材料成形复习资料
- 格式:doc
- 大小:316.00 KB
- 文档页数:5
材料成型复习题(答案)一、1落料和冲孔:落料和冲孔又称冲裁,是使坯料按封闭轮廓分离。
落料是被分离的部分为所需要的工件,而留下的周边是废料;冲孔则相反。
2 焊接:将分离的金属用局部加热或加压,或两者兼而使用等手段,借助于金属内部原子的结合和扩散作用牢固的连接起来,形成永久性接头的过程。
3顺序凝固:是采用各种措施保证铸件结构各部分,从远离冒口的部分到冒口之间建立一个逐渐递增的温度梯度,实现由远离冒口的部分最先凝固,在向冒口方向顺序凝固,使缩孔移至冒口中,切除冒口即可获得合格零件的铸造工艺同时凝固:是指采取一些工艺措施,使铸件个部分温差很小,几乎同时进行凝固获得合格零件的铸造工艺4.缩孔、缩松液态金属在凝固过程中,由于液态收缩和凝固收缩,因而在铸件最后凝固部位出现大而集中的孔洞,这种孔洞称为缩孔,而细小而分散的孔洞称为分散性缩孔,简称缩松。
5.直流正接:将焊件接电焊机的正极,焊条接其负极;用于较厚或高熔点金属的焊接。
直流反接:将焊件接电焊机的负极,焊条接其正极;用于轻薄或低熔点金属的焊接。
6 自由锻造:利用冲击力或压力使金属材料在上下两个砧铁之间或锤头与砧铁之间产生变形,从而获得所需形状、尺寸和力学性能的锻件的成形过程。
模型锻造:它包括模锻和镦锻,它是将加热或不加热的坯料置于锻模模膛内,然后施加冲击力或压力使坯料发生塑性变形而获得锻件的锻造成型过程。
7.钎焊:利用熔点比钎焊金属低的钎料作填充金属,适当加热后,钎料熔化将处于固态的焊件连接起来的一种方法。
8.金属焊接性:金属在一定条件下,获得优质焊接接头的难易程度,即金属材料对焊接加工的适应性。
9,粉末冶金:是用金属粉末做原料,经压制后烧结而制造各种零件和产品的方法。
二、1、铸件中可能存在的气孔有侵入气孔、析出气孔、反应气孔三种。
2、金属粉末的基本性能包括成分、粒径分布、颗粒形状和大小以及技术特征等。
3、砂型铸造常用的机器造型方法有震实造型、微震实造型、高压造型、抛砂造型等。
材料成型复习题一、名词解释1、缩孔、缩松2、顺序凝结和同时凝结3、宏观偏析、微观偏析4、流动性、充型能力5、民主自由膨胀、中断膨胀二、填空题1、现代制造过程分类一般分为,,。
2、一般用来表征液态金属的充型能力,用来表征液态金属的流动性。
3、影响液态金属充型能力的因素有、、、四个方面。
4、影响铸造合金收缩的因素有、、、。
5、铸成缩孔构成的基本条件就是,缩松构成的基本条件就是。
6、铸件实际收缩过程中受到的阻力分为、、三种。
7、铸成形变按构成原因相同分成,,三种形变。
8、铸件中往往存在各种气体,其中主要是,其次是和。
9、铸件中可能存在的气孔有、、三种。
10、按照熔炉的特点,铸成合金的选矿可以分成、、、等。
11、通常砂型铸成技术的浇筑系统结构主要由,,,共同组成。
12、砂型铸成常用的机器造型方法存有、、、等。
13、铸成生产中常用的机器制芯方法存有、、、。
14、常用的特种铸成方法存有、、、等。
三、简答题1、影响液态金属充型能力的因素有哪些?2、简述砂型铸造和特种铸造的技术特点。
3、详述铸件上冒口的促进作用和冒口设计必须满足用户的基本原则。
4、铸成成形的浇筑系统由哪几部分共同组成,其功能就是什么?5、选矿铸成合金应当满足用户的主要建议存有哪些?6、先行比较灰铸铁、铸成碳钢和铸成铝合金的铸成性能特点,哪种金属的铸成性能不好?哪种金属的铸成性能高?为什么?四、分析题1、论述金属的铸造性能。
