质⑶-①知2p b ∣.因p 是素数,故p b ∣.结合()p a b -∣知p a ∣.再由(221)p a b ++∣推导出p ∣1,矛盾,故1d =. 从而由性质⑶-①推知正整数a b -与221a b ++都是完全平方数.【例 5】 证明:两个连续正整数之积不能是完全平方,也不能是完全立方. 【解析】 反证法,假设有正整数x ,y 使得2(1)x x y +=.则24(1)4x x y +=22(21)41x y ⇔+=+(212)(212)1x y x y ⇔+++-=.因左边两个因数都是正整数,故有21212121x y x y ++=⎧⎨+-=⎩,解得0x y ==,矛盾.然而对于方程3(1)x x y +=,上面的分解方法不易奏效.采用另一种分解:设所说的方程有正整数解x 、y ,则由于x 和1x +互素,而它们的积是一个完全立方数,故x 与1x +都是正整数的立方,即3x u =,31x v +=,y uv =,u 、v 都是正整数,由此产生331v u -=,易知这不可能.不难看到,用类似的论证,可以证明连续两个正整数之积不会是整数的k 次幂(这里2k ≥).【变式】 给定的正整数2k ≥,证明:连续三个正整数的积不能是整数的k 次幂. 【解析】 假设有正整数2x ≥及y ,使得(1)(1)k x x x y -+=.注意到上述式子左端的三个因数1x -、x 、1x +并非总两两互素,因此不能推出它们都是k 次方幂.克服这个困难的一种方法是将其变形为2(1)k x x y -=.因x 和21x -互素,故可由上式推出,有正整数a 、b ,使得k x a =,21k x b -=,ab y =,由此我们有221()k k k k a b a b =-=-22224221()()k k k k a b a a b a b b ----=-++++ ,由于2x ≥,故2a ≥,又2k ≥,故上式后一个因数必大于1,导出矛盾.【点评】 实际上,连续四个正整数的积也不能是整数的k 次幂,由于证明需要使用二项式定理,所以将在以后介绍.【例 6】 (09年集训队测试题)设n 是一个合数.证明存在正整数m ,满足|m n ,m n 3()()d n d m ≤.这里()d k 表示正整数k 的正约数的个数.【解析】 若n 有一个素因子p 满足p n >,令nm p=,则有m n <由p n >知()1m p =,,因此()()()2()d n d p d m d m ==.又由n 是合数知1m >,即()2d m ≥.因此2()()d n d m ≤.现在设n n 1m 为n n 2m 为1nm 的不n 21m >. 若不然,则1n m 没有大于1n 1n m 是合数,则它在区间1(1]n m ,内至少有一个因子,矛盾!因此1nm 是素数.但前面已假设n 的所有素因子都不大于n ,又1n n m n =1n n m =2m n 21m =矛盾!由21m >知121m m m >,且12m m 是n 的因子,由1m 的选取可知12m m n >,因此令312nm m m =,则有(123)i m n i =,,.因此,333123123123()()()()()max{()()()}d n d m m m d m d m d m d m d m d m =≤≤,,,故取123m m m ,,中因子数最多的一个为m 即可. 【点评】 以上用到一个基本的事实:若u v ,为正整数,则()()()d uv d u d v ≤,这可用数()d x 的计算公式推出来.【变式】 求出最小的正整数n ,使其恰有144个不同的正约数,且其中有10个连续约数.【解析】 从n 有10个连续正约数条件出发,我们不难得到n 必须被23410 ,,,,整除,对n 进行质因数分解进行讨论.n 是322357,,,的倍数,设n 的标准分解式为312235k r r r r k n p = ,则 12343211r r r r ,,,≥≥≥≥.又n 的正约数的个数12()(1)(1)(1)144k d n r r r =+++= ,而 1234(1)(1)(1)(1)432248r r r r ++++⨯⨯⨯=≥,因此 56(1)(1)(1)3k r r r +++ ≤.所以,在56k r r r ,,,中最多还有一个不为0. 