2018年奉贤区中考数学二模试卷及答案
- 格式:docx
- 大小:113.74 KB
- 文档页数:15
计算题专题宝山区、嘉定区19.(本题满分10分) 先化简,再求值:x x x x x --+++-2321422,其中32+=x .19.解:原式2321)2)(2(2-+++++-=x x x x x x…………2分 )2)(2()2(3)2)(1(2+-++-++=x x x x x x ………………………1分 )2)(2(442+-++=x x x x …………………………………………2分 )2)(2()2(2+-+=x x x ………………………2分 22-+=x x …………………………………………1分 把32+=x 代入22-+x x 得: 原式232232-+++=………………1分 1334+=………………………………1分长宁区19.(本题满分10分) 先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分)=2)1(11++-+x x x (1分) =2)1(2+x (1分) 当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分)崇明区 19.(本题满分10分)12022)9( 3.14)π+-+--19.(本题满分10分)解:原式731=-+-……………………………………………………8分9=- …………………………………………………………………2分 奉贤区19.(本题满分10分) 计算:1212)33(8231)12(--+++-.19、3-黄浦区19.(本题满分10分)计算:())102322220183++--.19.解:原式()13-—————————————————————(6分)=13-————————————————————————(2分)=4—————————————————————————————(2分)金山区 计算:21o o 21tan 452sin 60122-⎛⎫-+- ⎪⎝⎭.19.解:原式=124-+……………………………………………(8分)14+……………………………………………(1分)=5.………………………………………………………(1分)静安区19.(本题满分10分)计算:102018)30(sin )3(32)45cot (18---+-+-+οοπ. 19.(本题满分10分) 计算:102018)30(sin )3(32)45cot (18---+-+-+οοπ. 解:原式=12018)21(1)23()1(23--+-+-+ …………………(5分) =2123123-+-++ …………………………(3分) =322+ …………………………………(2分)闵行区19.(本题满分10分) 120183(1)2cos45+8-+--o .19.解:原式112+……………………………………(2分+2分+2分+2分)2=.……………………………………………………………………(2分)普陀区19.(本题满分10分)先化简,再求值:42442222---++÷+x x x x x x x ,其中2x =-. 19.解:原式()()22+22(2)22x x x x x x x -=-+-+g ················ (3分)122x x x =-++ ······················ (2分) 12x x -=+. ························· (1分)当2x =时,原式=·················· (1分)=··················· (1分)=青浦区19.(本题满分10分)计算:1012152(3)2---+().20.(本题满分10分)先化简,再求值:25+3222x x x x ⎛⎫--÷ ⎪++⎝⎭(),其中x =19.解:原式212-+. ····················· (8分)=1.20.解:原式=()2245223--+⨯++x x x x , ···················· (5分) =()()()233223+-+⨯++x x x x x , ·················· (1分) =33-+x x . ··························· (1分)当=x 2. 松江区 19.(本题满分10分)计算:0313832--+++. 19.(本题满分10分) 计算:0313832--+++. 解:原式=1(31)3222--+-+……………………………(每个2分) =22+……………………………………………………………2分徐汇区19. 计算:10112()( 3.14)|234|231π--+--+--.杨浦区19、(本题满分10分)先化简,再求值:。
上海市各区2018届中考数学二模试卷精选汇编:综合计算含解析21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图4,在梯形ABCD 中,AD ∥BC ,︒=∠90BAD ,AD AC =. (1)如果BAC ∠︒=∠-10BCA ,求D ∠的度数; (2)若10=AC ,31cot =∠D ,求梯形ABCD 的面积.21.解:(1)∵AD ∥BC∴CAD BCA ∠=∠ …………………1分 ∵BAC ∠︒=∠-10BCA∴BAC ∠︒=∠-10CAD …………………1分 ∵︒=∠90BAD∴BAC ∠︒=∠+90CAD∴︒=∠40CAD …………………1分 ∵AD AC =∴D ACD ∠=∠ …………………1分 ∵︒=∠+∠+∠180CAD D ACD∴︒=∠70D …………………1分(2) 过点C 作AD CH ⊥,垂足为点H ,在Rt △CHD 中,31cot =∠D ∴31cot ==∠CH HD D …………………………1分 图4DCB 图4DCBAH设x HD =,则x CH 3=,∵AD AC =,10=AC ∴x AH -=10 在Rt △CHA 中,222AC CH AH =+ ∴22210)3()10(=+-x x ∴2=x ,0=x (舍去)∴2=HD …………1分 ∴6=HC ,8=AH ,10=AD ………………1分 ∵︒=∠=∠90CHD BAD ∴AB ∥CH∵AD ∥BC ∴四边形ABCH 是平行四边形 ∴8==AH BC ………1分 ∴梯形ABCD 的面积546)810(21)(21=⨯+=⨯+=CH BC AD S ………1分 长宁区21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC . (1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BEADB第21题图∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F ∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分) 在DCF Rt ∆中,︒=∠90DFC ,5426cot ===∠DF CF DCB (1分)崇明区21.(本题满分10分,第(1)、(2)小题满分各5分)已知圆O 的直径12AB =,点C 是圆上一点,且30ABC ∠=︒,点P 是弦BC 上一动点, 过点P 作PD OP ⊥交圆O 于点D . (1)如图1,当PD AB ∥时,求PD 的长; (2)如图2,当BP 平分OPD ∠时,求PC 的长.(第21题图1)A BOP CD (第21题图2)OABDPC21.(本题满分10分,每小题5分)(1)解:联结OD∵直径12AB = ∴6OB OD == ……………………………………1分∵PD OP ⊥ ∴90DPO =︒∠∵PD AB ∥ ∴180DPO POB +=︒∠∠ ∴90POB =︒∠ ……1分 又∵30ABC =︒∠,6OB =∴30OP OB tan =︒= ………………………………………………1分 ∵在Rt POD △中,222PO PD OD += ……………………………1分∴2226PD +=∴PD =……………………………………………………………1分 (2)过点O 作OH BC ⊥,垂足为H ∵OH BC ⊥∴90OHB OHP ==︒∠∠ ∵30ABC =︒∠,6OB =∴132OH OB ==,30BH OB cos =︒= ……………………2分 ∵在⊙O 中,OH BC ⊥∴CH BH == ……………………………………………………1分∵BP 平分OPD ∠ ∴1452BPO DPO ==︒∠∠ ∴453PH OH cot =︒= ……………………………………………1分∴3PC CH PH =-=- ………………………………………1分奉贤区21.(本题满分10分,每小题满分各5分)已知:如图6,在△ABC 中,AB =13,AC=8,135cos =∠BAC ,BD ⊥AC ,垂足为点D ,E 是BD 的中点,联结AE 并延长,交边BC 于点F .(1) 求EAD ∠的余切值;(2) 求BF CF的值.21、(1)56; (2)58; 黄浦区21.(本题满分10分)如图,AH 是△ABC 的高,D 是边AB 上一点,CD 与AH 交于点E .已知AB =AC =6,cos B =23, AD ∶DB =1∶2.图6ABCD EF(2)求CE∶DE.21. 解:(1)由AB=AC=6,AH⊥BC,得BC=2BH.—————————————————————————(2分)在△ABH中,AB=6,cosB=23,∠AHB=90°,得BH=2643⨯=,AH=————————————(2分)则BC=8,所以△ABC面积=182⨯=——————————————(1分)(2)过D作BC的平行线交AH于点F,———————————————(1分)由AD∶DB=1∶2,得AD∶AB=1∶3,则31CE CH BH ABDE DF DF AD====. ——————————————(4分)金山区21.(本题满分10分,每小题5分)如图5,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F.A DF(2)如果BE∶EC=2∶1,求∠CDF的余切值.21.解:(1)∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠B=90°,∴∠DAF=∠AEB,……………………………………………………………………(1分)∵AE=BC,DF⊥AE,∴AD=AE,∠AFD=∠EBA=90°,………………………(2分)∴△ADF≌△EAB,∴AF=EB,………………………………………………………(2分)(2)设BE=2k,EC=k,则AD=BC=AE=3k,AF=BE=2k,…………………………(1分)∵∠ADC=90°,∠AFD=90°,∴∠CDF+∠ADF=90°,∠DAF+∠ADF=90°,∴∠CDF=∠DAF…………………………………………………………………(2分)在Rt△ADF中,∠AFD=90°,DF∴cot∠CDF=cot∠DAF=AFDF==.………………………………(2分)静安区21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)已知:如图,边长为1的正方形ABCD中,AC 、DB交于点H.DE平分∠ADB,交AC于点E.联结BE并延长,交边AD于点F.(1)求证:DC=EC;(2)求△EAF 的面积.21.(本题满分10分, 第(1)小题5分,第(2)小题5分)解:(1)∵正方形ABCD ,∴DC=BC=BA=AD , ∠BAD =∠ADC =∠DCB =∠CBA =90°AH=DH=CH=BH , AC ⊥BD ,∴∠ADH =∠HDC =∠DCH =∠DAE = 45°. …………(2分)又∵DE 平分∠AD B ∴∠ADE =∠EDH∵∠DAE +∠ADE =∠DEC , ∠EDH +∠HDC =∠EDC …………(1分) ∴∠EDC =∠DEC …………(1分) ∴DC =EC …………(1分) (2)∵正方形ABCD ,∴AD ∥BC , ∴△AFE ∽△CBE ∴2)(ECAE S S CEB AEF =∆∆ ………………………………(1分) ∵AB=BC=DC=EC =1,AC =2,∴AE =12- …………………………(1分)Rt △BHC 中, BH =22BC =22, ∴在△BEC 中,BH ⊥EC , 4222121=⨯⨯=∆BEC S ……………………(2分) ∴2)12(42-=∆AEF S , ∴4423)223(42-=-⨯=∆AEF S …………(1分) 闵行区第21题图21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)已知一次函数24y x=-+的图像与x轴、y轴分别交于点A、B,以AB为边在第一象限内作直角三角形ABC,且∠BAC = 90o,1 tan2ABC∠=(1)求点C的坐标;(2)在第一象限内有一点M(1,m),且点MC位于直线AB的同侧,使得ABCABMSS∆∆=2求点M的坐标.21.解:(1)令0y=,则240x-+=,解得:2x=,∴点A坐标是(2,0).令0x=,则4y=,∴点B坐标是(0,4).………………………(1分)∴AB==.………………………………(1分)∵90BAC∠=,1tan2ABC∠=,∴AC过C点作CD⊥x轴于点D,易得OBA DAC∆∆∽.…………………(1分)∴2AD=,1CD=,∴点C坐标是(4,1).………………………(1分)(2)11522ABCS AB AC∆=⋅=⨯=.………………………………(1分)∵2ABM ABCS S∆∆=,∴52ABMS∆=.……………………………………(1分)∵(1M,)m,∴点M在直线1x=上;令直线1x=与线段AB交于点E,2ME m=-;……………………(1分)分别过点A、B作直线1x=的垂线,垂足分别是点F、G,∴AF+BG = OA = 2;……………………………………………………(1分)(第21题图)∴111()222ABM BME AME S S S ME BG ME AF ME BG AF ∆∆=+=⋅+⋅=+1152222ME OA ME =⋅=⨯⨯=…………………(1分) ∴52ME =,522m -=,92m =,∴(1M ,92).……………………(1分)普陀区21.(本题满分10分)如图7,在Rt △ABC 中,90C ∠=,点D 在边BC 上,DE ⊥AB ,点E 为垂足,7AB =,45DAB ∠=,3tan 4B =. (1)求DE 的长;(2)求CDA ∠的余弦值.21.解:(1)∵DE ⊥AB ,∴︒=∠90DEA又∵45DAB ∠=,∴AE DE =. ···································································· (1分) 在Rt △DEB 中,︒=∠90DEB ,43tan =B ,∴43=BE DE .······························· (1分)设x DE 3=,那么x AE 3=,x BE 4=.∵7AB =,∴743=+x x ,解得1=x . ··························································· (2分) ∴3=DE . ····································································································· (1分) (2) 在Rt △ADE 中,由勾股定理,得23=AD . ············································· (1分)同理得5=BD . ····························································································· (1分) 在Rt △ABC 中,由43tan =B ,可得54cos =B .∴528=BC . ······················ (1分)ABCDE 图7∴53=CD . ····································································································· (1分)∴102cos ==∠AD CD CDA . ··········································································· (1分)即CDA ∠青浦区21. (本题满分10分,第(1)、(2)小题,每小题5分)如图5,在Rt △ABC 中,∠C =90°,AC=3,BC =4,∠ABC 的平分线交边AC 于点D ,延长BD 至点E ,且BD=2DE ,联结AE .(1)求线段CD 的长;(2)求△ADE 的面积.21.解:(1)过点D 作DH ⊥AB ,垂足为点H . ························································ (1分)∵BD 平分∠ABC ,∠C =90°,∴DH = DC =x , ························································································ (1分) 则AD =3-x .∵∠C =90°,AC=3,BC =4,∴AB =5. ······················································· (1分) ∵sin ∠==HD BCBAC AD AB, ∴435=-x x , ··························································································· (1分) ∴43=x . ··································································································· (1分)(2)1141052233=⋅=⨯⨯=ABD S AB DH . ······················································· (1分)∵BD=2DE ,ED A图5∴2==ABD ADES BDSDE, ··············································································· (3分) ∴1015323=⨯=ADES. ·············································································· (1分) 松江区21.(本题满分10分, 每小题各5分) 如图,已知△ABC 中,∠B =45°,1tan 2C =,BC =6.(1)求△ABC 面积;(2)AC 的垂直平分线交AC 于点D ,交BC 于 点E. 求DE 的长.21.(本题满分10分, 每小题各5分)解:(1)过点A 作AH ⊥BC 于点H …………1分 在Rt ABC ∆中,∠B =45°设AH =x ,则BH =x ………………………………1分 在Rt AHC ∆中,1tan 2AH C HC == ∴HC=2x ………………………………………………………1分 ∵BC =6(第21题图)DA∴x+2x =6 得x =2∴AH =2…………………………………………………………1分 ∴162ABC S BC AH ∆=⋅⋅=……………………………………1分(2)由(1)得AH =2,CH =4在Rt AHC ∆中,AC =…………………2分 ∵DE 垂直平分AC∴12CD AC == ED ⊥AC …………………………………………………1分 在Rt EDC ∆中,1tan 2ED C CD ==……………………………1分∴DE = ………………………………………………1分 徐汇区21. 如图,在Rt ABC ∆中,90C ∠=︒,3AC =,4BC =,AD 平分BAC ∠交BC 于点D . (1)求tan DAB ∠;(2)若⊙O 过A 、D 两点,且点O 在边AB 上,用 尺规作图的方法确定点O 的位置并求出的⊙O 半径. (保留作图轨迹,不写作法)杨浦区21、(本题满分10分,第(1)小题满分3分,第(2)小题满分7分)已知,如图5,在梯形ABCD中,DC//AB, AD=BC, BD平分∠ABC,∠A=600求:(1)求∠CDB的度数(2)当AD=2时,求对角线BD的长和梯形ABCD的面积。