金属的铸造性能不好会伴生哪些铸造缺陷?2、试分析图所示铸造应力框:(1)铸成形变侧边凝结过程属民主自由膨胀还是中断膨胀?(2)铸成形变侧边在凝结过程中将构成哪几类铸成形变?(3)在凝固开始和凝固结束时铸造应力框中1、2部位应力属什么性质(拉应力、压应力)?(4)铸成形变侧边加热至常温时,在1部位的c点将其锯断,ab两点间的距离l将如何变化(变小短、变长、维持不变)?3、先行分析如下图右图铸件:(1)哪些是自由收缩,哪些是受阻收缩?(2)受阻收缩的铸件形成哪一类铸造应力?(3)各部分应力属什么性质(拉应力、压应力)?一、名词解释:1、金属塑性变形2、自由锻、模锻、胎模锻3、落料、冲孔4、板料分离和成形5、金属的可锻性二、填空1、金属塑性成形的基本条件为、。
题型与比例:选择题20%,填空题30% ,是非题20%,其他30%第一章1.铸件的凝固方式有:逐层凝固、糊状凝固、中间凝固2.合金的结晶温度范围越小,凝固区域越窄,越倾向于逐层凝固。
3.液态金属本身的流动性能力称为流动性。
4.液态合金充满型腔,获得形状完整,轮廓清晰的铸件的能力,称为充型能力。
5.影响合金流动性的因素:1.合金的种类2.合金的成分3.浇注的条件4.铸型的充填条件6.灰铸铁、硅黄铜的流动性最好,铝合金次之,铸钢最差。
7.收缩是铸造合金从浇注、凝固直至冷却到室温的过程中,其体积或尺寸缩减的现象。
收缩是合金的物理本性,在铸造过程中,因收缩可能会导致铸件产生缩孔、缩松、应力、变形和裂纹等缺陷。
8.缩孔是在铸件最后凝固的部分形成容积较大而且集中的空洞。
9.缩松是细小而分散的空洞。
10.定向凝固(顺序凝固)在铸件上可能出现缩孔的厚大部位安放冒口,在远离冒口的部分安放冷铁,使铸件上远离冒口的部位先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。
11.铸造内应力按产生的原因不同,分为热应力、收缩应力、相变应力。
热应力主要是铸件冷却中,由于冷却速度不同而引起不均衡收缩所产生的应力。
热应力使冷却较慢的厚壁处或心部受拉伸,冷却较快的薄壁处或表面受压缩。
12.一般铸件冷却到弹性状态后,收缩受阻才会产生收缩应力,而且收缩应力表现为拉应力或切应力。
13.同时凝固:采取措施使铸件各部分无温差或温差尽量小,几乎同时进行凝固。
自然时效:将铸件置于露天场地半年以上,让其缓慢地发生变形,内应力消除。
热时效(人工时效)又称去应力退火,将铸件加热到550~650°C,保温2~4h,随炉慢冷至150~220°C,然后出炉。
14.热裂一般是在凝固末期,金属处于固相线附近的高温时形成的。
热裂纹的特征是裂纹短,缝隙较宽,形状曲折,裂口表面氧化较严重15.冷裂的特征是裂纹细小,呈连续直线状,具有金属光泽或微氧化色。
材料成型工艺学拉拔部分复习资料1.什么是拉拔安全系数,试解释其物理意义?被拉金属出模口的抗拉强度与拉拔应力之比称为安全系数。
它反映的是拉拔过程能否实现以及实现的难易程度。
2.空拉纠正偏心的原理?①若同一圆周上径向应力分布均匀,则薄壁处的周向应力大,因为周向应力是使薄壁增加的因素,因此薄壁处增厚的多,直至壁厚均匀。
②由于薄壁处的周向应力大,因此薄壁处先发生塑性变形,产生轴向延伸,结果在薄壁处产生轴向附加压应力,使壁增厚;厚壁处产生轴向附加拉应力,使壁减薄,直至壁厚均匀,附加应力消失。
3.游动芯头拉拔时,芯头在变形区内稳定的条件是什么?芯头锥角大于摩擦角;芯头锥角还应小于或等于模角;芯头头轴向游动的几何范围应有一定的限度。
4.比较空拉,固定段芯头拉拔,游动芯头拉拔优缺点。
空心拉拔特点:1,能纠正偏心。
2,适于小管,异型管以及盘管拉拔。
3,拉拔力小,道次加工率大。
4,操作简单。
5,制品内表面质量差,尺寸精度低。
固定短芯头拉拔特点:1,由于内摩擦的存在,拉拔力大,道次加工率小,但变形较均匀。
2,内表面质量好,尺寸精确。
3,不能生产较长的制品。