要使n 最小,则5502k r =,≤≤.于是n 的形式为 35124235711r r r r r n =,此处12345321102r r r r r ,,,,≥≥≥≥≤≤.从而有1234(1)(1)(1)(1)144r r r r ++++=或12345(1)(1)(1)(1)(1)144r r r r r +++++=.显然当12345r r r r r ≥≥≥≥时,n 最小.由144222233=⨯⨯⨯⨯⨯,试算满足上式的数组12345()r r r r r ,,,,,得数组(52111),,,,可使n 最小.这样,最小的52235711110880n =⨯⨯⨯⨯=.习题 1. 证明:⑪2001001 共能被1001整除; ⑫设正整数n 的十进制表示为10k n a a a = (090i k a a ≠,≤≤),记 01()(1)k k T n a a a =-++- (由n 个各位起始的数字的正、负交错和). 证明:()n T n -被11整除.由此得出被11整除的数的数字特征:11整除n 的充分必要条件是11整除()T n .【解析】 ⑪2001001 共201101=+367(10)1=+33663653(101)[(10)(10)101]=+-+-+ ,所以 1001∣2001001 0. ⑫()n T n -=0011()(10)[10(1)]k k k k a a a a a a -++++⨯-- .按i 为偶数、奇数分别用整除分解式可以得到数10(1)i i i i a a ⨯--被11整除.因此()n T n -被11整除,故问题中结论的两方面均成立.习题 2. 利用Bezout 等式证明,任给整数n ,分数214143n n ++是既约分数.【解析】 ∵3(143)2(214)1n n +-+=,∴(214,143)n n ++1=.所以原命题成立.习题 3. 证明:对任意给定的正整数1n >,都存在连续n 个合数. 【解析】 容易验证,(1)!2,(1)!3,(1)!(1)n n n n +++++++ 是n 个连续的合数.习题 4. 求自然数N ,使它能被5和49整除,并且包括1和N 在内,它共有10个约数.【解析】 把N 写成素因数分解形式1223n a a a n N p = ,其中012i a i n = ,,,,≥. 则它所有约数的个数为12(1)(1)(1)10n a a a +++= , 由于25|7|N N ,,则34121a a ++,≥≥3, 因此125n a a a a ,,,,必然都为0,即3457a a N =. 由于34(1)(1)1025a a ++==⨯,可得3414a a ==,, 即本题有唯一解457N =⋅.习题 5. 求所有的正整数对()a b ,,使得22(7)|()ab b a b a b ++++. 【解析】 由条件,22(7)|()ab b a b a b b ++++,而222()(7)7a b a b b a ab b b a ++=+++-,故22(7)|(7)ab b b a ++-.⑴当270b a ->时,要使22(7)|(7)ab b b a ++-,必须2277b a ab b -++≥,易知这不可能; ⑵当270b a -=时,即27b a =,此时a b ,应具有277*a k b k k ==∈N ,,的形式,经检验, 2()(77)a b k k =,,满足要求;⑶当270b a -<时,要使22(7)|(7)ab b b a ++-,必须2277a b ab b -++≥,那么2222777a b ab b ab b +++>⇒<≥,于是1b =或2b =.①1b =时,由题中条件2157788a a a a a ++=-+++是自然数,可知11a =或49a =,得解 ()(111)a b =,,或(491),;②2b =时,由22(7)|(7)ab b b a ++-得7449a a -+是自然数,而74249a a -<+,所以74149a a -=+,此时133a =非自然数,舍去. 综上,所有解为2()(111)(491)(77)*a b k k k =∈N ,,,,,,,.建国60周年(四)我古老而年轻的祖国啊,我是你广袤大地上一棵稚嫩的幼苗,摇曳在你温暖呵护的怀抱,我是你无垠天空中一只飞翔的小鸟,鸣唱在你春风和煦的心头,我的血管里,涌动着黄河的波浪,我的心灵里,开放着文明的鲜花,我心中的理想,正展现在祖国蔚蓝的天空里。