2018届中考数学上海市各区二模试卷专题汇编六【几何证明题】宝山区、嘉定区23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图6,在正方形ABCD 中,点M 是边BC 上的一点(不与B 、C 重合),点N 在CD 边的延长线上,且满足︒=∠90MAN ,联结MN 、AC ,MN 与边AD 交于点E .(1)求证;AN AM =;(2)如果NAD CAD ∠=∠2,求证:AE AC AM⋅=2.23.证明:(1)∵四边形ABCD 是正方形∴AD AB =,︒=∠=∠=∠=∠90BCD ADC B BAD ……1分∴︒=∠+∠90MAD MAB ∵︒=∠90MAN ∴︒=∠+∠90MAD NAD ∴NAD MAB ∠=∠………1分∵︒=∠+∠180ADC ADN ∴︒=∠90ADN ……1分∴ADN B ∠=∠……………………1分∴△ABM ≌△ADN ………………………1分∴AN AM =……………………………1分CBANDM E图6(2)∵四边形ABCD 是正方形∴AC 平分BCD ∠和BAD∠∴︒=∠=∠4521BCD BCA ,︒=∠=∠=∠4521BAD CAD BAC ……1分∵NAD CAD ∠=∠2∴︒=∠5.22NAD ∵NAD MAB ∠=∠∴︒=∠5.22MAB ………1分∴︒=∠5.22MAC ∴︒=∠=∠5.22NAE MAC ∵AN AM =,︒=∠90MAN ∴︒=∠45ANE ∴ANE ACM ∠=∠…………………1分∴△ACM ∽△ANE …………1分∴AN ACAEAM =……1分∵AN AM =∴AE AC AM⋅=2…………1分长宁区23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD//BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点G 、F ,且AG GFBE AD =.CBANDM E图6ADFG(1)求证:AB//CD ;(2)若BD GD BC ⋅=2,BG=GE ,求证:四边形ABCD 是菱形.23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵BC AD //∴BG DGBE AD =(2分)∵AG GFBE AD =∴AG GFBG DG =(1分)∴CDAB //(2分)(2)∵BC AD //,CDAB //∴四边形ABCD 是平行四边形∴BC=AD(1分)∵BD GD BC ⋅=2∴BD GD AD ⋅=2即ADGDBD AD =又∵BDA ADG ∠=∠∴ADG ∆∽BDA∆(1分)∴ABD DAG ∠=∠∵CD AB //∴BDC ABD ∠=∠∵BCAD //∴EDAG ∠=∠∵BG=GE ∴E DBC ∠=∠∴DBCBDC ∠=∠(3分)∴BC=CD(1分)∵四边形ABCD 是平行四边形∴平行四边形ABCD 是菱形.(1分)崇明区23.(本题满分12分,第(1)、(2)小题满分各6分)如图,是的中线,点D是线段上一点(不与点重合).交于点,,联结.(1)求证:;(2)求证:.23.(本题满分12分,每小题6分)(1)证明:∵∴……………………………………………………1分∵∴……………………………………………………1分∴……………………………………………………1分∴………………………………………………………1分∵是△的中线(第23题图)ABKM CDE∴………………………………………………………1分∴………………………………………………………1分(2)证明:∵∴………………………………………………………2分又∵∴………………………………………………………2分又∵∴四边形是平行四边形…………………………………………1分∴………………………………………………………1分奉贤区23.(本题满分12分,每小题满分各6分)已知:如图7,梯形ABCD,DC∥AB,对角线AC平分∠BCD,点E在边CB的延长线上,EA⊥AC,垂足为点A.(1)求证:B是EC的中点;(2)分别延长CD、EA相交于点F ,若,求证:.ACDE图7B黄浦区23.(本题满分12分)如图,点E、F分别为菱形ABCD边AD、CD的中点.(1)求证:BE=BF;(2)当△BEF为等边三角形时,求证:∠D=2∠A.23.证:(1)∵四边形ABCD为菱形,∴AB=BC=AD=CD,∠A=∠C,——————————————————(2分)又E、F是边的中点,∴AE=CF,——————————————————————————(1分)∴△ABE≌△CBF———————————————————————(2分)∴BE=BF.——————————————————————————(1分)(2)联结AC、BD,AC交BE、BD于点G、O.——————————(1分)∵△BEF是等边三角形,∴EB=EF,又∵E、F是两边中点,∴AO=12AC=EF=BE.——————————————————————(1分)又△ABD中,BE、AO均为中线,则G为△ABD的重心,∴1133OG AO BE GE ===,∴AG=BG,——————————————————————————(1分)又∠AGE=∠BGO,∴△AGE≌△BGO,——————————————————————(1分)∴AE=BO,则AD=BD,∴△ABD是等边三角形,———————————————————(1分)所以∠BAD=60°,则∠ADC=120°,即∠ADC=2∠BAD.—————————————————————(1分)金山区23.(本题满分12分,每小题6分)如图7,已知AD是△ABC的中线,M是AD的中点,过A点作AE∥BC,CM的延长线与AE相交于点E,与AB相交于点F.(1)求证:四边形AEBD是平行四边形;(2)如果AC=3AF,求证四边形AEBD是矩形.E AFMB D图7C23.证明:(1)∵AE//BC ,∴∠AEM=∠DCM ,∠EAM=∠CDM ,……………………(1分)又∵AM=DM ,∴△AME ≌△DMC ,∴AE =CD ,…………………………(1分)∵BD=CD ,∴AE=BD .……………………………………………………(1分)∵AE ∥BD ,∴四边形AEBD 是平行四边形.……………………………(2分)(2)∵AE//BC ,∴AF AEFB BC =.…………………………………………………(1分)∵AE=BD=CD ,∴12AF AE FB BC ==,∴AB=3AF .……………………………(1分)∵AC=3AF ,∴AB=AC ,…………………………………………………………(1分)又∵AD 是△ABC 的中线,∴AD ⊥BC ,即∠ADB=90°.……………………(1分)∴四边形AEBD 是矩形.……………………………………………………(1分)静安区23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)已知:如图,在平行四边形ABCD 中,AC 、DB 交于点E ,点F 在BC 的延长线上,联结EF 、DF ,且∠DEF=∠ADC .(1)求证:DB AB BF EF =;(2)如果DF AD BD ⋅=22,求证:平行四边形ABCD 是矩形.C第23题图ABDEF23.(本题满分12分,第(1)小题6分,第(2)小题6分)证明:(1)∵平行四边形ABCD ,∴AD//BC ,AB//DC∴∠BAD+∠ADC=180°,……………………………………(1分)又∵∠BEF+∠DEF =180°,∴∠BAD+∠ADC=∠BEF+∠DEF ……(1分)∵∠DEF=∠ADC ∴∠BAD=∠BEF ,…………………………(1分)∵AB//DC ,∴∠EBF=∠ADB…………………………(1分)∴△ADB ∽△EBF∴DBABBF EF =………………………(2分)(2)∵△ADB ∽△EBF,∴BF BEBD AD =,………………………(1分)在平行四边形ABCD 中,BE=ED=BD21∴221BD BE BD BF AD =⋅=⋅∴BF AD BD ⋅=22,………………………………………(1分)又∵DFAD BD ⋅=22∴DF BF =,△DBF 是等腰三角形…………………………(1分)∵DE BE =∴FE ⊥BD,即∠DEF =90°…………………………(1分)∴∠ADC =∠DEF =90°…………………………(1分)∴平行四边形ABCD 是矩形…………………………(1分)闵行区23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)如图,已知在△ABC 中,∠BAC=2∠C ,∠BAC 的平分线AE 与∠ABC 的平分线BD 相交于点F ,FGCA B第23题图DEFA∥AC ,联结DG .(1)求证:BF BC AB BD ⋅=⋅;(2)求证:四边形ADGF 是菱形.23.证明:(1)∵AE 平分∠BAC ,∴∠BAC=2∠BAF=2∠EAC .∵∠BAC=2∠C ,∴∠BAF=∠C=∠EAC .…………………………(1分)又∵BD 平分∠ABC ,∴∠ABD=∠DBC .……………………………(1分)∵∠ABF=∠C ,∠ABD=∠DBC ,∴ABF CBD ∆∆∽.…………………………………………………(1分)∴AB BFBC BD =.………………………………………………………(1分)∴BF BC AB BD ⋅=⋅.………………………………………………(1分)(2)∵FG ∥AC ,∴∠C=∠FGB ,∴∠FGB=∠FAB .………………(1分)∵∠BAF=∠BGF ,∠ABD=∠GBD ,BF=BF ,∴ABF GBF ∆∆≌.∴AF=FG ,BA=BG .…………………………(1分)∵BA=BG ,∠ABD=∠GBD ,BD=BD ,∴ABD GBD ∆∆≌.∴∠BAD=∠BGD .……………………………(1分)∵∠BAD=2∠C ,∴∠BGD=2∠C ,∴∠GDC=∠C ,∴∠GDC=∠EAC ,∴AF ∥DG .……………………………………(1分)又∵FG ∥AC ,∴四边形ADGF 是平行四边形.……………………(1分)∴AF=FG .……………………………………………………………(1分)∴四边形ADGF 是菱形.……………………………………………(1分)普陀区23.(本题满分12分)已知:如图9,梯形中,∥,∥,与对角线交于点,∥,且.(1)求证:四边形是菱形;(2)联结,又知⊥,求证:.证明:(1)∵∥,∥,∴四边形是平行四边形.(2分)∵∥,∴.(1分)同理.(1分)得=∵,∴.(1分)∴四边形是菱形.(1分)(2)联结,与交于点.∵四边形是菱形,∴,⊥.(2分)A B CDE F G图9得.同理.∴.(1分)又∵是公共角,∴△∽△.(1分)∴.(1分)∴.(1分)青浦区23.(本题满分12分,第(1)、(2)小题,每小题6分)如图7,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点M ,点E 在边BC 上,且DAE DCB ∠=∠,联结AE ,AE 与BD 交于点F .(1)求证:2DM MF MB =⋅;(2)联结DE ,如果3BF FM =,求证:四边形ABED 是平行四边形.23.证明:(1)∵AD//BC ,∴∠=∠DAE AEB ,(1分)∵∠=∠DCB DAE ,∴∠=∠DCB AEB ,(1分)∴AE//DC ,(1分)∴=FM AMMD MC .(1分)∵AD//BC ,∴=AM DMMC MB ,(1分)图7∴=FMDMMD MB ,(1分)即2=⋅MD MF MB .(2)设=FM a ,则=3BF a ,=4BM a .(1分)由2=⋅MD MF MB ,得24=⋅MD a a ,∴2=MD a ,(1分)∴3==DF BF a .(1分)∵AD//BC ,∴1==AFDFEF BF ,(1分)∴=AF EF ,(1分)∴四边形ABED 是平行四边形.(1分)松江区23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)如图,已知梯形ABCD 中,AB ∥CD ,∠D=90°,BE 平分∠ABC ,交CD 于点E ,F 是AB 的中点,联结AE 、EF ,且AE ⊥BE .求证:(1)四边形BCEF 是菱形;(2)2BE AE AD BC ⋅=⋅.23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)证明:(第23题图)F A CD E B(1)∵BE 平分∠ABC,∴∠ABE=∠CBE …………………………………………………1分∵AE ⊥BE∴∠AEB=90°∵F 是AB 的中点∴12EF BF AB ==………………………………………………1分∴∠FEB =∠FBE …………………………………………………1分∴∠FEB =∠CBE …………………………………………………1分∴EF ∥BC …………………………………………………1分∵AB ∥CD∴四边形BCEF 是平行四边形…………………………1分∵EF BF=∴四边形BCEF 是菱形……………………………………1分(2)∵四边形BCEF 是菱形,∴BC=BF ∵12BF AB=∴AB=2BC ………………………………………………1分∵AB ∥CD∴∠DEA=∠EAB∵∠D=∠AEB∴△EDA ∽△AEB ………………………………………2分∴AD AEBE AB =…………………………………………1分∴BE ·AE=AD ·AB∴2BE AE AD BC ⋅=⋅…………………………………1分(第23题图)F A C D E B徐汇区23.在梯形ABCD 中,AD ∥BC ,AB CD =,BD BC =,点E 在对角线BD 上,且DCE DBC ∠=∠.(1)求证:AD BE =;(2)延长CE 交AB 于点F ,如果CF AB ⊥,求证:4EF FC DE BD ⋅=⋅.杨浦区23、(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图7,在□ABCD 中,点G 为对角线AC 的中点,过点G 的直线EF 分别交边AB 、CD 于点E 、F ,过点G 的直线MN 分别交边AD 、BC 于点M 、N ,且∠AGE=∠CGN。
2018年奉贤区高三数学二模参考答案一、填空题(1-6,每个4分,7-12每个5分,合计54分)1、{}1或{}1=x x 2、8或1:8 3、(0,14) 4、4 5、4π或045 6、2log 3x = 7、4 8、6π或56π9、3710、311、7241250x y ±+= 12、9π阅卷评分标准说明:第1题必须集合形式,两种形式都可以;第2题1:8也可以;第5题也可以写045; 第8题必须两解,而且必须弧度制,漏解或角度制均不给分; 第9题答案必须最简结果,唯一表达形式;第11题直线方程必须一般式;第12题必须弧度制,角度制均不给分;; 请严格执行此标准阅卷二、选择题(每个5分,合计20分)13、A 14、D 15、C 16、B三、解答题(14+14+14+16+18=76分)17、(1)AC S V BCED ⋅⋅=31……………………………………………………………3分 340=…………………………………………………………………………3分踩分点,两个步骤环节,每一个3分(2)分别以CA 、CB 、CE 方向为z y x 、、轴建立空间直角坐标系,则:()0,0,0C 、()4,0,0E 、()0,0,4A 、()1,4,0D , …………………………………2分所以()4,0,0=,()4,0,4-=,()3,4,0-= 设平面AED 的法向量为()z y x ,,=⎪⎩⎪⎨⎧=⋅=⋅00AE n ⇒⎪⎩⎪⎨⎧==43z y z x ,……………………………………………………………… 2分 于是可以取()4,3,4=.……………………………………………………………………1分 设CE 与平面AED 所成的角为θ,则:41414sin ==θ,………………………………………………………………2分 所以CE 与平面AED 所成的角为41414arcsin.…………………………………………1分 建系设点2分,列方程组2分,求出法向量1分,套用公式1分,求出角2分18、(1)函数定义域为R ……………………………………………………………………1分 01)0(≠=kf ()x f ∴不是奇函数……………………………………………………………………2分()1221-+⋅=-x xk x f ,令()()()02211=-⎪⎭⎫ ⎝⎛-⇒=--xx k x f x f 恒成立, 所以当1=k 时,函数()x f 为偶函数;……………………………………………4分 当1≠k 时,函数()x f 是非奇非偶函数。