因为a长的芯杆在自重作用下易弯曲,导致芯头难以正确的固定在模孔中;b长的芯杆弹性变形量较大,易引起跳车,使制品出现竹节缺陷。
游动芯头拉拔特点:1能生产长管,盘管(生产率,成品率高)。
2能消除芯杆带来的竹节,偏心等缺陷。
3拉拔力低,道次加工率大。
4由于芯头游动,内表面易出现明暗交替的环纹。
5工艺难度大。
长芯杆拉拔:1拉拔力小,道次加工率大。
2适用于小管薄壁管以及塑性差的合金管的生产。
3脱杆麻烦5反拉力对拉拔过程的影响?随反拉力的增加,模壁压力下降,但拉拔力开始不变,直到Q增加到Q c后才开始升高,因此采用反拉力小于临界反拉力进行拉拔是有利的。
体现在:在不增加能量消耗的情况下,可减小模孔的磨损。
6.若低碳钢圆棒拉拔时仅表面发生变形,画出残余应力分布图?仅表面发生变形时:轴向上:边部为压、中心为拉;径向上:整个断面为压;周向上:与轴向上相同。
材料成型复习资料复习资料⼀、填空1. 浇注温度过低,液体⾦属量不够,铸件就会产⽣冷隔或_____缺陷_____。
2. ____温度__________对合⾦流动性的影响最显著。
3. 合⾦的铸造性能⽤____充型能⼒__________和___收缩性___________来衡量。
(P3)4. 铸钢的流动性⽐铸铁__低____ 。
5. 浇注温度越___⾼___,上砂箱越___容易___,合⾦的充型能⼒越好。
6. 铸造合⾦的收缩经历____液态______、_凝固__________、___固态______三个阶段。
(P6)7. 缩孔和缩松是由于合⾦的______凝固__收缩和____糊状凝固____收缩引起的。
8. 防⽌缩孔的⽅法是控制铸件的___凝固____顺序,使之符合___定向凝固______原则。
9. 铸件的凝固⽅式有_逐层凝固_________、___糊状凝固________、____中间凝固_____。
10.铸造应⼒主要分为_____热应⼒____和____收缩应⼒_____两类,是铸件产⽣___变形______和____裂纹_____的根本原因。
11.影响⾦属可锻性的主要因素有___化学成分______、__⾦属组织_______、___变形速度______、___变形温度______、____应⼒状态_____。
12.锻模模膛按作⽤可分为_________、_________和_________。
13.冲裁变形分为____弹性变形阶段_____、___塑性变形阶段______和___断裂分离阶段______三个阶段,冲裁件断⼝区域________越⼤,则冲裁件质量越好,影响冲裁件质量的主要因素有_凸凹模间隙________和_刃⼝锋利程度_______等。
(P69)14.拉深件的主要缺陷有__起皱_______和__拉穿_______。
(P72)15.轧制的主要⽅法有____辊锻_____、__横轧_______和__斜轧_______。
材料成型工艺学锻造部分复习资料1、锻压加工主要有那些方法?热锻:自由锻、模锻;冷锻:冷挤、冷镦、冲裁、弯曲、拉深、胀形。
2、锻压与其它加工方法(铸造、轧制、挤压、拉伸)相比有什么特点?A 铸造是针对塑性较低的材料提供接近零件形状的毛坯。
B 锻造采用热加工,得到高强度质量的零件。
C 冲压是冷加工得到零件。
D 锻压与其它成形方法(轧制、挤压、拉伸等)对比锻压指向品种多而复杂的坯料或零件。
轧制、挤压、拉伸等指向板、带、条、箔、管、棒、型、线的一次加工产品,该产品尚需二次加工(锻、冲、铆、焊)。
3、试述锻造发展趋势。
A做大,设备向巨型化发展。
B做精,设备专门化、精密化和程控化。
C近终形,锻件形状、尺寸精度和表面质量最大限度地与产品零件接近,以达到少、无切削加工之目的。
