材料力学第十三章综述
- 格式:ppt
- 大小:1.35 MB
- 文档页数:3
材料力学知识点归纳总结(完整版)1.材料力学:研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。
2.理论力学:研究物体(刚体)受力和机械运动一般规律的科学。
3.构件的承载能力:为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。
构4.件应当满足以下要求:强度要求、刚度要求、稳定性要求5.变形固体的基本假设:材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。
任何固体在外力作用下都会发生形状和尺寸的改变——即变形。
因此,这些材料统称为变形固体。
第二章:内力、截面法和应力概念1.内力的概念:材料力学的研究对象是构件,对于所取的研究对象来说,周围的其他物体作用于其上的力均为外力,这些外力包括荷载、约束力、重力等。
按照外力作用方式的不同,外力又可分为分布力和集中力。
2.截面法:截面法是材料力学中求内力的基本方法,是已知构件外力确定内力的普遍方法。
已知杆件在外力作用下处于平衡,求m-m截面上的内力,即求m-m截面左、右两部分的相互作用力。
首先假想地用一截面m-m截面处把杆件裁成两部分,然后取任一部分为研究对象,另一部分对它的作用力,即为m-m截面上的内力N。
因为整个杆件是平衡的,所以每一部分也都平衡,那么,m-m截面上的内力必和相应部分上的外力平衡。
由平衡条件就可以确定内力。
例如在左段杆上由平衡方程N-F=0 可得N=F3.综上所述,截面法可归纳为以下三个步骤:1、假想截开在需求内力的截面处,假想用一截面把构件截成两部分。
2、任意留取任取一部分为究研对象,将弃去部分对留下部分的作用以截面上的内力N来代替。
3、平衡求力对留下部分建立平衡方程,求解内力。
4.应力的概念:用截面法确定的内力,是截面上分布内力系的合成结果,它没有表明该分布力系的分布规律,所以,为了研究相伴的强度,仅仅知道内力是不够的。
材料力学知识点概括
材料力学是三大力学之一,其研究的对象主要是杆件;研究杆件在荷载作用下的承载能力;承载能力包括杆件的强度、刚度及杆件的稳定性。
在计算或校核杆件的承载能力之前,先掌握杆件的基本变形;在材料力学中,杆件的基本变形主要包括:轴向拉伸与压缩、扭转、弯曲、剪切;在材料力学教材中,先后对轴向拉伸与压缩、扭转、弯曲、剪切各用一章来讲解,在后面的章节中,把这四种基本变形进行综合分析,也就是组变形
8
4
5
7
1利用截面法求内力,2、3、4、5、8都是运用相应的公式,6是胡克定律
可以这样说,材料力学教程主要是围绕着结构中杆件的强度、刚度、稳定性进行讲解;整个教程的流程:
第一章、轴向拉伸与压缩
在本章节中,先引入应力与应变的定义及概念,随后介绍基本变形中的轴向拉伸与压缩的应力计算,再介绍轴向拉伸与压缩斜截面上的应力如何计算;最后在介绍轴向与拉伸的应变计算。
利用本章节的知识点可以解决工程实际中简单桁架结构的杆件的校核。
材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
材料力学第1章绪论1.1材料力学的任务构件应满足以下基本要求:强度,刚度,稳定性要求1.2材料力学的基本假设连续性,均匀性,各向同性假设1.3杆件的基本变形形式拉伸或压缩,剪切,扭转,弯曲1.4内力一截面法1.5应力平均应力-p:应力p:应力,切应力,正应力:1.6应变1.棱边长度的改变(原长为△x,变形后成为△x+△u)该点处沿x方向的线应变:2.棱边间夹角的改变切应变:y。
切应变的单位为rad第2章拉伸压缩与剪切2.1拉压杆的内力及应力2.1.1轴力、轴力图Fn=FFn即为横截面n—n上的内力。
由于F的作用线与杆轴线重合,故称为轴力。
规定拉伸的轴力为正,压缩为负。
2.1.2轴力图2.1.3拉压杆横截面上的应力轴向载荷作用下杆件是否破坏,不仅与轴力的大小有关,还与横截面面积有关。
正应力:。
拉应力为正,压应力为负。
2.1.4斜截面上的应力斜面上的全应力Pa:将全应力Pa分解为沿斜面法向的正应力和沿切向的切应力思考:a=0/45/90°时,正应力,切应力大小2.2拉压杆的变形2.2.1 轴向与横向变形轴向线应变为:。
以伸长为正,缩短为负。