2018~2019学年上海市奉贤区九年级二模数学试卷(时间:100分钟,满分150分)一、选择题(本大题共6题,每题4分,满分24分) 1. 下列各数中,最小的数是(下列各数中,最小的数是() (A )2--; (B )2(2)-; (C )(2)--; (D )0(2)-. 2. 电影《流浪地球》从2月5日上映以来,凭借其气势磅礴的特效场面与动人的父子情获得大众的喜爱与支持,截止3月底,中国电影票房高达4559000000元,数据4559000000用科学记数法表示为(用科学记数法表示为() A 845.5910⨯; (B )945.5910⨯;(C )94.55910⨯; (D )104.55910⨯. 3. 关于反比例函数4y x=-,下列说法正确的是(,下列说法正确的是( ) (A )函数图像经过点(2,2); (B )函数图像位于第一、三象限;)函数图像位于第一、三象限; (C )当0x >时,函数值y 随着x 的增大而增大;的增大而增大;(D )当1x >时,4y <-. 4. 学习环保小组的同学随机调查了某小区10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,7,10,6,9,利用学过的统计知识,根据上述数据估计该小区200户家庭一周内共需要环保方便袋约(户家庭一周内共需要环保方便袋约() (A )200只;只; (B )1400只;只; (C )9800只;只; (D )14000只.只. 5. 把一副三角尺放在同一水平桌面上,把一副三角尺放在同一水平桌面上,如果它们的两个直角顶点重合,如果它们的两个直角顶点重合,如果它们的两个直角顶点重合,两条斜边平行两条斜边平行(如图所示),那么1∠的度数是(的度数是( ) (A )75°; (B )90°; (C )100°; (D )105°.第5题图题图 第6题图 6. 如图,已知ABC △,点D 、E 分别在边AC 、AB 上,ABD ACE ∠=∠,下列条件中,不能判断ABC △是等腰三角形的是(是等腰三角形的是() (A )AE AD =; (B )BD CE =;(C )ECB DBC ∠=∠; (D )BEC CDB ∠=∠.二、填空题(本大题共12题,每题4分,满分48分) 7. 计算:32()m m ÷-=__________.8. 不等式组1025x x ->⎧⎨<⎩的整数解是__________. 9. 方程10x x ⋅-=的根是__________.10.在四张完全相同的卡片上,分别画有圆、在四张完全相同的卡片上,分别画有圆、菱形、菱形、菱形、等边三角形和等腰三角形,如果从中任等边三角形和等腰三角形,如果从中任意抽取2张卡片,那么这两张卡片上所画图形恰好都是中心对称图形的概率是_______. 11.如果正比例函数(3)y k x =-的图像经过第一、三象限,那么k 的取值范围是__________. 12.如果关于x 的方程2420x x k ++=有两个相等的实数根,那么k 的值是__________. 13.下表是某班所有学生体育中考模拟测试成绩的统计表,表格中的每个分数段含最小值,不含最大值,根据表中数据可以知道,该班这次体育中考模拟测试成绩的中位数落在的分数段是__________.分数段分数段 18分以下分以下 18~22分22~26分 26分~30分 30分人数人数 3 7 9 13 814.已知ABC △,6AB =,4AC =,9BC =,如果分别以AB 、AC 为直径画圆,那么这两个圆的位置关系是__________.15.如图,某水库大坝的横截面是梯形ABCD ,坝顶宽AD 是6米,坝高4米,背水坡AB和迎水坡CD 的坡度都是1:0.5,那么坝底宽BC 是__________米.米.第15题图题图第17题图题图16.已知ABC △,点D 、E 分别在边AB 、AC 上,DE //BC ,13DE BC =,如果设AB A =u u u r u r ,DE b =u u u r r ,那么AC =u u u r __________.(用向量a r 、b r的式子表示)的式子表示)17.在证明“勾股定理”时,可以将4个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示),如果小正方形的面积是25,大正方形的面积为49,直角三角形中较小的锐角为α,那么tan α的值是__________.18.如图,矩形ABCD ,AD a =,将矩形ABCD 绕着顶点B 顺时针旋转,得到矩形EBGF ,顶点A 、D 、C 分别与点E 、F 、G 对应(点D 与点F 不重合),如果点D 、E 、F 在同一条直线上,那么线段DF 的长是__________.(用含a 的代数式表示)的代数式表示)三、解答题(本大题共7题,满分78分)19.(本题满分10分)分) 先化简,再求值:22693111x x x x x x x -+--÷--+,其中2x =.20. (本题满分10分)分) 解方程组:226;320.x y x xy y +=⎧⎨-+=⎩21. (本题满分10分)分)如图,已知梯形ABCD 中,AD ∥BC ,90ABC ∠=︒,28BC AB ==,对角线AC 平分BCD ∠,过点D 作DE AC ⊥,垂足为点E ,交边AB 的延长线于点F ,联结CF .(1)求腰DC 的长;的长;(2)求BCF ∠的余弦值.的余弦值.22. E-leaming 即为在线学习,是一种新型的学习方式,某网站提供了A 、B 两种在线学习的收费方式:的收费方式:A 种:在线学习10小时(包括10小时)以内,收取费用5元,超过10小时时,在收取5元的基础上,超过部分每小时收费0.6元(不足1小时按1小时计);B 种:每月的收费金额y (元)与在线学习时间是x (时)之间的函数关系如图所示.(1)按照B 种方式收费,当5x ≥时,求y 关于x 的函数关系式;的函数关系式;(2)如果小明三月份在这个网站在线学习,如果小明三月份在这个网站在线学习,他按照他按照A 种方式支付了20元,那么在线学习的时间最多是多少小时?如果该月他按照B 种方式付费,那么他需要多付多少元?种方式付费,那么他需要多付多少元?23. (本题满分12分)分)已知:如图,正方形ABCD ,点E 在边AD 上,AF BE ⊥,垂足为点F ,点G 在线段BF 上,BG AF =.(1)求证:CG BE ⊥;(2)如果点E 是AD 的中点,联结CF ,求证:CF CB =.如图,已知平面直角坐标系xOy ,抛物线22y ax bx =++与x 轴交于点(2,0)A -和点(4,0)B .(1)求这条抛物线的表达式和对称轴;)求这条抛物线的表达式和对称轴; (2)点C 在线段OB 上,过点C 作CD x ⊥轴,垂足为点C ,交抛物线于点D ,E 是BD 中点,联结CE 并延长,与y 轴交于点F . ① 当D 恰好是抛物线的顶点时,求点F 的坐标;的坐标;② 联结BF ,当DBC △的面积是BCF △面积的32时,求点C 的坐标.的坐标.如图,已知ABC △,2AB =,3BC =,45B ∠=︒,点D 在边BC 上,联结AD ,以点A 为圆心,AD 为半径画圆,与边AC 交于点E ,点F 在圆A 上,且AF AD ⊥.(1)设BD 为x ,点D 、F 之间的距离为y ,求y 关于x 的函数解析式,并写出定义域;域;(2)如果E 是弧DF 中点,求:BD CD 的值;的值;(3)联结CF ,如果四边形ADCF 是梯形,求BD 的长.的长.备用图2018~2019学年上海市奉贤区九年级二模数学试卷参考答案一、选择题1 2 3 4 5 6 ACCBDD二、填空题7 8 910 11 12 m2 1x = 16 3k > 2 13 14 15 16 17 1826~30分相交相交103a b +r r342a三、解答题19.解:原式2(3)11(1)(1)3x x x x x x x -+=-?--+-(6分)分) 33111x x x x x -=-=---. (2分)分) 当2x =时,33323121x ==+--.(2分)分)20.解:将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=. (2分) 原方程组可以化为620x y x y +=⎧⎨-=⎩或60x y x y +=⎧⎨-=⎩(2分)分) 解这两个方程组得1142x y =⎧⎨=⎩ 或2233x y =⎧⎨=⎩ (6分)分)所以原方程组的解是1142x y =⎧⎨=⎩;2233x y =⎧⎨=⎩.21.解:(1)∵90ABC ∠=︒,28BC AB ==, ∴4AB =,2245AC AB BC =+=. (1分)分) ∵AD //BC , ∴DAC BCA ∠=∠.∵AC 平分BCD ∠,∴DCA BCA ∠=∠. ∴DAC DCA ??.∴AD CD =. (1分)分)∵DE AC ⊥,∴1252CE AC ==. (1分)分)在Rt DEC △中,90DEC ∠=︒,tan DEDCE EC ∠=.在Rt ABC △中,90ABC ∠=︒,1tan 2AB ACB BC ∠==.∵DCE ACB ∠=∠,∴12DE EC =,5DE =. (1分)分)∴225DC DE EC =+=.即腰DC 的长是5. (1分)分)(2)设DF 与BC 相交于点Q ,∵90FBC FEC ∠=∠=︒,BQF EQC ∠=∠,∴AFE ACB ∠=∠. ∵90FAD ABC ∠=∠=︒,∴AFD △∽BCA △.∴AD AB AF BC=.∵5AD DC ==,12AB BC =,∴512AF =,即10AF =. (2分)分)∵FE AC ^,AE EC =,∴10CF AF ==.(1分)分)在Rt BCF △中,90FBC ∠=︒,∴84cos 105BC BCF CF ∠===. (2分)分)即BCF Ð的余弦值是45.22. 解:(1)当5x ³时,设y 与x 之间的函数关系式是:(0)y kx b k =+≠ (1分)分)∵它经过点(5,0),(20,15),∴50,2015k b k b +=⎧⎨+=⎩ 解得1,5.k b =⎧⎨=-⎩ (2分)分)∴5y x =-. (1分)分)(2)按照A 种收费方式,设小明三月份在线学习时间为x 小时,小时, 得5(10)0.620x +-⨯=.解得35x =. (3分)分) 当35x =时,530y x =-=. (2分)分)302010-=(元). (1分)分) 答:如果小明3月份按照A 种方式支付了20元,那么他三月份在线学习的时间最多是 35小时,如果该月他按照B 种方式付费,那么他需要多付10元. 23. 证明:(1)∵四边形ABCD 是正方形,∴AB BC =.90ABC ∠=︒. (1分)分)∵AF BE ⊥,∴90FAB FBA ∠+∠=︒. ∵90FBA CBG ∠+∠=︒,∴FAB CBG ∠=∠. (1分)分) 又∵AF BG =,∴AFB △≌BGC △. (2分)分)∴AFB BGC ∠=∠. (1分)分)∵90AFB ∠=︒,∴90BGC ∠=︒,即CG BE ⊥. (1分)分) (2)∵ABF EBA ∠=∠,90AFB BAE ∠=∠=︒,∴AEB △∽FAB △.∴AE AFAB BF=. (3分)分) ∵点E 是AD 的中点,AD AB =,∴12AE AB =.∴12AF BF =. (1分)分)∵AF BG =,∴12BG BF =,即FG BG =. (1分)分)∵CG BE ⊥,∴CF CB =. (1分)分)24. 解:(1)由题意得,抛物线22y ax bx =++经过点(2,0)A -和点(4,0)B ,代入得4220,16420.a b a b -+=⎧⎨++=⎩ 解得解得 1,41.2a b ⎧=-⎪⎪⎨⎪=⎪⎩(2分)分)因此,这条抛物线的表达式是211242y x x =-++. (1分)分)它的对称轴是直线1x =. (1分)分)(2)①由抛物线的表达式211242y x x =-++,得顶点D 的坐标是9(1,)4. (1分)分)∴9,1,4134DC OC BC ===-=.∵D 是抛物线顶点,CD x ⊥、轴,E 是BD 中点,∴CE BE =. ∴EBC ECB ∠=∠. ∵ECB OCF ∠=∠,∴EBC OCF ∠=∠. (1分)分)在Rt DCB △中,90DCB ∠=︒,34cot 934BC EBC DC ∠===.在Rt OFC △中,90FOC ∠=︒,cot OCOCF OF ∠=.∴143OF =,34OF =.∴点F 的坐标是3(0,)4-.(2分)分) ②∵12DBC S BC DC ∆=⋅⋅,12BCF S BC OF ∆=⋅⋅,∴DBC BCF S DC S OF D D =. (1分)分) ∵DBC △的面积是BCF △面积的32, ∴32DC OF =.(1分)分) 由①得BDC OFC ∠=∠,又90DCB FOC ???, ∴DCB △∽FOC △.∴DC CBOF OC =. (1分)分) 又4OB =,∴342OC OC -=,∴85OC =.即点C 坐标是8(,0)5. (1分)分)25. 解:(1)过点A 作AH BC ⊥,垂足为点H .∵45B ∠=︒,2AB =,∴cos 1BH AH AB B ==⋅=. (1分)分)∵BD x =,∴1DH x =-. 在Rt ADH △中,90AHD?,∴22222AD AH DH x x =+=-+. (1分)分)联结DF ,点D 、F 之间的距离y 即为DF 的长度.的长度.∵点F 在圆A 上,且AF AD ⊥,∴AD AF =,45ADF ∠=︒.在Rt ADF △中,90DAF ?,∴2442cos ADDF x x ADF==-+Ð. ∴2442y x x =-+(03)x#.(2分)分) (2)∵E 是»DF 的中点,∴AE DF ⊥,AE 平分DF . (1分)分)∵3BC =,∴312HC =-=.∴225AC AH HC =+=. (1分)分)设DF 与AE 相交于点Q ,在Rt DCQ △中,90DQC ??,tan DQDCQ CQ ∠=.在Rt AHC △中,90AHC ??,1tan 2AH ACH HC ∠==.∵DCQACH ??,∴12DQ CQ =.设,2DQ k CQ k ==,AQ DQ k ==, ∵35k =,53k =,∴2253DC DQ CQ =+=. (2分)分) ∵43BD BC DC =-=,∴4:5BD CD =. (1分)分)(3)如果四边形ADCF 是梯形是梯形则①当AF ∥DC 时,45AFD FDC ∠=∠=︒.∵45ADF ∠=︒,∴AD BC ^,即点D 与点H 重合.重合. ∴1BD =. (2分)分) ②当AD ∥FC 时,45ADF CFD ???. ∵45B ∠=︒,∴B CFD ∠=∠. ∵B BADADFFDC ????,∴BAD FDC ??.∴ABD △∽DFC △.∴AB ADDF DC=. (1分)分) ∵2DF AD =,DC BC BD =-.∴2AD BC BD =-.即22(2-2)3x x x +=- (1分)分)整理得整理得 210x x --=,解得,解得152x ±=(负数舍去). (1分)分) 综上所述,如果四边形ADCF 是梯形,BD 的长是1或1+52.。
2017-2018学年第二学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷;(C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形.二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 ▲ . 16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD ,若a AD =,b DC =,用、表示= ▲ . 17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边5=AB ,则它的周长等于 ▲ . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 ▲ .第14题图AB CDE F第15题图第16题图DCBA第18题图AB CD三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x .20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC .(1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.ACDB第21题图第22题图ACDEF GB第23题图24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点. (1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.备用图第24题图OAC BO BA C DBAO2017-2018学年第二学期初三数学参考答案和评分建议一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53; 13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分) =2)1(2+x (1分)当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分) 20.