D为适应大批量生产的要求,发展专业化生产线,建立专门的锻造中心,实现整机制造中零件的系列化、通用化和标准化。
E 大力发展柔性制造和CAD/CAM技术。
F模锻的比例加大,自由锻的比例减少。
G发展锻造新工艺4、锻造在冶金厂和机械类厂有何应用?a冶金厂:高速钢、钛等高温合金的锻造开坯,之后才进行轧或挤成板棒材。
b机械厂:主要为重要零件准备毛坯。
5、模锻工艺一般由那些工序组成?下料→加热→模锻→(切边、冲孔)→酸洗与清理→热处理→去氧化皮(打磨或刮削)→涂漆→检验等。
6、合金钢加热过程要注意那四个现象?锻造加热温度如何确定?a:钢加热过程中应注意的四点现象:氧化、脱碳、过热、过烧(1)氧化:氧化性气体(O2,CO2,H2O和SO2)与钢发生反应。
(2)脱碳:化学反应造成钢表层碳含量的减少叫脱碳。
(3) 过热:温度过高造成晶粒粗大。
(4)过烧:加热到接近熔化温度并在此温度下长期保留,不仅晶粒粗大,而且晶界熔化。
锻造温度范围的确定:锻造温度范围指开始锻造温度(始锻温度)和终结锻造温度(终锻温度)之间的温度区间。
(1)确定的原则或方法,三图定温:相图,塑性-抗力图,再结晶图。
一、名词解释1.充型能力——液态金属充满型腔的能力。
2.均质形核——在没有外来界面的均匀熔体中形核的过程。
3.溶质再分配——液态金属从形核到完全凝固过程中,固液两相不断进行着溶质元素的交换。
4.析出性气孔——液态金属冷却过程中,因气体溶解度下降,析出的气体来不及逸出而产生的气孔。
5.焊接接头——主要由焊缝、熔合区、热影响区、母材组成。
6.T8/5——金属元素从800℃降到500℃所需的时间。
7.过渡系数——熔敷金属中的实际含量与原始含量之比。
8.熔合比——焊缝中未熔化母材所占比例。
9.体积力——与变形体内各质点质量成正比的力。
10.应力张量——表示应力状态的九个分量构成一个二阶张量。
11.塑性——固体材料在外力作用下发生的永久变形,而不被破坏其完整性的能力。
12.屈服准则——描述不同应力下变形体有弹性状态进入塑性状态,并持续塑性状态所必须遵循的条件。
13.本构方程——塑性变形过程中表示应力状态与应变状态的数学关系式。
二、选择题1.下列哪一项不是液态金属的凝固过程起伏状态( D )。
A.能量起伏B.结构起伏C.成分起伏D.组织起伏2.下列不属于影响液态金属表面张力的因素是( A )。
A.化学成分B.温度C.熔点D.溶质元素3.异质形核速率与下列哪种方式无关( B )。
A.过冷度B.合金成分C.基底形态D.界面4.成分过冷引起的原因是( C )。
A.温度梯度B.平衡系数C.溶质再分配D.成分过冷度5.铸件的性能要求具备明显的方向性,应选择( C )组织。
A.平面晶B.胞状晶C.柱状晶D.等轴晶6.液态金属内部或与铸型之间发生化学反应而产生的气孔,成为( B )。
A.析出性气孔B.反应性气孔C.侵入性气孔D.缩孔7.下列关于熔焊、压焊和钎焊的说法错误的是( D )。
A.熔焊最有利于实现原子间的结合,是金属焊接的最主要方法。
B.使用熔点高于450℃的钎料进行的钎焊成为硬钎焊。
C.熔焊和钎焊微观上相同的,都在连接处形成共同晶粒。
1.咬入:依靠回转的轧辊和轧件之间的摩擦力,轧辊将轧件拖入轧辊之间的现象. 改善咬入条件的途径:①降低a: (1)增加轧辊直径D,(2)降低压下量实际生产:(1)小头进钢,(2)强迫咬入; ②提高:(1)改变轧件或轧辊的表面状态,以提高摩擦角;(2)清除炉生氧化铁皮;(3)合理的调节轧制速度,低速咬入,高速轧制.2.宽展:高向压缩下来的金属沿着横向移动引起的轧件宽度的变化成为宽展.3.宽展分类: ①自由宽展: 在横向变形过程中,除受接触摩擦影响外,不受任何其它任何阻碍和限制。