第一节 整数的p 进位制及其应用正整数有无穷多个,为了用有限个数字符号表示出无限多个正整数,人们发明了进位制,这是一种位值记数法。
进位制的创立体现了有限与无限的对立统一关系,近几年来,国内与国际竞赛中关于“整数的进位制”有较多的体现,比如处理数字问题、处理整除问题及处理数列问题等等。
在本节,我们着重介绍进位制及其广泛的应用。
基础知识给定一个m 位的正整数A ,其各位上的数字分别记为021,,,a a a m m,则此数可以简记为:021a a a A m m (其中01 m a )。
由于我们所研究的整数通常是十进制的,因此A可以表示成10的1m 次多项式,即012211101010a a a a A m m m m ,其中1,,2,1},9,,2,1,0{ m i a i 且01 m a ,像这种10的多项式表示的数常常简记为10021)(a a a A m m 。
在我们的日常生活中,通常将下标10省略不写,并且连括号也不用,记作021a a a A m m ,以后我们所讲述的数字,若没有指明记数式的基,我们都认为它是十进制的数字。
但是随着计算机的普及,整数的表示除了用十进制外,还常常用二进制、八进制甚至十六进制来表示。
特别是现代社会人们越来越显示出对二进制的兴趣,究其原因,主要是二进制只使用0与1这两种数学符号,可以分别表示两种对立状态、或对立的性质、或对立的判断,所以二进制除了是一种记数方法以外,它还是一种十分有效的数学工具,可以用来解决许多数学问题。
为了具备一般性,我们给出正整数A 的p 进制表示:012211a p a p a p a A m m m m ,其中1,,2,1},1,,2,1,0{ m i p a i 且01 m a 。
而m 仍然为十进制数字,简记为p m m a a a A )(021 。
典例分析例1.将一个十进制数字2004(若没有指明,我们也认为是十进制的数字)转化成二进制与八进制,并将其表示成多项式形式。
初等数论初等数论从表面意义来讲,就是作为一门研究数的相关性质的数学学科。
准确地按照潘承洞、潘承彪两位数论大师的说法:初等数论是研究整数最基本的性质,是一门十分重要的数学基础课。
它不仅是中、高等师范院校数学专业,大学数学各专业的必修课,而且也是计算机科学等相关专业所需的课程。
纵观数论发展过程,我国出现了许许多多的数论大师,如:华罗庚的早期研究方向、陈景润、潘承洞等。
第一部分:整除初接触初等数论,经过《初等数论》课本知整除理论是初等数论的基础。
整除理论首先涉及整除。
现向上延伸则想到整除的对象,即自然数、整数。
从小学、中学再到大学,我们从接触最初的1、2、3再到后来的有理数、无理数、实数再到复数,可谓种类繁多。
但数论中的整除运算仅仅局限于自然数及其整数等相关范围内。
首先大学数学中绝大多数数学定义中的自然数不包括0 ,这似乎与中学有一点差别,当然整数的定义改变就相对少得多。
另外,自然数、整数的相关基本性质需懂得及灵活利用,如分配律、交换律、反对称性等。
在初等代数中曾系统地介绍了自然数的起源问题:自然数源于经验,自然数的本质属性是由归纳原理刻画的,它是自然数公理化定义的核心。
自然数集合严格的抽象定义是由Peano定理给出的,他刻画了自然数的本质属性,并导出有关自然数的有关性质。
Peano定理:设N是一个非空集合,满足以下条件:(ⅰ)对每一个n∈N,一定有唯一的一个N中的元素与之对应,这个元素记作n+,称为是n的后继元素(或后继);(ⅱ)有元素e∈N,他不是N中任意元素的后继;(ⅲ)N中的任意一个元素至多是一个元素的后继,即从a+=b+ 一定可以推出a=b;(ⅳ)(归纳原理)设S是N的一个子集合,e∈S, 如果n∈S则必有n+ ∈S,那么,S=N.这样的集合N称为自然数集合,它的元素叫做自然数。
其中的归纳原理是我们常用的数学归纳法的基础。
数学归纳法在中学已属重点内容,此处就不作介绍。
主要描述一下推广状态下的第二种数学归纳法:(第二种数学归纳法)设P(n)是关于自然数n的一种性质或命题。