(本题满分10分)解:方程①可变形为0))(6(=-+y x y x得06=+y x 或0=-y x (2分)将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分) 所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)另解:由②得12-=x y ③ (1分) 把③代入①,得0)12(6)12(522=---+x x x x (1分)整理得:0619132=+-x x (2分)解得:1,13621==x x (2分)分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x ,⎩⎨⎧==1122y x . (2分)21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,5426cot ===∠DF CF DCB (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分) (2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分) 整理得: 0175003202=+-x x 解之得:x =70或者x =250(舍去) (2分)答:门票价格应该定为70元. (1分) 23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵BC AD // ∴BG DG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分) ∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分) 24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分) 解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分) (2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分)∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分) (3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分)若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BO AO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8,∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO ,AO =5,∴322=-=AC AO CO (1分)5=OD ,2=-=∴OC OD CD (1分) (2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121 ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO ,AO =5,∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分)②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在Rt △GAD 中,︒=∠90DGA ,∴622=+=DG AG AD ( 3分)综上得6514或=AD。
2018年上海奉贤区初三⼆模试卷(含答案)2018年上海奉贤区初三⼆模试卷考⽣注意:1.本试卷共27题。
2.试卷满分150分。
考试时间100分钟。
3.请将所有答案做在答题纸的指定位置上,做在试卷上⼀律不计分。
⼀、⽂⾔⽂(40分)(⼀)默写(15分)1. ⼭河破碎风飘絮,。
(⽂天祥《过零丁洋》)2. 晴川历历汉阳树,。
(崔颢《黄鹤楼》)3. ,不可知其源。
(柳宗元《⼩⽯潭记》)4. ,五⼗弦翻塞外声,沙场秋点兵。
(⾟弃疾《破阵⼦·为陈同甫赋壮词以寄》)5.⽇星隐曜,。
(范仲淹《岳阳楼记》)(⼆)阅读下⾯的诗,完成第6—7题(4分)送友⼈李⽩青⼭横北郭,⽩⽔绕东城。
此地⼀为别,孤蓬万⾥征。
浮云游⼦意,落⽇故⼈情。
挥⼿⾃兹去,萧萧班马鸣。
6.“孤蓬”喻指。
(2分)7.下列理解不正确...的⼀项是()(2分)A.“青⼭”“⽩⽔”描绘了⾊泽明丽的送别场景。
B.借“浮云”、“落⽇”,抒发诗⼈依依惜别的深情。
C.借写“班马”表达诗⼈对友⼈的⽆限深情和不舍之意。
D.这是⼀⾸送别诗,表达了诗⼈缠绵悱恻的哀伤情调。
(三)阅读下⽂,完成第8—10题(9分)①先帝创业未半,⽽中道崩殂;今天下三分,益州疲弊,此诚危急存亡之秋也。
然侍卫之⾂不懈于内,忠志之⼠忘⾝于外者,盖追先帝之殊遇,欲报之于陛下也。
诚宜开张圣听,以光先帝遗德,恢弘志⼠之⽓;不宜妄⾃菲薄,引喻失义,以塞忠谏之路也。
②宫中府中,俱为⼀体,陟罚臧否,不宜异同。
若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。
8.选⽂出⾃课⽂《》,作者是(⼈名)。
选⽂中“先帝”是指(⼈名)。
(3分)9.⽤现代汉语翻译下⾯的句⼦。
(3分)宫中府中,俱为⼀体,陟罚臧否,不宜异同。
10.请简要概括选⽂第①段的内容。
(3分)(四)阅读下⽂,完成第11—13题(12分)童寄者,郴州荛牧⼉①也。
⾏牧且荛,⼆豪贼劫持,反接②,布囊其⼝。
去逾四⼗⾥,之.虚所卖之。
图22018年奉贤区初三数学二模卷 2018.04(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分) 1.下列二次根式中,与a 是同类二次根式的是(▲)(A )2a ; (B )a 2; (C )a 4; (D )a +4.2.某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛.小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的(▲) (A )众数; (B )中位数; (C )平均数; (D )方差.3.下列四个不等式组中,其中一个不等式组的解集在数轴上的正确表示如图1所示,这个不等式组是(▲)(A )⎩⎨⎧->≥;,32x x (B )⎩⎨⎧-<≤;,32x x (C )⎩⎨⎧-<≥;,32x x (D )⎩⎨⎧->≤.32x x ,4.如果将直线l 1:22-=x y 平移后得到直线l 2:x y 2=,那么下列平移过程正确的是(▲) (A )将l 1向左平移2个单位; (B )将l 1向右平移2个单位; (C )将l 1向上平移2个单位; (D )将l 1向下平移2个单位. 5.将一把直尺和一块含30°和60°角的三角板ABC 按如图2所 示的位置放置,如果∠CDE =40°,那么∠BAF 的大小为(▲) (A )10°; (B )15°; (C )20°; (D )25°.6.直线AB 、CD 相交于点O ,射线 OM 平分∠AOD ,点P 在射线OM 上(点P 与点O 不重 合),如果以点P 为圆心的圆与直线AB 相离,那么圆P 与直线CD 的位置关系是(▲) (A )相离; (B )相切; (C )相交; (D )不确定.二、填空题(本大题共12题,每题4分,满分48分)图17.计算:=-aa 211▲. 8.如果822=-b a ,且4=+b a ,那么b a -的值是▲.9.方程242=-x 的根是▲. 10.已知反比例函数)0(≠=k xky ,在其图像所在的每个象限内,y 的值随x 的值增大而减 小,那么它的图像所在的象限是第▲象限.11.如果将抛物线22y x =平移,使平移后的抛物线顶点坐标为(1,2),那么所得新抛物线的表达式是 ▲.12.将6本相同厚度的书叠起来,它们的高度是9厘米.如果将这样相同厚度的书叠起来的高度是42厘米,那么这些书有▲本.13.从1,2,3,4,5,6,7,8这八个数中,任意抽取一个数,这个数恰好是合数的概率是▲.14.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图3所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休 日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的▲(填百分数) . 15.如图4,在梯形ABCD 中,AD //BC ,BC=2AD ,E 、F 分别是边AD 、BC 的中点,设a AD =, b AB =,那么EF 等于 ▲(结果用a 、b 的线性组合表示). 16.如果一个矩形的面积是40,两条对角线夹角的正切值是34,那么它的一条对角线长是▲. 17.已知正方形ABCD ,AB =1,分别以点A 、C 为圆心画圆,如果点B 在圆A 外,且圆A与圆C 外切,那么圆C 的半径长r 的取值范围是▲.18.如图5,将△ABC 的边AB 绕着点A 顺时针旋转)900(︒<<︒αα得到AB ’,边AC 绕 着点A 逆时针旋转)900(︒<<︒ββ得到AC ’,联结B ′C ′.当︒=+90βα时,我们称△A B ′C ′ 是△ABC 的“双旋三角形”.如果等边△ABC 的边长为a ,那么它的“双旋三角形”的面 积是▲(用含a 的代数式表示).三、解答题(本大题共7题,满分78分)图4A B DFE C图38 10 2430 0.5 1 1.5 2 2.5 3人数BC图5AB ′C ′19.(本题满分10分)计算:1212)33(8231)12(--+++-.20.(本题满分10分) 解方程组:⎩⎨⎧=++=+.12,2222y xy x y x21.(本题满分10分,每小题满分各5分)已知:如图6,在△ABC 中,AB =13,AC=8,135cos =∠BAC ,BD ⊥AC ,垂足为点D ,E 是BD 的中点,联结AE 并延长,交边BC 于点F . (1) 求EAD ∠的余切值; (2) 求BFCF的值.22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)某学校要印刷一批艺术节的宣传资料,在需要支付制版费100元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件.甲印刷厂提出:所有资料的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过200份的,超过部分的印刷费可按8折收费.(1)设该学校需要印刷艺术节的宣传资料x 份,支付甲印刷厂的费用为y 元,写出y 关于x 的函数关系式,并写出它的定义域;(2)如果该学校需要印刷艺术节的宣传资料600份,那么应该选择哪家印刷厂比较优惠?23.(本题满分12分,每小题满分各6分)已知:如图7,梯形ABCD ,DC ∥AB ,对角线AC 平分∠BCD , 点E 在边CB 的延长线上,EA ⊥AC ,垂足为点A . (1)求证:B 是EC 的中点;(2)分别延长CD 、EA 相交于点F ,若EC DC AC ⋅=2,求证:FC AC AF AD ::=.24.(本题满分12分,每小题满分各4分)图6AB CD E FACD E图7B已知平面直角坐标系xOy (如图8),抛物线)0(3222>++-=m m mx x y 与x 轴交于点A 、B (点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴 为直线l ,过点C 作直线l 的垂线,垂足为点E ,联结DC 、(1)当点C (0,3)时,① 求这条抛物线的表达式和顶点坐标; ② 求证:∠DCE=∠BCE ;(2)当CB 平分∠DCO 时,求m 的值.25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)已知:如图9,在半径为2的扇形AOB 中,∠AOB=90°,点C 在半径OB 上,AC 的垂直平分线交OA 于点D ,交弧AB 于点E ,联结BE 、CD . (1)若C 是半径OB 中点,求∠OCD 的正弦值; (2)若E 是弧AB 的中点,求证:BC BO BE ⋅=2;(3)联结CE ,当△DCE 是以CD 为腰的等腰三角形时,求CD 的长.图8图9A BCD O E备用图ABO备用图AB O2018年奉贤区初三数学二模卷答案 201804一 、选择题:(本大题共8题,满分24分)1.C ; 2.B ; 3.D ; 4.C ; 5.A ; 6.A . 二、填空题:(本大题共12题,满分48分)7.a21; 8.2; 9.4=x ; 10.一、三; 11.2)1(22+-=x y ; 12.28; 13.83; 14.28%;15.+21; 16.10; 17.21-2<<r ; 18.241a . 三.(本大题共7题,满分78分) 19. (本题满分10分)计算:1212)33(8231)12(--+++-.解原式=32223223-+-+-. ……………………………………………各2分 =23-. ……………………………………………………………………………2分 20.(本题满分10分)解方程组:⎩⎨⎧=++=+②①.12,2222y xy x y x解:将方程②变形为1)2=+y x (,得 1=+y x 或1-=+y x …………………………3分 由此,原方程组可以化为两个二元一次方程组:⎩⎨⎧=+=+;1,22y x y x⎩⎨⎧-=+=+.1,22y x y x ………3分 分别解这两个二元一次方程组,得到原方程组的解是:⎩⎨⎧==;0,111y x ⎩⎨⎧-==.4,322y x ………4分 21. (本题满分10分,每小题满分各5分) (1)∵BD ⊥AC ,∴∠ADB =90°.在Rt △ADB 中,135cos =∠BAC ,AB =13, ∴513513cos =⨯=∠⋅=BAC AB AD .………………………………………………2分∴1222=-=AD AB BD .……………………………………………………………1分∵E 是BD 的中点,∴DE=6.在Rt △ADE 中,65cot ==∠DE AD EAD . …………………………………………2分 即EAD ∠的余切值是65. (2)过点D 作DQ //AF ,交边BC 于点Q , ………………………………………1分 ∵AC =8, AD =5, ∴CD =3.∵DQ//AF ,∴53==ADCD FQCQ .………………………………………………………2分∵E 是BD 的中点,EF //DQ ,∴BF =FQ . ……………………………………1分 ∴85=CFBF .……………………………………………………………………………1分22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)解:(1)由题意可知, %903.0100⨯+=x y ,……………………………………2分 ∴y 与x 之间的函数关系式是:x y 27.0100+=,………………………………1分 它的定义域是:0>x 且x 为整数.…………………………………………………1分 (2)当600=x 时,支付甲印刷厂的费用:26260027.0100=⨯+=y (元).…2分 支付乙印刷厂的费用为:256400%803.02003.0100=⨯⨯+⨯+(元).………3分 ∵256<262,∴当该学校需要印刷艺术节的宣传资料600份时,应该选择乙印刷厂比较优惠.…1分 23.(本题满分12分,每小题满分各6分)证明:(1)∵DC ∥AB ,∴∠DCB =∠CAB . ……………………………………………1分 ∵AC 平分∠BCD ,∴∠DCB =∠BCA .∴∠CAB =∠BCA . ………………………………………………………………………1分 ∴BC =BA . ………………………………………………………………………………1分 ∵EA ⊥AC ,∴∠CAB +∠BAE=90°,∠BCA +∠E=90°. ∴∠BAE =∠E . …………1分 ∴BA =BE . …………………………………………………………………………………1分 ∴BC =BE ,即B 是EC 的中点. ………………………………………………………1分 (2)∵EC DC AC ⋅=2,∴AC EC DC AC ::=.∵∠DCA =∠ACE ,∴△DCA ∽△ACE . ………………………………………………2分 ∴EC AC AE AD ::=.……………………………………………………………………1分 ∵∠FCA =∠ECA ,AC=AC ,∠F AC =∠EAC ,∴△FCA ≌△ECA . …………………2分 ∴AE =AF ,EC =FC .∴FC AC AF AD ::=. …………………………………………………………………1分24.(本题满分12分,每小题4分)(1)①由抛物线)0(3222>++-=m m mx x y 经过点C (0,3)可得:332=m , ∴ 1±=m (负数不符合题意,舍去).………………………………………………1分 ∴抛物线的表达式:322++-=x x y .………………………………………………1分 ∴顶点坐标D (1,4).…………………………………………………………………2分 ②由抛物线322++-=x x y 与x 轴交于点A 、B (点A 在点B 左侧),可得B (3,0),对称轴l 是直线1=x ,………………………………………………1分 ∵CE ⊥直线l ,∴E (1,3),即DE=CE=1.∴在Rt △DEC 中,1tan ==∠CE DEDCE . ∵在Rt △BOC 中,1tan ==∠BOCOOBC ,∴OBC DCE ∠=∠=45°.………………………………………………………………2分 ∵CE //OB ,∴OBC BCE ∠=∠.∴∠DCE=∠BCE . ………………………………………………………………………1分(2) 由抛物线)0(3222>++-=m m mx x y 与x 轴交于点A 、B (点A 在点B 左侧),与y 轴交点C ,顶点为D ,对称轴为直线l ,可得:)4,(2m m D ,)3,0(2m C ,)0,3(m B ,)3,(2m m E .∴2m DE =,m CE =,23m CO =,m BO 3=.…………………………………1分在Rt △DEC 中,m m m CE DE DCE ===∠2tan .在Rt △BOC 中,m mm BO CO OBC ===∠33tan 2.∵∠DCE 、∠OBC 都是锐角,∴∠DCE =∠OBC .…………………………………1分 ∵CE //OB ,∴OBC BCE ∠=∠. ∴∠DCB=2∠BCE=2∠OBC .∵CB 平分∠DCO , ∴∠OCB=∠DCB=2∠OBC .∵∠OCB+∠OBC=90°,∴∠OBC=30°.……………………………………………1分 ∴33tan =∠OBC ,∴33=m . …………………………………………………1分25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) (1)∵C 是半径OB 中点,BO =2,∴OC=1.