②限制宽展: 在横向变形过程中,除受接触摩擦影响外,还受到孔型侧壁的阻碍作用,破坏了自由流动条件,此时宽展称为限制宽展。
③强迫宽展: 在横向变形过程中,质点横向移动时,不仅不受任何阻碍,还受到强烈的推动作用,使轧件宽展产生附加增长,此时的宽展称为强迫宽展。
4.影响宽展的因素:实质因素:高向移动体积和变形区内轧件变形纵横阻力比;基本因素:变形区形状和轧辊形状。
工艺因素:①相对压下量:相对压下量越大,宽展越大。
②轧制道次:道次越多,宽展越小;单道次较大,宽展大,多道次较小,宽展小;③轧辊直径:轧辊直径增加,宽展增加;摩擦系数;④摩擦系数的增加,宽展增加(轧制温度、轧制速度、轧辊材质和表面状态,轧件的化学成分). ⑤轧件宽度的影响:假设变形区长度 l 一定:随轧件宽度增加,宽展先增加后逐渐减小,最后趋于不变。
5.前滑:轧件出口速度vh 大于轧辊在该处的线速度v,即vh>v的现象称为前滑现象。
后滑:轧件进入轧辊的速度小于轧辊该处线速度的水平分量v的现象。
前滑值:轧件出口速度vh与对应点的轧辊圆周速度的线速度之差与轧辊圆周速度的线速度之比值称为前滑值。
后滑值:后滑值是指轧件入口断面轧件的速度与轧辊在该点处圆周速度的水平分量之差同轧辊圆周速度水平分量的比值。
6.影响前滑的因素: ①压下率:前滑随压下率的增加而增加;②轧件厚度:轧后轧件厚度h减小,前滑增加;③轧件宽度:轧件宽度小于40mm时,随宽度增加前滑亦增加;但轧件宽度大于40mm时,宽度再增加时,其前滑值则为一定值;④轧辊直径:前滑值随辊径增加而增加;⑤摩擦系数:摩擦系数f越大,其前滑值越大;⑥张力:前张力增加前滑,后张力减小前滑 .7.轧制生产工艺:由锭或坯轧制成符合技术要求的轧件的一系列加工工序组合。
材料成型工艺基础复习资料13上午九到十一点一号公教楼4071铸件的凝固方式及其影响因素凝固方式:(l)逐层凝固方式(2)糊状凝固方式(3)中间凝固方式影响因素:(l)合金的结晶温度范围:结晶温度范围越小,凝固区域越窄,越倾向于逐层凝固。
低碳钢近共晶成分铸铁倾向于逐层凝固,高碳钢、远共晶成分铸铁倾向于糊状凝固。
(2)逐渐的温度梯度:在合金的结晶温度范围已定时,若铸件的温度梯度↑由小到大,则凝固区由宽变窄,倾向于逐层凝固。
2铸造性能含义及其包括内容,充型能力含义,影响合金流动性因素(合金种类、成分、浇注条件、铸型条件)铸造性能:合金铸造成形获得优质铸件的能力,、合金的铸造性能:主要指合金的流动性、收缩性和吸收性等充型能力:液态合金充满铸型型腔,获得形状完整轮廓清晰的铸件的能力。
影响合金流动性因素:(l)合金的种类。
灰铸铁、硅黄铜流动性最好,铝合金次之,铸钢最差。
(2)合金的成分。
同种合金,成分不同,其结晶特点不同,流动性也不同。
(3)浇注温度越高,保持液态的时间越长,流动性越好;温度越高,合金粘度越低,阻力越小,充型能力越强。
在保证充型能力的前提下温度应尽量低。
生产中薄壁件常采用较高温度,厚壁件采用较低浇注温度,(4) l.铸型的蓄热能力越强,充型能力越差2.铸型温度越高,充型能力越好3.铸型中的气体阻碍充型3合金的收缩三阶段,缩孔、缩松、应力、变形、裂纹产生阶段l.收缩。
合金从液态冷却至常温的过程中,体积或尺寸缩小的现象。
合金的收缩过程可分为三阶段(l)液态收缩(2)凝固收缩(3)固态收缩缩孔(1)形成条件:金属在恒温或很窄的温度范围内结晶,铸件壁以逐层凝固方式凝固。
(2)产生原因:是合金的液态收缩和凝固收缩值大于固态收缩值,且得不到补偿。
(3)形成部位:在铸件最后凝固区域,次区域也称热节。
缩松(1)形成条件:形成铸件最后凝固的收缩未能得到补足,或者结晶温度范围宽的合金呈糊状凝固,凝固区域较宽,液、固两相共存,树枝晶发达,枝晶骨架将合金液分割开的小区难以得到补缩所致。