横向线应变为:。
正负号与轴向线应变相反。
材料的泊松比u(量纲一):2.2.2 拉压胡克定律当应力o未超过某一极限值时,拉压杆的轴向变形与外力F及杆的原长l 成正比,与横截面面积A成反比。
引进比例常数E,则有胡克定律公式:E为材料的弹性模量,其量纲为ML^-1T^-2。
EA反映了杆件抵抗拉压变形的能力,称为杆件的抗拉(压)刚度。
由Fn/A=正应力,△l/l=线应力,故。
(在弹性范围内,正应力与线应变成正比。
)2.3金属拉压时的力学性能2.3.1低碳钢拉伸时的力学性质1.在拉伸过程中,标距l的伸长量与试件所受载荷F之间的关系曲线F—△l 称为拉伸曲线。
工程应力:将纵坐标值F除以原始的横截面面积A,即为正应力=F/A工程应变:将横坐标值除以原始的标距长度l,即为线应变=△l /l将拉伸曲线F—△l变为应力应变曲线(消除试件尺寸的影响)(1)弹性阶段Ob:弹性阶段的应力最高限称为材料的弹性极限(用符号6e表示)。
◆第一部分:辅导班授课思路(大工名师授课)材料力学相对知识点多而杂。
但各知识点相对独立,相应章节出大题多是“拼盘”式的组合,但要求对每个知识点深刻理解,搞懂搞透!!各章节知识点:材力一:第一章:了解,没什么重要知识点。
第二章:轴向拉伸压缩。
轴力,轴力图。
与后面超静定一起出题。
年年考。
正应力,切应力,低碳钢拉伸试验,弹性变形,塑性变形,变形四阶段,塑性指标,轴向拉伸应变,变形。
第三章:扭转。
比较简单,考扭转超静定。
圆轴扭转切应力,扭转角,最大切应力,扭转强度刚度验算。
第四章:弯曲应力。
重点!!!每年考2~3道大题。
详细见讲义和讲课。
弯矩剪力图,年年考,送分题,每年10分,考专业基本功。
梁的正应力,正应力强度验算。
梁的切应力,切应力强度验算。
第五章:梁弯曲位移挠度,转角,挠曲线大致形状,叠加法求梁的挠度,积分法求梁的挠度。
每年一题。
第六章:超静定问题。
出综合大题。
拉伸超静定,弯曲超静定,扭转超静定。
每年一题。
难度较大。
第七章:应力状态和强度理论。
重点!!!每年30分左右。
详细见讲义和讲课。
任意截面正应力,切应力。
主应力。
主平面。
应力圆。
应力应变关系,应变能,应变能密度。
四大强度理论。
双剪强度理论,莫尔强度理论。
第八章:组合变形。
年年考拉伸,弯曲,扭转组合变形。
难度大。
但深刻理解后,比较简单。
第九章:压杆稳定。
冲击荷载。
临界压力,临界压力图,稳定性计算。
材力二:第一章:5个问题1.两个公式,正应力,角2.两种材料。
重点3.弯曲中心。
4.约束扭转5.曲杆计算第二章:塑性。
重点详细见讲课内容。
第三章:能量法应变能,余能计算。
第四章:了解第五章:应变状态分析,重点.详细见讲课内容。
第六章:动荷载年年考第七章:不是重点,看看。
(完整版)材料力学基本概念和公式第一章绪论第一节材料力学的任务1、组成机械与结构的各组成部分,统称为构件。
2、保证构件正常或安全工作的基本要求:a)强度,即抵抗破坏的能力;b)刚度,即抵抗变形的能力;c)稳定性,即保持原有平衡状态的能力。
3、材料力学的任务:研究构件在外力作用下的变形与破坏的规律,为合理设计构件提供强度、刚度和稳定性分析的基本理论与计算方法。
第二节材料力学的基本假设1、连续性假设:材料无空隙地充满整个构件。
2、均匀性假设:构件内每一处的力学性能都相同3、各向同性假设:构件某一处材料沿各个方向的力学性能相同。
木材是各向异性材料。
第三节内力1、内力:构件内部各部分之间因受力后变形而引起的相互作用力。
2、截面法:用假想的截面把构件分成两部分,以显示并确定内力的方法。
3、截面法求内力的步骤:①用假想截面将杆件切开,一分为二;②取一部分,得到分离体;③对分离体建立平衡方程,求得内力。
4、内力的分类:轴力N F ;剪力S F ;扭矩T ;弯矩M第四节应力1、一点的应力:一点处内力的集(中程)度。
全应力0limA Fp A→?=?;正应力σ;切应力τ;p =2、应力单位:Pa (1Pa=1N/m 2,1MPa=1×106 Pa ,1GPa=1×109 Pa )第五节变形与应变1、变形:构件尺寸与形状的变化称为变形。
除特别声明的以外,材料力学所研究的对象均为变形体。
2、弹性变形:外力解除后能消失的变形成为弹性变形。
3、塑性变形:外力解除后不能消失的变形,称为塑性变形或残余变形。
4、小变形条件:材料力学研究的问题限于小变形的情况,其变形和位移远小于构件的最小尺寸。