∵DE 垂直平分AC ,∴AD=CD .………………………………………………………1分 设AD =a ,则a DO -=2,a DC =,在Rt △DOC 中,222DC OC DO =+,即2221)2a a =+-(.解得:45=a . …2分 ∴43452=-=DO . 在Rt △DOC 中,53sin ==∠DC DO OCD .……………………………………………2分 即∠OCD 的正弦值是53. (2)联结AE 、EC 、EO .∵E 是弧AB 的中点,∴AE=BE . ……………………………………………………1分 ∵DE 垂直平分AC ,∴AE=EC . ……………………………………………………1分 ∴BE=EC . ∴∠EBC =∠ECB .∵OE=OB , ∴∠EBC =∠OEB . ……………………………………………………1分 ∴∠ECB=∠OEB .又∵∠CBE =∠EBO ,∴△BCE ∽△BEO . ……………………………………………1分 ∴BO BE BE BC = .∴BC BO BE ⋅=2. ……………………………………………………1分 (3)联结AE 、OE ,由△DCE 是以CD 为腰的等腰三角形可得: ①当CD=ED 时,∵CD=AD ,∴ED=AD .∴∠DAE =∠DEA . ∵OA=OE ,∴∠DAE =∠OEA .∴点D 与点O 重合,点C 与点B 重合.∴CD=BO=2. …………………………………………………………………………2分 ②当CD=CE 时,∵CD=AD ,CE =AE ,∴CD=AD =CE =AE . ∴四边形ADCE 是菱形,∴AD//EC . ∵∠AOB=90°,∴∠COE=90°.设CD =a ,在Rt △COE 中,22224a EC EO CO -=-=. 在Rt △DOC 中,22222)2(a a DO CD CO --=-=.∴222)2(4a a a --=-. 整理得 0842=-+a a ,解得 232-±=a (负数舍去). ∴CD =232-. ………………………………………………………………………2分 综上所述,当CD 的长是2或232-时,△DCE 是以CD 为腰的等腰三角形.。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c <2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是()A.1 B.2 C.3 D.4【答案】C【解析】试题解析:∵图象与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正确;∵﹣=﹣1,∴b=2a,∵a+b+c<0,∴b+b+c<0,3b+2c<0,∴②是正确;∵当x=﹣2时,y>0,∴4a﹣2b+c>0,∴4a+c>2b,③错误;∵由图象可知x=﹣1时该二次函数取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.故④正确∴正确的有①②④三个,故选C.考点:二次函数图象与系数的关系.【详解】请在此输入详解!2.在同一坐标系中,反比例函数y =k x与二次函数y =kx 2+k(k≠0)的图象可能为( ) A . B .C .D .【答案】D【解析】根据k >0,k <0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k <0时,反比例函数y=k x ,在二、四象限,而二次函数y=kx 2+k 开口向上下与y 轴交点在原点下方,D 符合;②当k >0时,反比例函数y=k x,在一、三象限,而二次函数y=kx 2+k 开口向上,与y 轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D .故选D .【点睛】本题主要考查二次函数、反比例函数的图象特点.3.一次函数y kx b =+满足0kb <,且y 随x 的增大而减小,则此函数的图像一定不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】y 随x 的增大而减小,可得一次函数y=kx+b 单调递减,k <0,又满足kb<0,可得b>0,由此即可得出答案.【详解】∵y 随x 的增大而减小,∴一次函数y=kx+b 单调递减,∴k <0,∵kb<0,∴b>0,∴直线经过第二、一、四象限,不经过第三象限,故选C .【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k≠0,k、b是常数)的图象和性质是解题的关键.4.下列叙述,错误的是( )A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形【答案】D【解析】根据正方形的判定、平行四边形的判定、菱形的判定和矩形的判定定理对选项逐一进行分析,即可判断出答案.【详解】A. 对角线互相垂直且相等的平行四边形是正方形,正确,不符合题意;B. 对角线互相垂直平分的四边形是菱形,正确,不符合题意;C. 对角线互相平分的四边形是平行四边形,正确,不符合题意;D. 对角线相等的平行四边形是矩形,故D选项错误,符合题意,故选D.【点睛】本题考查了正方形的判定、平行四边形的判定、菱形的判定和矩形的判定等,熟练掌握相关判定定理是解答此类问题的关键.5.如图所示的四边形,与选项中的一个四边形相似,这个四边形是()A.B.C.D.【答案】D【解析】根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可.【详解】解:作AE⊥BC于E,则四边形AECD为矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB=22AE BE=5,∴四边形ABCD的四条边之比为1:3:5:5,D选项中,四条边之比为1:3:5:5,且对应角相等,故选D.【点睛】本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键.6.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D【答案】C【解析】试题解析:A、由监测点A监测P时,函数值y随t的增大先减少再增大.故选项A错误;B、由监测点B监测P时,函数值y随t的增大而增大,故选项B错误;C、由监测点C监测P时,函数值y随t的增大先减小再增大,然后再减小,选项C正确;D、由监测点D监测P时,函数值y随t的增大而减小,选项D错误.故选C.7.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6 B.8 C.14 D.16【答案】C【解析】根据根与系数的关系得到x1+x2=2,x1•x2=-5,再变形x12+x22得到(x1+x2)2-2x1•x2,然后利用代入计算即可.【详解】∵一元二次方程x2-2x-5=0的两根是x1、x2,∴x1+x2=2,x1•x2=-5,∴x12+x22=(x1+x2)2-2x1•x2=22-2×(-5)=1.故选C.【点睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-ba,x1•x2=ca.8.如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足()A.a=32b B.a=2b C.a=52b D.a=3b【答案】B【解析】从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.【详解】由图形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故选B.【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.9.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是()A.①②③④B.②①③④C.③②①④D.④②①③【答案】B【解析】根据常见几何体的展开图即可得.【详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.10.4-的相反数是( )A .4B .4-C .14-D .14【答案】A【解析】直接利用相反数的定义结合绝对值的定义分析得出答案.【详解】-1的相反数为1,则1的绝对值是1.故选A .【点睛】本题考查了绝对值和相反数,正确把握相关定义是解题的关键.二、填空题(本题包括8个小题)11.若点(),2P m -与点()3,Q n 关于原点对称,则2018()m n +=______.【答案】1【解析】∵点P (m ,﹣2)与点Q (3,n )关于原点对称,∴m=﹣3,n=2,则(m+n )2018=(﹣3+2)2018=1,故答案为1. 12.如果正比例函数3)y k x =-(的图像经过第一、三象限,那么k 的取值范围是 __. 【答案】k>1【解析】根据正比例函数y=(k-1)x 的图象经过第一、三象限得出k 的取值范围即可.【详解】因为正比例函数y=(k-1)x 的图象经过第一、三象限,所以k-1>0,解得:k >1,故答案为:k >1.【点睛】此题考查一次函数问题,关键是根据正比例函数y=(k-1)x 的图象经过第一、三象限解答.13.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.【答案】(-2,-2)【解析】先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【详解】“卒”的坐标为(﹣2,﹣2),故答案是:(﹣2,﹣2).【点睛】考查了坐标确定位置,关键是正确确定原点位置.14.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为_____.【答案】912,55⎛⎫- ⎪⎝⎭【解析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【详解】过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,则△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴设NO=1x,则NC1=4x,OC1=1,则(1x)2+(4x)2=9,解得:x=±35(负数舍去),则NO=95,NC1=125,故点C的对应点C1的坐标为:(﹣95,125).故答案为(﹣95,125).【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.15.如图,正方形ABCD的边长为422,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长是__________.【答案】2【解析】设EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.【详解】设EF=x,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,∴22+4,EF=BF=x,∴2x,∵∠BAE=22.5°,∴∠DAE=90°-22.5°=67.5°,∴∠AED=180°-45°-67.5°=67.5°,∴∠AED=∠DAE,∴AD=ED,∴222+4,解得:x=2,即EF=2.16.已知直角三角形的两边长分别为3、1.则第三边长为________.【答案】4或7【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为3的边是斜边时:第三边的长为:22437-=;②长为3、3的边都是直角边时:第三边的长为:22435+=;∴第三边的长为:7或4.考点:3.勾股定理;4.分类思想的应用.17.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等.设甲每小时搬运xkg货物,则可列方程为_____.【答案】5000x=8000600+x【解析】设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.【详解】解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,由题意得:5000x=8000600+x.故答案是:5000x=8000600+x.【点睛】本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.18.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_______米(结果保留根号).【答案】3 4【解析】分析:利用特殊三角函数值,解直角三角形,AM=MD,再用正切函数,利用MB求CM,作差可求DC. 【详解】因为∠MAD=45°, AM=4,所以MD=4,因为AB=8,所以MB=12,因为∠MBC=30°,所以CM=MBtan30°3.所以3【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的相关定义以及变形是解题的关键.三、解答题(本题包括8个小题)19.如图,某同学在测量建筑物AB 的高度时,在地面的C 处测得点A 的仰角为30°,向前走60米到达D 处,在D 处测得点A 的仰角为45°,求建筑物AB 的高度.【答案】(30+303)米. 【解析】解:设建筑物AB 的高度为x 米在Rt △ABD 中,∠ADB=45°∴AB=DB=x∴BC=DB+CD= x+60 在Rt △ABC 中,∠ACB=30°,∴tan ∠ACB=AB CB∴tan 3060x x ︒=+ ∴360x x =+ ∴x=30+30∴建筑物AB 的高度为(30+30)米20.如图,在平面直角坐标系中,一次函数()0y kx b k =+≠的图象分别交x 轴、y 轴于A 、B 两点,与反比例函数()0m y m x=≠的图象交于C 、D 两点.已知点C 的坐标是(6,-1),D (n ,3).求m 的值和点D 的坐标.求tan BAO ∠的值.根据图象直接写出:当x 为何值时,一次函数的值大于反比例函数的值?【答案】(1)m=-6,点D 的坐标为(-2,3);(2)1tan BAO 2∠=;(3)当2x <-或06x <<时,一次函数的值大于反比例函数的值.【解析】(1)将点C 的坐标(6,-1)代入m y x=即可求出m ,再把D (n ,3)代入反比例函数解析式求出n 即可. (2)根据C (6,-1)、D (-2,3)得出直线CD 的解析式,再求出直线CD 与x 轴和y 轴的交点即可,得出OA、OB的长,再根据锐角三角函数的定义即可求得;(3)根据函数的图象和交点坐标即可求得.【详解】⑴把C(6,-1)代入myx=,得()m616=⨯-=-.则反比例函数的解析式为6yx=-,把y3=代入6yx=-,得x2=-,∴点D的坐标为(-2,3).⑵将C(6,-1)、D(-2,3)代入y kx b=+,得6123k bk b+=-⎧⎨-+=⎩,解得122kb⎧=-⎪⎨⎪=⎩.∴一次函数的解析式为1y x22=-+,∴点B的坐标为(0,2),点A的坐标为(4,0).∴OA4OB2==,,在在RtΔABO中,∴OB21tan BAOOA42∠===.⑶根据函数图象可知,当x2<-或0x6<<时,一次函数的值大于反比例函数的值【点睛】此题考查了反比例函数与一次函数的交点问题.其知识点有解直角三角形,待定系数法求解析式,此题难度适中,注意掌握数形结合思想与方程思想的应用.21.如图,在△ABC中,∠A=45°,以AB为直径的⊙O经过AC的中点D,E为⊙O上的一点,连接DE,BE,DE与AB交于点F.求证:BC为⊙O的切线;若F为OA的中点,⊙O的半径为2,求BE的长.【答案】(1)证明见解析;(26105【解析】(1)连接BD,由圆周角性质定理和等腰三角形的性质以及已知条件证明∠ABC=90°即可;(2)连接OD,根据已知条件求得AD、DF的长,再证明△AFD∽△EFB,然后根据相似三角形的对应边成比例即可求得.【详解】(1)连接BD,∵AB 为⊙O 的直径,∴BD ⊥AC ,∵D 是AC 的中点,∴BC=AB ,∴∠C=∠A =45°,∴∠ABC=90°,∴BC 是⊙O 的切线;(2)连接OD ,由(1)可得∠AOD=90°,∵⊙O 的半径为2, F 为OA 的中点,∴OF=1, BF=3,22AD 2222=+=, ∴2222DF OF OD 125=+=+=,∵BD BD =,∴∠E=∠A ,∵∠AFD=∠EFB ,∴△AFD ∽△EFB ,∴DF BF AD BE =,即53BE22=, ∴6BE 105=. 【点睛】本题考查了切线的判定与性质、相似三角形的判定与性质以及勾股定理的运用;证明某一线段是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一线段来判定切线.22.小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.【答案】(1)13;(2)13. 【解析】试题分析:(1)、3个等只有一个控制楼梯,则概率就是1÷3;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:13(2)、画树状图得:结果:(A ,B )、(A ,C )、(B ,A )、(B ,C )、(C ,A )、(C ,B )∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是26=13. 考点:概率的计算. 23.解方程组4311,213.x y x y -=⎧⎨+=⎩①② 【答案】53x y =⎧⎨=⎩ 【解析】将②×3,再联立①②消未知数即可计算.【详解】解:②3⨯得:6339x y += ③①+③得:1050x =5x =把5x =代入③得10339y +=3y =∴方程组的解为53x y =⎧⎨=⎩【点睛】本题考查二元一次方程组解法,关键是掌握消元法.24.如图,AB 为⊙O 的直径,点E 在⊙O ,C 为弧BE 的中点,过点C 作直线CD ⊥AE 于D ,连接AC 、BC .试判断直线CD 与⊙O 的位置关系,并说明理由若AD=2,6,求⊙O 的半径.【答案】(1)直线CD与⊙O相切;(2)⊙O的半径为1.1.