1、金属晶体的常见晶格有哪三种?α-Fe、γ-Fe各是什么晶格?2、什么是固溶强化?造成固溶强化的原因是什么?3、实际金属晶体中存在哪些晶体缺陷?它们对性能有什么影响?4、Fe—C合金中基本相有哪些?基本组织有哪些?5、简述钢的硬度、强度、塑性、韧性与含碳量的关系.6、M有何特征?它的硬度取决于什么因素?低碳M有何特征?7、进行退火处理的目的是什么?8、淬火钢中的残余奥氏体对工件性能有何影响?如何防止?9、为什么亚共析钢经正火后,可获得比退火高的强度和硬度。
10、亚共析钢、过共析钢正火加热温度范围是什么?低碳钢切削加工前和高碳钢球化退火前正火的目的是什么?11、亚共析钢的淬火加热温度是什么?加热温度过高或过低会产生哪些问题?12、共析钢淬火加热温度范围是什么?如加热温度过高会产生哪些有害影响?13、过共析钢淬火加热温度范围是什么?如加热温度过高会产生哪些有害影响?14、水作为淬火介质有何优缺点?15、为什么通常碳钢在水中淬火,而合金钢在油中淬火?若合金钢在水中淬火会怎样?16、淬火钢进行回火的目的是什么?17.为防止和减少焊接变形,焊接时应采取何种工艺措施?18、钢经淬火后为何一定要回火?钢的性能与回火温度有何关系?19、什么是钢的回火脆性?如何避免?20、为什么高频淬火零件的表面硬度、耐磨性及疲劳强度均高于一般淬火?21、既然提高浇注温度可以提高液态金属的充型能力.但为何要防止浇注温度过高?22、浇注温度过高、过低常出现哪些铸造缺陷?23、合金的流动性与充型能力有何关系?为什么共晶成分的金属流动性比较好?24、简述铸造生产中改善合金充型能力的主要措施。
25、简述缩孔产生的原因及防止措施。
26、简述缩松产生的原因及防止措施。
27、缩孔与缩松对铸件质量有何影响?为何缩孔比缩松较容易防止?述两种凝固原则各适用于哪种场合?29、铸造应力有哪几种?形成的原因是什么?30、铸件热应力分布规律是什么?如何防止铸件变形?31、试从铸造性能、机械性能、使用性能等方面分析形状复杂的车床床身采用普通灰口铸铁的原因。
液态成型定义材料液态成形技术通常称之为铸造,它是指熔炼金属,制造铸型并将熔融金属浇入铸型凝固后,获得具有一定形状、尺寸和性能的金属零件或毛坯的成形方法.充型能力的定义液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,称为液态金属充填铸型的能力,简称液态金属的充型能力。
液态金属的充型能力主要取决于金属自身的流动能力,还受外部条件,如铸型性质、浇注条件、铸件结构等因素的影响,是各种因素的综合反映。
流动性定义:在一定浇注温度和自然压力下,液态合金充满型腔,形成轮廓清晰,形状和尺寸符合要求的优质铸件的能力。
螺旋形流动性试样•影响金属流动性的因素1)金属本身的化学成分合金的结晶温度区间越宽,流动性越差。
(2)铸型(模具和型芯)性质(3)浇注条件1)浇注温度一般T浇越高,液态金属的充型能力越强。
2)充型压力液态金属在流动方向上所受的压力越大,充型能力越强3)浇注系统的结构浇注系统的结构越复杂,流动阻力越大,充型能力越差。
4)铸件结构铸件的缩孔和缩松(1)缩孔:缩孔是指金属液在铸模中冷却和凝固时,在铸件的厚大部位及最后凝固部位形成一些容积较大的孔洞。
产生原因:先凝固区域堵住液体流动的通道,后凝固区域收缩所缩减的容积得不到补充。
(2)缩松:是指金属液在铸模中冷却和凝固时,在铸件的厚大部位及最后凝固部位形成一些分散性的小孔洞。
产生原因:当合金的结晶温度范围很宽或铸件断面温度梯度较小时,凝固过程中有较宽的糊状凝固两相并存的区域。
随着树枝晶长大,该区域被分割成许多孤立的小熔池,各部分熔池内剩余液态合金的收缩得不到补充,最后形成了形状不一的分散性孔洞即缩松。