第一章 整除理论§1.1 整数与自然数及整除的基本性质整数集},3,2,1,0,1,2,3,{ ---=Z ,整数中的四则运算我们已在中小学学习过,需要注意的是,任何下有界的非空整数集总含有它的最小元,这一性质也称为最小整数原理.同样地,一个上有界的非空整数集总含有它的最大元,自然数即是正整数,全体自然数集用N 表示.定义1.1.1 设0,,≠∈a Z b a ,如Z d ∈∃使得b ad =,则称a 整除b ,记为b a ,这里a 称为b 的约数或因数(或因子),b 称为a 的倍数.如果a 不能整除b ,则记为b a |/.例如3|1010|312|924|6,15|536|126|3///--,,,,,等等。
值得注意的是,由于Z a ∈∀,有00=⋅a ,若,0≠a 则0|a ,所以0被任何整数整除.定理1.1.1 (i ) .||||b a b a b a b a ⇔-⇔-⇔(ii )(传递性) c a c b b a ||,|⇒.(iii ) 若b d a d |,|,则by ax d Z y x +∈∀|,,有.(iv ) bn an b a n ||,0⇔≠∀(v ) b a a b b a ±=则若,|,|.(vi ) b a b b a ≤≠则且若,0,|.证明 仅证(iii ).因为,,|,|2,1Z d d b d a d ∈∃故使得a dd =1,b dd =2,⇒∀)(,,2121y d x d d y dd x dd by ax Z y x +=+=+∈有,而Z y d x d ∈+21,故by ax d +|.证毕.在此定理中的(iii )显然有如下推广:定理1.1.2 若Z x m i a d i i ∈∀=则),,,2,1(| ,有∑=mi i i x a d 1|.例1 证明 若2|n, 3|n, 则6|n.证明 由于2|n,得n=2k(Z k ∈),由条件知3|2n,又由定理1.1.1中(iv )与(ii )可得3|3k,所以由定理1.1.1(iii )知3|(3k-2k),即3|k,再由定理1.1.1(iv )知k ⨯⨯2|32,即6|n.证毕.定理1.1.3 设b a ,是两个整数,其中0>b ,则存在两个唯一得整数r q 和,使得r bq a +=, b r <≤0 (1)成立证明 考虑数列,3,2,,0,,2,3,b b b b b b ---那么a 必在上述序列的某两之间,或是其中某一项,即存在一个整数q 使得b q a qb )1(+<≤ 成立.令.0,b r r qb a <≤=-则有故有(1)成立.再证唯一性.设11,r q 是满足(1)的另一对整数,因为r bq r q b +=+111,于是r r q q b -=-11)(.所以r r q q b -=-11.由于1r r 与都是小于b 的非负整数.故上式右边小于b ,如果q q ≠1,则上式左边b ≥,这不可能,故必q q =1.由此及上式知r r =1.证毕.定义1.1.2 我们把(1)式中q 叫做a 被b 除得出的不完全商,r 叫做a 被b 除所得到的余数.也叫做非负最小剩余.常记作r a b =><.以后总假定除数0>b 以及因数为正.在不致引起混淆的情况下,b a ><中的b 常略去不写.显然有如下结论:定理1.1.4 对于整数0,,,21>b b a a 其中,有(i ) 〉〉〈+〉〈〈=〉+〈2121a a a a .(ii ) 〉〉〈-〉〈〈=〉-〈2121a a a a .(iii ) 〉〉〉〈〈〈=〉〈2121,a a a a .证明 仅证(i )与(iii ).(ii )读者自证.设〉〈+=111a bq a ,〉〈+=222a bq a . 〉〉〈+〉〈〈+=〉〈+〉〈21321a a bq a a .于是〉〉〈+〉〈〈+++=〉〈+〉〈++=+21321212121)()(a a q q q b a a q q b a a .所以由定理1.1.3知(i )成立.又设 〉〈+=2121,a a bq a a ,于是))((221121〉〈+〉〈+=a bd a bd a a〉〉〈〈+-〉〈+〉〈+=21122121)(a a q a d a d d bd b从而 〉〉〉〈〈〈=〉〉〈〈2121,a a a a ,由定义知〉〉〉〈〈〈=〉〉〉〈〈〈=〉〈212121,a a a a a a由此(iii )得证.