【解析】(1)相切,连接OC,∵C为BE的中点,∴∠1=∠2,∵OA=OC,∴∠1=∠ACO,∴∠2=∠ACO,∴AD∥OC,∵CD⊥AD,∴OC⊥CD,∴直线CD与⊙O相切;(2)连接CE,∵AD=2,AC=6,∵∠ADC=90°,∴CD=22-=2,∵CD是⊙O的切线,AC AD∴2CD=AD•DE,∴DE=1,∴CE=22+=3,∵C为BE的中点,∴BC=CE=3,∵AB为⊙O的CD DE直径,∴∠ACB=90°,∴AB=22+=2.AC BC∴半径为1.125.从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)+【答案】(5003)【解析】试题分析:根据题意构建图形,结合图形,根据直角三角形的性质可求解.试题解析:作AD⊥BC于点D,∵∠MBC=60°,∴∠ABC=30°,∵AB⊥AN,∴∠BAN=90°,∴∠BAC=105°,则∠ACB=45°,在Rt△ADB中,AB=1000,则AD=500,BD=3+在Rt△ADC中,AD=500,CD=500,则BC=5005003答:观察点B到花坛C的距离为(5005003)+米.考点:解直角三角形26.如图,△ABC中,CD是边AB上的高,且AD CD CD BD=.求证:△ACD∽△CBD;求∠ACB的大小.【答案】(1)证明见试题解析;(2)90°.【解析】试题分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.试题解析:(1)∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵AD CDCD BD=.∴△ACD∽△CBD;(2)∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考点:相似三角形的判定与性质.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为()A.4504504050x x-=-B.4504504050x x-=-C.4504502503x x-=+D.4504502503x x-=-【答案】D【解析】解:设动车速度为每小时x千米,则可列方程为:45050x-﹣450x=23.故选D.2.已知函数()()()()22113{513x xyx x--≤=-->,则使y=k成立的x值恰好有三个,则k的值为()A.0 B.1 C.2 D.3【答案】D【解析】解:如图:利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k成立的x值恰好有三个.故选:D.3.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100°B.80°C.60°D.50°【答案】B【解析】试题分析:如图,翻折△ACD,点A落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.故选:B4.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A .60050x -=450xB .60050x +=450xC .600x =45050x +D .600x=45050x - 【答案】B 【解析】设原计划平均每天生产x 台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.【详解】设原计划平均每天生产x 台机器,则实际平均每天生产(x+50)台机器,由题意得:60045050x x=+. 故选B .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.5.如图所示,ABC △的顶点是正方形网格的格点,则sin A 的值为( )A .12B 5C 25D 10【答案】B【解析】连接CD ,求出CD ⊥AB ,根据勾股定理求出AC ,在Rt △ADC 中,根据锐角三角函数定义求出即可.【详解】解:连接CD (如图所示),设小正方形的边长为1,∵2211+2,∠DBC=∠DCB=45°,∴CD AB ⊥,在Rt △ADC 中,10AC =,2CD =,则25sin 510CD A AC ===.故选B .【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.6.如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A 、C 重合),点D 在AC 的延长线上,连接BD 交⊙O 于点E ,若∠AOB=3∠ADB ,则( )A .DE=EBB .2DE=EBC .3DE=DOD .DE=OB【答案】D 【解析】解:连接EO.∴∠B=∠OEB ,∵∠OEB=∠D+∠DOE ,∠AOB=3∠D ,∴∠B+∠D=3∠D ,∴∠D+∠DOE+∠D=3∠D ,∴∠DOE=∠D ,∴ED=EO=OB ,故选D.7.若抛物线y =kx 2﹣2x ﹣1与x 轴有两个不同的交点,则k 的取值范围为( )A .k >﹣1B .k≥﹣1C .k >﹣1且k≠0D .k≥﹣1且k≠0【答案】C【解析】根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.【详解】∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵抛物线y=kx2﹣2x﹣1为二次函数,∴k≠0,则k的取值范围为k>﹣1且k≠0,故选C.【点睛】本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.8.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【答案】D【解析】根据两直线平行,内错角相等计算即可.【详解】因为m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故选D.【点睛】本题主要考查平行线的性质,清楚两直线平行,内错角相等是解答本题的关键.9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【答案】D【解析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【详解】该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选:D.【点睛】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算. 10.点M(a ,2a)在反比例函数y =8x 的图象上,那么a 的值是( ) A .4B .﹣4C .2D .±2【答案】D 【解析】根据点M(a ,2a)在反比例函数y =8x的图象上,可得:228a =,然后解方程即可求解. 【详解】因为点M(a ,2a)在反比例函数y =8x 的图象上,可得: 228a =,24a =,解得: 2a =±,故选D.【点睛】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征.二、填空题(本题包括8个小题)11.如图,直线123y x =+与x 轴交于点A ,与y 轴交于点B ,点D 在x 轴的正半轴上,OD OA =,过点D 作CD x ⊥轴交直线AB 于点C ,若反比例函数(0)k y k x =≠的图象经过点C ,则k 的值为_________________.【答案】1【解析】先求出直线y=13x+2与坐标轴的交点坐标,再由三角形的中位线定理求出CD ,得到C 点坐标. 【详解】解:令x=0,得y=13x+2=0+2=2, ∴B (0,2),∴OB=2,令y=0,得0=13x+2,解得,x=-6, ∴A (-6,0),∴OA=OD=6,∵OB ∥CD ,∴CD=2OB=4,∴C(6,4),把c(6,4)代入y=kx(k≠0)中,得k=1,故答案为:1.【点睛】本题考查了一次函数与反比例函数的综合,需要掌握求函数图象与坐标轴的交点坐标方法,三角形的中位线定理,待定系数法.本题的关键是求出C点坐标.12.如果53xx y=-,那么xy=______.【答案】52;【解析】先对等式进行转换,再求解.【详解】∵53 xx y-=∴3x=5x-5y ∴2x=5y∴5.2 xy=【点睛】本题考查的是分式,熟练掌握分式是解题的关键.13.某地区的居民用电,按照高峰时段和空闲时段规定了不同的单价.某户5月份高峰时段用电量是空闲时段用电量2倍,6月份高峰时段用电量比5月份高峰时段用电量少50%,结果6月份的用电量和5月份的用电量相等,但6月份的电费却比5月份的电费少25%,求该地区空闲时段民用电的单价比高峰时段的用电单价低的百分率是_____.【答案】60%【解析】设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,根据总价=单价×数量结合6月份的电费却比5月份的电费少25%,即可得出关于x,y的二元一次方程,解之即可得出x,y之间的关系,进而即可得出结论.【详解】设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,依题意,得:(1﹣25%)(ax+2ay)=2ax+ay,解得:x=0.4y,∴该地区空闲时段民用电的单价比高峰时段的用电单价低y xy-×100%=60%.故答案为60%.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.14.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=_____.【答案】23【解析】首先连接BD,由AB是⊙O的直径,可得∠C=∠D=90°,然后由∠BAC=60°,弦AD平分∠BAC,求得∠BAD的度数,又由AD=6,求得AB的长,继而求得答案.【详解】解:连接BD,∵AB是⊙O的直径,∴∠C=∠D=90°,∵∠BAC=60°,弦AD平分∠BAC,∴∠BAD=12∠BAC=30°,∴在Rt△ABD中,AB=ADcos30︒=43,∴在Rt△ABC中,AC=AB•cos60°=43×12=23.故答案为23.15.已知⊙O半径为1,A、B在⊙O上,且2AB=AB所对的圆周角为__o. 【答案】45º或135º【解析】试题解析:如图所示,∵OC ⊥AB ,∴C 为AB 的中点,即1222AC BC AB === 在Rt △AOC 中,OA=1, 22AC = 根据勾股定理得:2222OC OA AC =-=即OC=AC , ∴△AOC 为等腰直角三角形,45AOC ∴∠=,同理45BOC ∠=,90AOB AOC BOC ∴∠=∠+∠=,∵∠AOB 与∠ADB 都对AB ,1452ADB AOB ,∴∠=∠= ∵大角270AOB ∠=,135.AEB ∴∠=则弦AB 所对的圆周角为45或135.故答案为45或135.16.已知点P (2,3)在一次函数y =2x -m 的图象上,则m =_______.【答案】1【解析】根据待定系数法求得一次函数的解析式,解答即可.【详解】解:∵一次函数y=2x-m 的图象经过点P (2,3),∴3=4-m ,解得m=1,故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式.17.将一张长方形纸片按如图所示的方式折叠,BD 、BE 为折痕,若∠ABE =20°,则∠DBC 为_____度.【答案】1︒【解析】解:根据翻折的性质可知,∠ABE=∠A′BE ,∠DBC=∠DBC′.又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°.又∵∠ABE=20°,∴∠DBC=1°.故答案为1.点睛:本题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE ,∠DBC=∠DBC′是解题的关键.18.等腰ABC ∆中,AD 是BC 边上的高,且12AD BC =,则等腰ABC ∆底角的度数为__________. 【答案】75︒,45︒,15︒【解析】分三种情况:①点A 是顶角顶点时,②点A 是底角顶点,且AD 在△ABC 外部时,③点A 是底角顶点,且AD 在△ABC 内部时,再结合直角三角形中,30°的角所对的直角边等于斜边的一半即可求解.【详解】①如图,若点A 是顶角顶点时,∵AB=AC ,AD ⊥BC ,∴BD=CD ,∵12AD BC =, ∴AD=BD=CD ,在Rt △ABD 中,∠B=∠BAD= ()118090=452︒︒︒﹣; ②如图,若点A 是底角顶点,且AD 在△ABC 外部时,∵12AD BC =,AC=BC , ∴12AD AC =, ∴∠ACD=30°,∴∠BAC=∠ABC=12×30°=15°; ③如图,若点A 是底角顶点,且AD 在△ABC 内部时,∵12AD BC =,AC=BC , ∴12AD AC =, ∴∠C=30°,∴∠BAC=∠ABC=12(180°-30°)=75°; 综上所述,△ABC 底角的度数为45°或15°或75°;故答案为75︒,45︒,15︒.【点睛】本题考查了等腰三角形的性质和直角三角形中30°的角所对的直角边等于斜边的一半的性质,解题的关键是要分情况讨论.三、解答题(本题包括8个小题)19.如图,四边形AOBC 是正方形,点C 的坐标是(2,0).正方形AOBC 的边长为 ,点A 的坐标是 .将正方形AOBC 绕点O 顺时针旋转45°,点A ,B ,C 旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;动点P 从点O 出发,沿折线OACB 方向以1个单位/秒的速度匀速运动,同时,另一动点Q 从点O 出发,沿折线OBCA 方向以2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时同时停止运动,当△OPQ 为等腰三角形时,求出t 的值(直接写出结果即可).【答案】(1)4,()22,22;(2)旋转后的正方形与原正方形的重叠部分的面积为16216-;(3)83t =. 【解析】(1)连接AB ,根据△OCA 为等腰三角形可得AD=OD 的长,从而得出点A 的坐标,则得出正方形AOBC 的面积;(2)根据旋转的性质可得OA′的长,从而得出A′C ,A′E ,再求出面积即可;(3)根据P 、Q 点在不同的线段上运动情况,可分为三种列式①当点P 、Q 分别在OA 、OB 时,②当点P 在OA 上,点Q 在BC 上时,③当点P 、Q 在AC 上时,可方程得出t .【详解】解:(1)连接AB ,与OC 交于点D ,四边形AOBC 是正方形,∴△OCA 为等腰Rt △,∴AD=OD=12OC=22, ∴点A 的坐标为()22,22.4,(22,22.(2)如图∵ 四边形AOBC 是正方形,∴ AOB 90∠=,AOC 45∠=.∵ 将正方形AOBC 绕点O 顺时针旋转45,∴ 点A '落在x 轴上.∴OA OA 4'==.∴ 点A '的坐标为()4,0. ∵ OC 42=, ∴ A C OC OA 424=-='-'.∵ 四边形OACB ,OA C B '''是正方形,∴ OA C 90∠''=,ACB 90∠=.∴ CA E 90∠'=,OCB 45∠=.∴ A EC OCB 45∠∠=='.∴ A E A C 424=='-'.∵2ΔOBC AOBC 11S S 4822==⨯=正方形, ()2ΔA EC 11S A C A E 4242416222'=⋅=-=-'', ∴ΔOBC ΔA EC OA EBS S S ''=-=四边形 ()82416216216--=-. ∴旋转后的正方形与原正方形的重叠部分的面积为16216-.(3)设t 秒后两点相遇,3t=16,∴t=163①当点P 、Q 分别在OA 、OB 时,∵POQ 90∠=,OP=t ,OQ=2t∴ΔOPQ 不能为等腰三角形②当点P 在OA 上,点Q 在BC 上时如图2,当OQ=QP ,QM 为OP 的垂直平分线,OP=2OM=2BQ ,OP=t ,BQ=2t-4,t=2(2t-4),解得:t=83. ③当点P 、Q 在AC 上时,ΔOPQ 不能为等腰三角形综上所述,当8t3=时ΔOPQ是等腰三角形【点睛】此题考查了正方形的性质,等腰三角形的判定以及旋转的性质,是中考压轴题,综合性较强,难度较大.20.如图,AB是⊙O的直径,C是弧AB的中点,弦CD与AB相交于E.若∠AOD=45°,求证:CE=2ED;(2)若AE=EO,求tan∠AOD的值.【答案】(1)见解析;(2)tan∠AOD=3 4 .【解析】(1)作DF⊥AB于F,连接OC,则△ODF是等腰直角三角形,得出OC=OD=2DF,由垂径定理得出∠COE=90°,证明△DEF∽△CEO得出22ED OC DFCE DF===,即可得出结论;(2)由题意得OE=12OA=12OC,同(1)得△DEF∽△CEO,得出12EF EODF OC==,设⊙O的半径为2a(a>0),则OD=2a,EO=a,设EF=x,则DF=2x,在Rt△ODF中,由勾股定理求出x=35a,得出DF=65a,OF=EF+EO=85a,由三角函数定义即可得出结果.【详解】(1)证明:作DF⊥AB于F,连接OC,如图所示:则∠DFE=90°,∵∠AOD=45°,∴△ODF是等腰直角三角形,∴OC=OD2DF,∵C是弧AB的中点,∴OC⊥AB,∴∠COE=90°,∵∠DEF=∠CEO,∴△DEF∽△CEO,。