另外,缩松还可能由凝固时被截留在铸件内的气体无法排除所致。
不过,缩松内表面应该是光滑,近似球状。
3)缩孔缩松的防止危害:显著降低铸件的机械性能,造成铸件渗漏等防止措施:采取定向凝固的办法避免缩孔、疏松的出现。
定向凝固:是指通过在铸件上可能出现疏松的厚大部位安装冒口或放置冷铁等工艺措施,使铸件上远离冒口的部位先凝固(图中Ⅰ),尔后在靠近冒口的部位凝固(图中Ⅱ、Ⅲ),最后是冒口本身凝固。
3.2.1 浇注位置的选择原则1) 重要加工面应朝下或位于侧面2) 铸件的大平面尽可能朝下或采用倾斜浇注3)大面积薄壁结构应处于下部或垂直/倾斜放置,防止浇不足和冷隔缺陷;4)厚大部位放在分型面附近上部或侧面分型面的选择原则1)应尽可能使全部或大部分铸件,或者加工基准面与重要的加工面处于同一半型内。
以避免因合型不准产生错型,保证铸件尺寸精度。
2)应尽量减少分型面的数目3)分型面应尽量选用平面4)尽量使型腔及主要型芯位于下型。
金属塑性成形的概念它是指在外力作用下,使金属材料产生预期的塑性变形,以获得所需形状、尺寸和力学性能的毛坯或零件的加工方法。
在工业生产中又称压力加工金属塑性成形的基本条件1)被成形的金属材料应具备一定的塑性;2)要有外力作用于固态金属材料上。
3)内在因素即金属本身能否进行塑性变形和可形变的能力大小。
4)外在因素即需要多大的外力。
另外,外界条件(如温度等)对内外因素有相当大的影响,且成形过程中两因素相互影响。
⑴冷变形过程冷变形是指金属在进行塑性变形时的温度低于该金属的再结晶温度。
冷变形过程的特征:变形后具有加工硬化现象,强度、硬度升高,塑性和韧度下降。
⑵热变形过程是指金属材料在其再结晶温度以上进行的塑性变形。
冷变形过程的特征:变形后具有加工硬化现象,强度、硬度升高,塑性和韧度下降。
热变形过程的特征:①金属在热变形中始终保持良好的塑性,可使工件进行大量的塑性变形;又因高温下金属的屈服强度较低,故变形抗力低,易于变形。
②热变形使内部组织结构致密细小,力学性能特别是韧度明显改善和提高。
因为金属材料内部的缩松、气孔或空隙被压实,粗大(树枝状)的晶粒组织结构被再结晶细化。
③形成纤维组织,力学性能具有方向性。
塑性成形性能(可锻性):指金属材料在压力加工时,能改变形状而不产生裂纹的性能。
衡量因素——塑性指标和变形抗力;塑性越高,变形抗力越低,可锻性越好影响金属塑性成形性能的因素:内在因素、加工条件、应力状态等。
⑴内在因素:①化学成分—钢的含碳量越大,塑性成形性越差;钢的合金元素含量越高,塑性成形性能越差。
②金属组织—单相固溶体的塑性成形性优于多相组织,常温下,均匀细晶的塑性成形性优于粗晶组织,钢中存在网状二次渗碳体时塑性成形性下降。
⑵加工条件:①变形温度温度越高,塑性指标增加,变形抗力降低,可锻性提高。
②变形速度一方面变形速度增大硬化速度随之增大,塑性指标下降,变形抗力增大,可锻性变坏;另一方面变形速度越大,热效应越明显,使塑性指标提高、变形抗力下降,可锻性变好。
一般生产条件下采用较小变形速度。
⑶应力状态:三个方向中的压应力数目越多,塑性越好,变形抗力降低;拉应力数目多,则金属的塑性就差,变形抗力增加两个基本定律⑴体积不变规律金属塑性成形加工中,金属变形后的体积等于变形前的体积(又叫质量恒定定理)⑵最小阻力定律金属在塑性变形过程中,其质点都将沿着阻力最小的方向移动。
自由锻造定义:自由锻造是利用冲击力或压力使金属材料在上下两个砧铁之间或锤头与砧铁之间产生变形,从而获得所需形状、尺寸和力学性能的锻件成形过程。
模锻概述定义:它是将坯料置于锻模模腔内,然后施加冲击力或压力使坯料发生塑性变形而获得锻件的成形过程⑵模锻过程1)绘制模锻件图应考虑分模面、加工余量、锻件公差和敷料、模锻斜度、模锻件圆角半径等。