§2 最大公因数与辗转相除法定义1.2.1 设n a a a ,,,21 是n 个不全为零的整数.若整数d 是它们之中每一个因数,那么d 就叫做n a a a ,,,21 的一个公因数(或称为公约数).整数n a a a ,,,21 的公因数中最大的一个叫做最大公因数(或称为最大公约数),记作(n a a a ,,,21 ),若(n a a a ,,,21 )=1,我们称n a a a ,,,21 互素.注: n(n>1)个整数的公因数必有限.由最大公因数的定义知(n a a a ,,,21 )=),,,(21n a a a .而一组不全为零的整数的最大公因数等于它们当中全体不为零的整数的最大公因数,所以只须讨论全体正整数的最大公因数.首先将介绍辗转相除法求最大公因数.定理1.2.1 设c b a ,,是任意三个不全为零的整数,且c bq a +=,其中q 是整数,则),(),(c b b a =.证明 b d a d |,|∀,则由定理1.1.1知c d bq a d |).(|即-+,由d 的任意性知c b a |),(,故),(),(c b b a ≤.反之,c d b d |,|∀,由定理1.1.1知a d |,由d 的任意性知a c b |),(,于是),(),(b a c b ≤.综上),(),(c b b a =.证毕.设0,0>>b a ,由定理1.1.3(带余数除法)则有11r bq a +=, )|(01a b b r /<<221r q r b +=, )|(0112b r r r /<<3321r q r r +=, )|(01223r r r r /<<(1) n n n n r q r r +=--12, )|(0211---/<<n n n n r r r r 11+-=n n n q r r , )|(1-/n n r r 由于余数)1(n i r i ≤≤是正整数且逐次减小,所以经有限步后必有一个余数为零.即01=+n r .由(1)及定理1.2.1则得下述结论: 定理1.2.2 若任给整数0,0>>b a ,则n r b a =),(. 证明 由定理1.2.1得),(),(),(),(),0(2111b a r r r r r r r r n n n n n n n n ======---+ . 证毕.定理1.2.3 设0,0>>b a ,对于如上辗转相除法(1).有 n k r b U a V k k k k ,,2,1,)1(1 =-=-- (2) 这里⎩⎨⎧+===+===----211021110,1,1,,1k k k k k k k k V V q V V V U U q U q U U (3) 证明 可用数学归纳法来证明.由(1) 11r bq a +=,可写成 11111)1(r b U a V --=-. 由b q q a q r r b q a q r q r b )1()(1222212221+-=-+-=+=得,即21222)1(r b U a V --=-. 所以当2,1==k k 定理成立.下证由1+k k 到也成立.由于 111-k +++=k k k r r q r , )()1()()1(111121b U a V q b U a V r k k k k k k k k -----=-+---+ 所以)()1(1111b U a V q b U a V r k k k k k k k -+-=-+--+ b U a V b U U q a V V q k k k k k k k k 111111)()(++-+-+-=+-+=证毕.例1.2.1 求(299,247) 解.013339,1339152,39524247,522471299+⨯=+⨯=+⨯=+⨯=故 13)247,299(=由定理1.2.3即得如下推论: 推论1.2.1 若Z y x d b a ∈=,,),(则有使得 d by ax =+.证明 令k k k k U y V x )1(,)1(1-=-=-则有 d r by ax k ==+. 证毕.由例1.2.1知 13,3,247,299====k r n b a .由上面的等式 333b b U a V =-.