2018年中考数学二模试卷一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b62.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=33.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.20157.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.49.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c11.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.B. C. D.712.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为.16.方程x2﹣2x﹣1=0的解是.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2007•台州)如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B处测得海丰塔最高点P的仰角为45°,又前进了18米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.参考答案与试题解析一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【考点】幂的乘方与积的乘方.【分析】根据积的乘方的性质进行计算,然后直接选取答案即可.【解答】解:(ab2)3=a3•(b2)3=a3b6.故选D.【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.2.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=3【考点】绝对值.【分析】根据绝对值的意义选择.【解答】解:A中|﹣3|=3,正确;B中﹣|3|=﹣3,正确;C中|﹣3|=|3|=3,正确;D中﹣|﹣3|=﹣3,不成立.故选D.【点评】本题考查绝对值的化简:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的三种形式求解.【解答】解:=3,=﹣2,无理数有:,,共2个.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°【考点】圆周角定理.【专题】压轴题.【分析】先根据邻补角的定义求出∠BOC,再利用圆周角定理求解.【解答】解:∵∠AOC=130°,∴∠BOC=180°﹣∠AOC=180°﹣130°=50°,∴∠D=×50°=25°.故选B.【点评】本题利用了圆周角定理和邻补角的概念求解.5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有1个正方形.故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.2015【考点】抛物线与x轴的交点.【分析】把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.【点评】本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.7.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.【考点】三角形的内切圆与内心;切线长定理.【专题】压轴题.【分析】首先根据切线的性质和切线长定理证得四边形OECD是正方形,那么AC+BC﹣AB即为2R(⊙O 的半径R)的值,由此可得到OD、CD的值,进而可在Rt△OBD中求出∠OBD的正切值.【解答】解:∵BC、AC、AB都是⊙O的切线,∴CD=CE、AE=AF、BF=BD,且OD⊥BC、OE⊥AC;易证得四边形OECD是矩形,由OE=OD可证得四边形OECD是正方形;设OD=OE=CD=R,则:AC+BC﹣AB=AE+R+BD+R﹣AF﹣BF=2R,即R=(AC+BC﹣AB)=1,∴BD=BC﹣CD=3﹣1=2;在Rt△OBD中,tan∠OBD==.故选C.【点评】此题考查的是三角形的外切圆,切线长定理以及锐角三角形函数的定义,难度适中.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.4【考点】平行四边形的性质;三角形中位线定理.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OC=OA,又由点E 是BC边的中点,根据三角形中位线的性质,即可求得AB的长.【解答】解:∵四边形ABCD是平行四边形,∴OC=OA,∵点E是BC边的中点,即BE=CE,∴OE=AB,∵OE=1,∴AB=2.故选B.【点评】此题考查了平行四边形的性质与三角形中位线的性质.注意平行四边形的对角线互相平分,三角形的中位线平行于三角形的第三边且等于第三边的一半.9.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.【考点】概率公式.【分析】让不含辣椒的盒饭数除以总盒饭数即为从中任选一盒,不含辣椒的概率.【解答】解:配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒,全部是80盒,不含辣椒的有70盒,所以从中任选一盒,不含辣椒的概率是=.故选A .【点评】本题比较容易,考查等可能条件下的概率.用到的知识点为:概率=所求情况数与总情况数之比.10.定义:如果一元二次方程ax 2+bx+c=0(a ≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax 2+bx+c=0(a ≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ) A .a=c B .a=b C .b=c D .a=b=c 【考点】根的判别式. 【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b 2﹣4ac=0,又a+b+c=0,即b=﹣a ﹣c ,代入b 2﹣4ac=0得(﹣a ﹣c )2﹣4ac=0,化简即可得到a 与c 的关系.【解答】解:∵一元二次方程ax 2+bx+c=0(a ≠0)有两个相等的实数根, ∴△=b 2﹣4ac=0,又a+b+c=0,即b=﹣a ﹣c ,代入b 2﹣4ac=0得(﹣a ﹣c )2﹣4ac=0,即(a+c )2﹣4ac=a 2+2ac+c 2﹣4ac=a 2﹣2ac+c 2=(a ﹣c )2=0, ∴a=c . 故选A【点评】一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根.11.如图,已知△ABC 中,∠ABC=90°,AB=BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是( )A.B. C. D.7【考点】勾股定理;全等三角形的性质;全等三角形的判定.【专题】计算题;压轴题.【分析】过A、C点作l3的垂线构造出直角三角形,根据三角形全等和勾股定理求出BC的长,再利用勾股定理即可求出.【解答】解:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得BC==,在Rt△ABC中,根据勾股定理,得AC=×=2;故选A.【点评】此题要作出平行线间的距离,构造直角三角形.运用全等三角形的判定和性质以及勾股定理进行计算.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③【考点】二次函数图象与系数的关系.【专题】计算题;压轴题.【分析】①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=(x﹣y)2.【考点】因式分解-运用公式法.【专题】计算题.【分析】根据完全平方公式直接解答即可.【解答】解:原式=(x﹣y)2.故答案为(x﹣y)2.【点评】本题考查了因式分解﹣﹣运用公式法,熟悉因式分解是解题的关键.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.【考点】特殊角的三角函数值;平行线的性质.【专题】探究型.【分析】先根据平行线的性质及直角三角板的特点求出∠2的度数,再根据特殊角的三角函数值进行解答即可.【解答】解:由三角板的特点可知,∠D=60°,∵AB∥CD,∴∠D=∠2=60°,∴cos∠2=cos60°=.故答案为:.【点评】本题考查的是直角三角板的特点及平行线的性质、特殊角的三角函数值,熟记特殊角的三角函数值是解答此题的关键.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为45°.【考点】线段垂直平分线的性质.【专题】计算题.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°(已知)∴∠ABC=∠ACB==75°∵DE垂直平分AC,∴AD=CD;∴∠A=∠ACD=30°,∴∠BCD=∠ACB﹣∠ACD,∴∠BCD=45°;故答案为:45°.【点评】本题主要考查了线段垂直平分线的性质以及等腰三角形的性质,难度一般.16.方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.【考点】解一元二次方程-配方法.【分析】首先把常数项2移项后,然后在左右两边同时加上一次项系数﹣2的一半的平方,然后开方即可求得答案.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+1=2,∴(x﹣1)2=2,∴x=1±,∴原方程的解为:x1=1+,x2=1﹣.故答案为:x1=1+,x2=1﹣.【点评】此题考查了配方法解一元二次方程.解题时注意配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是76.【考点】勾股定理;正方形的性质.【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:AB==10,∴正方形的面积是10×10=100,∵△AEB的面积是AE×BE=×6×8=24,∴阴影部分的面积是100﹣24=76,故答案是:76.【点评】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.【考点】规律型:数字的变化类.【分析】根据分数的分子是2n,分母是2n+3,进而得出答案即可.【解答】解:∵分数的分子分别是:2 2=4,23=8,24=16,…分数的分母分别是:2 2+3=7,23+3=11,24+3=19,…∴第n个数是.故答案为:.【点评】此题主要考查了数字变化规律,根据已知得出分子与分母的变化规律是解题关键.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.【考点】解二元一次方程组;解一元一次不等式组.【专题】计算题.【分析】(1)方程组利用加减消元法求出解即可;(2)求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)①+②得:4x=20,即x=5,把x=5代入①得:y=1,则方程组的解为;(2),由①得:x<﹣1,由②得:x≤2,则不等式组的解集为x<﹣1.【点评】此题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用二次根式性质化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣1﹣2×﹣+1=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2)易知选择音乐类的有4人,选择美术类的有3人.记选择音乐类的4人分别是A1,A2,A,小丁;选择美术类的3人分别是B1,B2,小李.可画出树状图如下:由树状图可知共有12种选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是或列表:由表可知共有12中选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是;(3)由(1)可知问卷中最喜欢体育运动的学生占40%,由样本估计总体得得500×40%=200名.所以该年级中最喜欢体育运动的学生约有200名.【点评】本题考查的是条形统计图和扇形统计图及用样本估计总体等知识的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)【考点】切线的判定;扇形面积的计算.【专题】几何综合题.【分析】(1)由已知可证得OC⊥CD,OC为圆的半径所以直线CD与⊙O相切;(2)根据已知可求得OC,CD的长,则利用S阴影=S△COD﹣S扇形OCB求得阴影部分的面积.【解答】解:(1)直线CD 与⊙O 相切, ∵在⊙O 中,∠COB=2∠CAB=2×30°=60°, 又∵OB=OC , ∴△OBC 是正三角形, ∴∠OCB=60°, 又∵∠BCD=30°, ∴∠OCD=60°+30°=90°, ∴OC ⊥CD , 又∵OC 是半径, ∴直线CD 与⊙O 相切.(2)由(1)得△OCD 是Rt △,∠COB=60°, ∵OC=1, ∴CD=,∴S △COD =OC •CD=,又∵S 扇形OCB =,∴S 阴影=S △COD ﹣S 扇形OCB =.【点评】此题主要考查学生对切线的性质及扇形的面积公式的理解及运用.23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B 处测得海丰塔最高点P 的仰角为45°,又前进了18米到达A 处,在A 处测得P 的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).【考点】解直角三角形的应用-仰角俯角问题.【分析】设海丰塔的高OP=x,在Rt△POB中表示出OB,在Rt△POA中表示出OA,再由AB=18米,可得出方程,解出即可得出答案.【解答】解:设海丰塔的高OP=x,在Rt△POB中,∠OBP=45°,则OB=OP=x,在Rt△POA中,∠OAP=60°,则OA==x,由题意得,AB=OB﹣OA=18m,即x﹣x=18,解得:x=27+9,故海丰塔的高度OP=27+9≈42米.答:海丰塔的高度约为42米.【点评】本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质;相似三角形的判定与性质.【专题】证明题.【分析】(1)利用两角对应相等可证出△ABE∽△ADF;(2)利用(1)的结论,先证出△ABG≌△ADH,得到AB=AD,那么平行四边形ABCD是菱形.【解答】证明:(1)∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90度.∵四边形ABCD是平行四边形,∴∠ABE=∠ADF.∴△ABE∽△ADF.(2)∵△ABE∽△ADF,∴∠BAG=∠DAH.∵AG=AH,∴∠AGH=∠AHG,从而∠AGB=∠AHD,∴△ABG≌△ADH,∴AB=AD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.【点评】本题利用了相似三角形的判定和性质,全等三角形的判定和性质以及菱形的判定.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.【考点】二次函数综合题.【分析】(1)易得点A、B的坐标,用交点式设出二次函数解析式,把D坐标代入即可.自变量的取值范围是点A、B之间的数.(2)先设出切线与x轴交于点E.利用直角三角形相应的三角函数求得EM的长,进而求得点E坐标,把C、E坐标代入一次函数解析式即可求得所求的解析式.(3)设出所求函数解析式,让它与二次函数组成方程组,消除y,让跟的判别式为0,即可求得一次函数的比例系数k.【解答】解:(1)如图,设经过点C“蛋圆”的切线CE交x轴于点E,连结CM,∴CM⊥CE,又∵A点坐标为(﹣2,0),B点坐标为(4,0),AB为半圆的直径,点M为圆心,∴M点的坐标为(1,0),∴AO=2,BO=4,OM=1.又因为CO⊥x轴,所以CO2=AO•OB,解得:CO=2,又∵CM⊥CE,CO⊥x轴,∴CO2=EO•OM,解之得:EO=8,∴E点的坐标是(﹣8,0),∴切线CE的解析式为:y=x+2;(2)根据题意可得:A(﹣2,0),B(4,0);则设抛物线的解析式为y=a(x+2)(x﹣4)(a≠0),又∵点D(0,﹣4)在抛物线上,∴a=;∴y=x2﹣x﹣4自变量取值范围:﹣2≤x≤4;(3)设过点D(0,﹣4),“蛋圆”切线的解析式为:y=kx﹣4(k≠0),由题意可知方程组只有一组解.即kx﹣4=x2﹣x﹣4有两个相等实根,∴k=﹣1,∴过点D“蛋圆”切线的解析式y=﹣x﹣4;【点评】本题以半圆与抛物线合成的封闭图形“蛋圆”为背景,考查一次函数、二次函数有关性质,解题过程中涉及解一元一次方程、一元二次方程、方程组相关知识与技能,是一道综合性很强的试题.。