①分模面a)要保证模锻件易于从模膛中取出,故通常分模面选择在模锻件最大截面上。
b)所选定的分模面应能使模膛的深度最浅,这样有利于金属充满模膛,便于锻件的取出和锻模的制造。
c)选定的分模面应能使上下两模沿分模面的模膛轮廓一致,这样在安装锻模和生产中发现错模现象时,便于及时调整锻模位置。
d)d)分模面最好是平面,且上下锻模的模膛深度尽可能一致,便于锻模制造。
e)e)所选分模面尽可能使锻件上所加的敷料最少,这样既可提高材料的利用率,又减少了切削加工的工作量。
f)②加工余量、锻件公差和敷料g)模锻件的加工余量和公差比自由锻件的小得多。
小型模锻件的加工余量一般在2~4mm,锻件公差一般为±0.5~±1mm。
③模锻斜度目的是便于从模膛中取出锻件④模锻件圆角半径4 模锻件上凡是面与面相交处均应做成圆角。
目的:增大锻件强度,利于锻造时金属充满模膛,避免锻模上的内尖角处产生裂纹,减缓锻模外尖角处的磨损,提高锻模的使用寿命。
2)坯料质量和尺寸计算模锻件坯料质量=模锻件质量+氧化烧损质量+飞边(连皮)质量3)模锻工序确定盘类模锻件:一般采用镦粗和终锻工序;对于一些高轮毂、薄轮辐的模锻件,采用镦粗-预锻-终锻工序。
⑴落料与冲孔落料是从板料上冲出一定外形的零件或坯料,冲下部分是成品。
冲孔是在板料上冲出孔,冲下部分是废料。
凸、凹模刃口尺寸确定⑴落料模•凹模尺寸=落料件尺寸•凸模尺寸=凹模尺寸-最小合理间隙值•⑵冲孔模•◆凸模尺寸=冲孔尺寸,以凸模为基准设计。
•◆凹模尺寸=凸模尺寸+最小合理间隙值•成形过程是使坯料发生塑性变形而形成一定形状和尺寸的工件的工艺过程,主要有拉深、弯曲、翻边、成形、收口等。
•(1)拉深•拉深:是将平板料放在凹模上,冲头把材料拉入凹模而形成空心形状工件的过程。
•拉深变形过程:•凸缘为主要变形区,如是圆形零件,圆形坯料外径直径随拉深变形而减小,转化为零件侧壁。
•凸缘区径向受拉产生拉应变,切向(周向)受压产生压应变。
•拉深主要缺陷:拉裂和起皱•(2)弯曲与卷边•弯曲:是用模具把坯料弯成所需要形状的过程,可以在各种机械或液压压力机上进行。
•(3)翻边•在带孔的坯料上通过凸模获得竖立的凸缘的过程。
•4)成形和收口•成形是利用局部变形使坯料或半成品改变形状的过程。
•收口是使工件口部缩小,高度增加的过程5)滚弯(含卷板)•滚弯是板料(工件)送入可调上辊与两个固定下辊间、根据上下辊的相对位置不同,对板施加连续的塑性弯曲成形,改变上辊的位置可改变板材的滚弯的曲率•材质为Q235某零件的冲压过程:•1—落料•2—拉深•3—第二次拉深4—冲孔•5—翻边•黄铜弹壳的冲压过程:•1—落料2—拉深•3—第二次拉深•4—多次拉深•5—成形6—收口•工件壁厚要经过多次减薄拉深,由于变形程度较大,工序间要进行多次退火。
••方案三:落料和第一次拉延→第二次拉延和局部成形→整形→切边→翻边和冲孔。
焊接方法---三大类:熔化焊、压力焊及钎焊熔化焊:将工件局部加热到熔化状态,形成熔池,冷却结晶后形成焊缝,被焊工件结合成不可分离的整体。
常见有气焊、电弧焊、电渣焊、等离子焊、电子束焊、激光焊等。
压焊:无论加热与否,均需要加压的焊接方法。
常见的有电阻焊、摩擦焊、冷压焊、扩散焊和爆炸焊等。
钎焊:采用熔点低于被焊金属的钎料熔化以后,填充接头间隙,并与被焊金属相互扩散实现连接。
钎焊过程中被焊工件不熔化,一般没有塑性变形焊缝熔池中的金属熔化与结晶过程,实质就是冶金过程。
与一般意义上的冶金相比具有如下特点:(1)焊接电弧和熔池金属的温度高于一般冶金温度。
更易烧损合金元素及形成有害物质。
(2)熔池金属冷却速度快,各种化学反应不充分,金属组织不均匀,易形成气孔、夹渣等缺陷。