而1,4,1321===q q q ,由(3)可得6,533==U V ,即1324762995=⨯-⨯. 所以d by ax y x =+-==有6,5.推论1.2.2b a 与的因数是),(b a 的因数. 证明 b a ,∀的公因数d ',则.|,|.|,|d d by ax d b d a d '+'''即所以证毕.定理1.2.4 设),(),(,1),(c b c ab c a ==则. 证明 设1),(,,,),(1111====c b d c c d b b d c b 且则(否则,若1),(11>c b ;反证d 不是b a 与的最大公因数),于是),(),(),(1111c ab d d c d ab c ab ==. 再证若.1),(11=c ab .|,|.1),(111c d ab d d c ab ''>'=则若d '无大于1的因子整除1b .则a d |',又c c |'.c d c d |,|1''于是.所以1),(>'≥d c a .此与1),(11=c b 矛盾.总之,.1),(11=c ab 于是d c ab d c ab ==),(),(11.证毕.推论1.2.3 设b c ab c c a |,|,1),(则=. 证明 因为.|,),(),(b c c c b c ab 即==证毕.。
初等数论第一讲 整数的可除性(1)一. 数论的简单介绍在数学竞赛中,初等数论的问题是考查的热点之一。
初等数论可以说是最古老的数学分支之一,主要研究整数的性质及其相互关系。
数论的发展有很长的历史,古希腊人对数论的发展做出了重要贡献。
初等数论的知识比较简单,但处理问题方面技巧性比较强。
它所涉及的范围有:整数的可除性,同余理论,不定方程,反证法等。
反证法是解决数论问题常用的方法.二. 本讲内容1.整数的基本性质(1)偶数2n ,奇数21n +或21n -.(n 是整数)(2)奇数与偶数的性质奇数±奇数=偶数;偶数±偶数=偶数;奇数±偶数=奇数;奇数⨯奇数=奇数;偶数 ⨯偶数=偶数;奇数 ⨯偶数=偶数.(3)任何一个正整数n 都可以写成2k n m =⋅的形式, 其中k 为非负整数,m 为奇数.2.整除的性质定义:设,a b 是任意两个整数,其中0b ≠,如果存在一个整数q 使得等式a bq =成立,则称b 整除a ,或a 被b 整除,记作b a .整除的性质:(1).|,|,|;(2).,,(1,2,,),|,|;1(3).,,,|,|.(4).|,||||.|,|,;a b b c a c n a b x Z i n a b a b x i i i i i i a b m Z a b am bm a b a b a b b a a b ∈=∑=∈≤=±若则若且则若且则反之,亦成立;若则因此,若则 (5).,|,|,|;|,|(6).|,12|(1).|,|.(7).a b a c b c ab c a bc a c p p a a a a n i n p a i n p p a p a in ⋅≤≤互质,若则若则;为质数,若则至少有一个,使得特别地,若是质数,且则个连续整数的成积一定能被n !整除.算术基本定理(正整数的唯一分解定理) 若不计因数的次数,每一个大于1的整数a 都可以唯一分解成质因数乘积的形式.即12121212,,.n n nn a p p p p p p αααααα=⋅<<<其中均为质数,,,为自然数定理:质数的个数是无穷的.三.例题精讲1.证明:2.3. 设a,b,c 是三个互不相等的正整数,求证: 三数中至少有一个能被10整除.3|(1)(21),.n n n n ++!其中是任何正整数21n+若是质数(n>1),证明:n 是2的方幂.333333,,a b ab b c bc c a ca ---4. 4.设n 为自然数,求证: 能被1985整除.5. 5.设p 是大于5的质数,求证:6.设正整数 d 不等于2,5,13.证明:在集合{2,5,13,d}中可以找到两个元素a,b ,使得ab-1不是完全平方数.7.设 是一组数,它们中的每一个都去1或-1,而且 证明: n 必须是4的倍数.3237632855235n n n n A =--+4240|(1)p -12,,,n a a a 123423451230n a a a a a a a a a a a a +++=。