对构件进行受力分析时可忽略其变形。
5、线应变:ll ?=ε。
线应变是无量纲量,在同一点不同方向线应变一般不同。
6、切应变:tan γγ≈。
切应变为无量纲量,切应变单位为rad 。
第六节杆件变形的基本形式1、材料力学的研究对象:等截面直杆。
《材料力学基础知识综合性概述》一、引言材料力学作为工程力学的一个重要分支,主要研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性等问题。
它在工程设计、机械制造、土木工程、航空航天等众多领域都有着广泛的应用。
了解材料力学的基础知识,对于从事相关工程领域的专业人员以及对力学感兴趣的人士都具有重要意义。
本文将从基本概念、核心理论、发展历程、重要实践以及未来趋势等方面对材料力学进行全面的阐述与分析。
二、基本概念1. 应力与应变- 应力:物体由于受到外力作用而产生的内部抵抗力。
应力分为正应力和切应力。
正应力是垂直于作用面的应力,切应力是平行于作用面的应力。
应力的单位为帕斯卡(Pa)。
- 应变:物体在应力作用下产生的相对变形。
应变分为正应变和切应变。
正应变是长度的相对变化,切应变是角度的变化。
应变是无量纲的量。
2. 弹性与塑性- 弹性:材料在去除外力后能够完全恢复其原来形状和尺寸的性质。
弹性变形是可逆的,符合胡克定律。
- 塑性:材料在去除外力后不能完全恢复其原来形状和尺寸的性质。
塑性变形是不可逆的,材料会产生永久变形。
3. 强度与刚度- 强度:材料抵抗破坏的能力。
强度分为抗拉强度、抗压强度、抗弯强度等。
强度的单位为帕斯卡(Pa)或兆帕(MPa)。
- 刚度:材料抵抗变形的能力。
刚度与材料的弹性模量和截面形状有关。
刚度的单位为牛顿/米(N/m)或千牛/米(kN/m)。
4. 稳定性- 稳定性是指材料或结构在受到外力作用时,保持其原有平衡状态的能力。
对于细长杆件或薄壁结构,稳定性问题尤为重要。
三、核心理论1. 胡克定律- 胡克定律是材料力学中的基本定律之一,它表明在弹性范围内,应力与应变成正比。
即σ=Eε,其中σ为应力,ε为应变,E 为弹性模量。
- 胡克定律适用于各种材料,如金属、塑料、橡胶等。
它是材料力学中进行应力分析和变形计算的重要依据。
2. 梁的弯曲理论- 梁是工程中常见的结构元件,其主要承受横向载荷。
第六版材料力学知识点总结第一章引言本章主要介绍了力学在材料科学与工程中的地位和作用。
力学是分析物体受力情况和相应变形的学科,这在材料科学与工程中具有重要意义。
本章的内容对整本教材的学习打下了基础。
第二章应力在本章中,主要介绍了材料在受到外力作用时所产生的应力的概念。
力的作用有拉伸作用、压缩作用和剪切作用三种,这些力对应的应力分别是拉应力、压应力和剪应力。
材料受力会导致应力在材料内部的分布,通过一些基本方程来描述材料受力的情况。
第三章应变这一章主要介绍了材料在受到外力作用时所产生的应变的概念。
应变是指材料在外部力作用下所产生的形变。
介绍了应变的三种基本形式:线性应变、剪切应变和体积变形。
第四章弹性模量本章介绍了材料的弹性行为及其数学描述。
材料在受力时会发生形变,而且形变是可逆的,这种性质称为弹性。
对材料的弹性行为进行了分析,并引入了弹性模量这一概念,分别是杨氏模量、剪切模量和泊松比。
这些弹性模量对于描述材料的弹性行为有着重要的意义。
第五章弯曲这一章介绍了材料在受力时进行弯曲变形的物理过程和数学描述。
利用梁的理论分析了材料受弯曲力时的受力和应变情况。
并引入了一些相关参数,并给出了一些实际应用问题的数学解析。
第六章扭转这一章详细介绍了材料在受扭转力作用下的受力和应变情况。
对材料进行了基本的力学分析,并引入了剪切弹性模量,这对于描述材料的扭转弹性行为具有重要意义。
第七章变形与尺寸稳定性本章主要介绍了材料在受力后的变形与尺寸稳定性。
材料在受力时会发生变形,而变形又分为弹性变形和塑性变形,并且介绍了材料的屈曲现象和相应的数学分析,这在实际工程中具有重要的意义。
第八章断裂这一章详细介绍了材料在受到过大外力作用时的断裂过程。
材料的断裂可以分为塑性断裂和脆性断裂,分析了断裂的过程及其影响因素,并引入了一些与断裂相关的参数。
第九章强度理论这一章主要介绍了材料的强度理论。
介绍了强度概念以及与强度相关的一些理论模型,如最大正应力理论、最大剪应力理论等。