上海市各区2018届九年级中考二模数学试卷精选汇编:压轴题专题宝山区、嘉定区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)在圆O 中,AO 、BO 是圆O 的半径,点C 在劣弧AB 上,10=OA ,12=AC ,AC ∥OB ,联结AB .(1)如图8,求证:AB 平分OAC ∠;(2)点M 在弦AC 的延长线上,联结BM ,如果△AMB 是直角三角形,请你在如图9中画出 点M 的位置并求CM 的长;(3)如图10,点D 在弦AC 上,与点A 不重合,联结OD 与弦AB 交于点E ,设点D 与点C 的距离为x ,△OEB 的面积为y ,求y 与x 的函数关系式,并写出自变量x 的取值范围.A CB图OACB图OACB图O D E25.(1)证明:∵AO 、BO 是圆O 的半径 ∴BO AO =…………1分 ∴B OAB ∠=∠…………1分 ∵AC ∥OB∴B BAC ∠=∠…………1分 ∴BAC OAB ∠=∠∴AB 平分OAC ∠…………1分 (2)解:由题意可知BAM ∠不是直角,所以△AMB 是直角三角形只有以下两种情况:︒=∠90AMB 和︒=∠90ABM① 当︒=∠90AMB ,点M 的位置如图9-1……………1分 过点O 作AC OH ⊥,垂足为点H ∵OH 经过圆心 ∴AC HC AH 21== ∵12=AC ∴6==HC AH 在△AHO 中,222OAHO AH=+∵10=OA ∴8=OHACB图OA C B图9-1OMH∵AC ∥OB ∴︒=∠+∠180OBM AMB ∵︒=∠90AMB ∴︒=∠90OBM ∴四边形OBMH 是矩形 ∴10==HM OB∴4=-=HC HM CM ……………2分 ②当︒=∠90ABM ,点M 的位置如图9-2由①可知58=AB ,552cos =∠CAB 在△ABM 中,552cos ==∠AM AB CAB∴20=AM8=-=AC AM CM (2)分综上所述,CM 的长为4或8.说明:只要画出一种情况点M 的位置就给1分,两个点都画正确也给1分.(3)过点O 作AB OG ⊥,垂足为点G 由(1)、(2)可知,CAB OAG ∠=∠sin sin 由(2)可得:55sin =∠CAB∵10=OA ∴52=OG (1)分 ∵AC ∥OB ∴ADOBAE BE =……………1分又BE AE -=58,x AD -=12,10=OB∴xBEBE -=-121058 ∴xBE -=22580 ……………1分∴52225802121⨯-⨯=⨯⨯=xOG BE y ACB图9-2OMA CB图O D E G∴xy -=22400……………1分自变量x 的取值范围为120<≤x ……………1分 长宁区25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦上的一点,联结并延长,交劣弧于点D ,联结、、、. 已知圆O 的半径长为5 ,弦的长为8. (1)如图1,当点D 是弧的中点时,求的长; (2)如图2,设,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域;(3)若四边形是梯形,求的长.O AC DB图1O BA C D图2 BAO备用第25题25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)解:(1)∵过圆心,点D 是弧的中点,8, ∴⊥,421==AB AC (2分)在△中,︒=∠90ACO ,5, ∴322=-=AC AO CO(1分)5=OD ,2=-=∴OC OD CD(1分)(2)过点O 作⊥,垂足为点H ,则由(1)可得4,3 ∵,∴|4|-=x CH 在△中,︒=∠90CHO ,5,∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-=(80<<x )(3分)(3)①当时, 过点A 作⊥交延长线于点E ,过点O 作⊥,垂足为点F ,则, AE OB OH AB S ABO ⋅=⋅=∆2121 ∴OF OB OH AB AE ==⋅=524在△中,︒=∠90AFO ,5,∴5722=-=OF AO AF ∵过圆心,⊥,∴5142==AF AD . (3分)②当时, 过点B 作⊥交延长线于点M ,过点D 作⊥,垂足为点G ,则由①的方法可得524==BM DG , 在△中,︒=∠90DGO ,5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在△中,︒=∠90DGA ,∴622=+=DG AG AD ( 3分) 综上得6514或=AD 崇明区25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)如图,已知ABC △中,8AB =,10BC =,12AC =,D 是边上一点,且2AB AD AC =⋅,联结,点E 、F 分别是、上两点(点E 不与B 、C 重合),AEF C ∠=∠,与相交于点G . (1)求证:平分ABC ∠;(2)设BE x =,CF y =,求y 与x 之间的函数关系式; (3)联结,当GEF △是等腰三角形时,求的长度.25.(满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)(1)∵8AB =,12AC = 又∵2AB AD AC = ∴163AD =∴16201233CD =-= ……………………………1分 ∵2AB AD AC = ∴AD ABAB AC=又∵BAC∠是公共角 ∴ADB ABC △∽△ …………………………1分∴ABD C =∠∠,BD ADBC AB= ∴203BD =∴BD CD= ∴(第25题图)ABCD G EF (备用图)ABCDDBC C =∠∠ ………………………1分∴ABD DBC=∠∠ ∴BD平分ABC ∠ (1)分(2)过点A 作AH BC ∥交BD 的延长线于点H∵AH BC ∥ ∴16432053AD DH AH DC BD BC ==== ∵203BD CD ==,8AH = ∴163AD DH ==∴12BH = ……1分∵AH BC∥ ∴AH HGBE BG= ∴812BG x BG-=∴128xBG x =+…1分 ∵BEF C EFC =+∠∠∠ 即BEA AEF C EFC +=+∠∠∠∠ ∵AEF C =∠∠ ∴BEA EFC =∠∠ 又∵DBC C =∠∠ ∴BEG CFE △∽△ ……………………………………………………………1分∴BE BGCF EC= ∴12810x x x y x+=- ∴228012x x y -++= …………………………………………………………1分(3)当△GEF是等腰三角形时,存在以下三种情况:1° GE GF=易证23GE BEEF CF==,即23xy=,得到4BE=………2分2° EG EF=易证BE CF=,即x y=,5105BE=-+…………2分3° FG FE=易证32GE BEEF CF==,即32xy=389BE=-+………2分奉贤区25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)已知:如图9,在半径为2的扇形中,∠90°,点C在半径上,的垂直平分线交于点D,交弧于点E,联结、.(1)若C是半径中点,求∠的正弦值;(2)若E是弧的中点,求证:BCBOBE⋅=2;(3)联结,当△是以为腰的等腰三角形时,求的长.图9AB C DO E备用ABO备用AB O黄浦区25.(本题满分14分)如图,四边形中,∠∠90°,E是边的中点.已知1,2.(1)设,,求y关于x的函数关系式,并写出定义域;(2)当∠70°时,求∠的度数;(3)当△为直角三角形时,求边的长.25. 解:(1)过A作⊥于H,————————————————————(1分)由∠∠90°,得四边形为矩形.在△中,2,∠90°,,1x-,所以222=+-,———————————————21y x———————(1分)则()22303=-++<<.———y x x x————————————(2分)(2)取中点T,联结,————————————————————(1分)则是梯形中位线,得∥,⊥.∴∠∠70°.———————————————————————(1分)又1,∴∠∠∠35°.——————————————————(1分)由垂直平分,得∠∠35°,————————————(1分)所以∠70°+35°=105°.——————————————————(1分)(3)当∠90°时,易知△≌△≌△,得∠30°,则在△中,∠60°,∠90°,2,得1,于是2. ——————————————————————(2分)当∠90°时,易知△∽△,又2224=-=-,AC BC AB x则221411724AD CAx x AC CBx x -±=⇒=⇒=-(舍负)—————(2分) 易知∠<90°. 所以边的长为2或1172+.——————————————————(1分)金山区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5 分)如图9,已知在梯形中,∥,5,3sin 5B =,P 是线段上一点,以P 为圆心,为半径的⊙P 与射线的另一个交点为Q ,射线与射线相交于点E ,设. (1)求证△∽△;(2)如果点Q 在线段上(与点A 、D 不重合),设△的面积为y ,求y 关于x 的函数关系式,并写出定义域; (3)如果△与△相似,求的长.ABPC D Q EABCD25.解:(1)在⊙P中,,∴∠=∠,……………………………(1分)∵∥,∴∠=∠,∠=∠,∴∠=∠,……(1分)∵梯形中,∥,,∴∠B =∠C,…………………………(1分)∴△∽△.…………………………………………………………(1分)(2)作⊥,⊥,∵∥,∴∥,∴四边形是平行四边形,∴,.………………………………………………………(1分),在△中,∠90°,5,35∴3,4,∴3,4,……………………………………(1分)∵⊥,∴,∴ 28,……………………………………(1分)∴()1128322y AQ PN x =⋅⋅=⋅-⋅,即312y x =-,………………………(1分)定义域是1342x <<.………………………………………………………(1分)(3)解法一:由△ 与△相似,∠=∠,①如果∠=∠,∵△∽△,∴∠=∠,又∵∠=∠,∴∠=∠,∴5.………………………(2分)②如果∠=∠,∵∠=∠,∠=∠C ,∠B =∠C , ∴∠B =∠,∴ ,∵⊥,∴ 4,∴ 8.………(2分) 综上所述的长为5或者8.………………………………………………(1分)解法二:由△与△相似,∠=∠, 在△中,()22234825AP PQ x x x ==+-=-+,∵∥,∴EQ EPQD PC=, ∵△∽△,∴AP EPPB PC=,∴AP EQ PB QD =,①如果AQ EQ QP QD =,∴AQ AP QP PB =,即2228825825x x x xx x --+=-+,解得5x =………………………………………………………………………(2分)②如果AQ DQ QP QE =,∴AQ PBQP AP =,即2228825825x x x x x x -=-+-+,解得8x =………………………………………………………………………(2分)综上所述的长为5或者8.…………………………………………………(1分) 静安区25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图,平行四边形中,已知6,9,31cos =∠ABC .对角线、交于点O .动点P 在边上,⊙P 经过点B ,交线段于点E .设 x . (1) 求的长;(2) 设⊙O 的半径为y ,当⊙P 与⊙O 外切时, 求y 关于x 的函数解析式,并写出定义域; (3) 如果是⊙O 的直径,⊙O 经过点E , 求⊙O 与⊙P 的圆心距的长.A 第25题图BP OC DE·第25题备用图ABOCD25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)解:(1)作⊥于H ,且31cos =∠ABC ,6, 那么2316cos =⨯=∠⋅=ABC AB BH …………(2分) 9,9-2=7,242622=-=AH , ……………………(1分) 9493222=+=+=HC AH AC ﹒ ………(1分)(2)作⊥于I ,联结, 9,4.5 ∴∠∠, ∴△中, 31cos cos ==∠=∠AO AI ABC IAO ∴1.5,2322=AI ……………………(1分)∴61.5=x -29, ……………………(1分) ∴△中,41539481918)29()23(2222222+-=+-+=-+=+=x x x x x OI PI OP ……(1分) ∵⊙P 与⊙O 外切,∴y x x x OP +=+-=415392 ……………………(1分)∴y =x x x x x x -+-=-+-153364214153922 ……………………DA · 第25题图B P OCH E · A 第25题图B P OCDH E I……(1分)∵动点P 在边上,⊙P 经过点B ,交线段于点E .∴定义域:0<x ≤3…………(1分)(3)由题意得:∵点E 在线段上,⊙O 经过点E ,∴⊙O 与⊙P 相交∵是⊙O 半径,且>,∴交点E 存在两种不同的位置,29 ① 当E 与点A 不重合时,是⊙O 的弦,是弦心距,∵1.5, =3, ∴点E 是 中点,321==AB BE ,23==PE BP ,3=PI , 233327)23(32222==+=+=IO PI OP ……………………(2分)② 当E 与点A 重合时,点P 是 中点,点O 是 中点,2921==BC OP ……(2分) ∴33=OP 或29. 闵行区25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)如图,已知在△中,∠ = 90o, =6, = 8,点F 在线段上,以点B 为圆心,为半径的圆交于点E ,射线交圆B 于点D (点D 、E 不重合).(1)如果设 = x , = y ,求y 与x 之间的函数关系式,并写出它的定义域;(2)如果2ED EF =,求的长;(3)联结、,请判断四边形是否为直角梯形?说明理由.25.解:(1)在△中,6AC =,8BC =,90ACB ∠=∴10AB =.……………………………………………………………(1分)过E 作⊥,垂足是H , 易得:35EH x=,45BH x =,15FH x =.…………………………(1分)在△中,222223155EF EH FH x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,∴(备用图)CBA(第25题图)CBEF DA10(08)5y x x =<<.………………………………………(1分+1分)(2)取ED 的中点P ,联结交于点G∵2ED EF =,P 是ED 的中点,∴EP EF PD ==. ∴∠ =∠ =∠.∵EP EF =,过圆心,∴⊥, =2 =2.…………(1分)又∵∠ =∠,∴∠∠∠.……………………………………………(1分)又∵是公共边,∴BEH BEG ∆∆≌.∴35EH EG GD x ===.在△中,∵ = 6,8BC =,tan tan AC CE CAE ABC BCAC∠=∠==,∴66339tan 822CE AC CAE ⨯⨯=⋅∠===.……………………………(1分)∴9169782222BE =-=-=.……………………………………………(1分)∴6672125525ED EG x ===⨯=.……………………………………(1分)(3)四边形不可能为直角梯形.…………………………………(1分)①当∥时,如果四边形是直角梯形,只可能∠ =∠ = 90o. 在△中,∵8BC =,DEBACFDEBACF∴32cos 5CD BC BCD =⋅∠=,24sin 5BD BC BCD BE =⋅∠==. ∴321651025CD AB ==,328153245CE BE -==; ∴CD CE ABBE≠.∴不平行于,与∥矛盾.∴四边形不可能为直角梯形.…………………………(2分)②当∥时,如果四边形是直角梯形,只可能∠ =∠ = 90o. ∵∥,∠ = 90o, ∴∠ =∠ = 90o . ∴∠ =∠ +∠ > 90o. 与∠ =∠ = 90o矛盾.∴四边形不可能为直角梯形.…………………………(2分)普陀区25.(本题满分14分)已知P 是O ⊙的直径BA 延长线上的一个动点,P ∠的另一边交O ⊙于点C 、D ,两点位于的上方,AB =6,OP m =,1sin 3P =,如图11所示.另一个半径为6的1O ⊙经过点C 、D ,圆心距1OO n =. (1)当6m =时,求线段CD 的长;(2)设圆心1O 在直线AB 上方,试用n 的代数式表示m ; (3)△1POO 在点P 的运动过程中,是否能成为以1OO 为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.25.解:(1)过点O 作OH ⊥CD ,垂足为点H ,联结OC .在△POH 中,∵1sin 3P =,6PO =,∴2OH =. ··· (1分)∵AB =6,∴3OC =. ············ (1分) 由勾股定理得 5CH =. ··········· (1分)∵OH ⊥DC ,∴225CD CH ==.······· (1分)(2)在△POH 中,∵1sin 3P =, PO m =,∴3m OH =. ·· (1分)在△OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. ········· (1分)在△1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. ······· (1分)可得 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n-=. ··· (2分)(3)△1POO 成为等腰三角形可分以下几种情况:● 当圆心1O 、O 在弦CD 异侧时OAB备用图PDOABC 图11①1OP OO =,即m n =,由23812n n n-=解得9n =. ·· (1分)即圆心距等于O ⊙、1O ⊙的半径的和,就有O ⊙、1O ⊙外切不合题意舍去. ·················· (1分)②11O P OO =,由22233mm n m -+-()()n =,解得23m n =,即23n 23812n n-=,解得9155n =. ·· (1分)● 当圆心1O 、O 在弦CD 同侧时,同理可得 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132n n n-=,解得955n =.························ (2分)综上所述,n 的值为955或9155.青浦区25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图9-1,已知扇形的半径为2,∠90,点B 在弧上移动,联结,作⊥,垂足为点D ,C 为线段上一点,且,联结并延长交半径于点A ,设 x ,∠的正切值为y . (1)如图9-2,当⊥时,求证: ;(2)求y 关于x 的函数关系式,并写出定义域; (3)当△为等腰三角形时,求x 的值.OMND C BA图9-1 OMNDCBA图9-2NMO备用图25.解:(1)∵⊥,⊥,∴∠ =∠ =90°. ····· (1分)∵∠ +∠M =∠ +∠M ,∴∠ =∠. ··· (1分) ∵∠∠, ,∴△≌△, ············· (1分) ∴ . ··············· (1分) (2)过点D 作,交于点E . ········ (1分)∵=,⊥,∴=. ·········· (1分) ∵, ∴=MDMEDM AE,∴=,∵2,∴=()122-x . ········ (1分)∵,∴2==OA OC DM OE OD OD , ········· (1分)∴2=DM OA OD OE, ∴2=+xy x .(02<≤x ) ······· (2分)(3)(i ) 当时,∵111222===DM BM OC x ,在△中,222124=-=-OD OM DM x .∵=DM y OD,∴2121224=+-xx x x .解得1422-=x ,或1422--=x (舍). ···················· (2分)()当时,则∠ =∠,∵∠ >∠,∠ =∠,∴∠ >∠,∴此种情况不存在. ········· (1分) (ⅲ)当时,则∠ =∠α,∵∠ >∠M ,∠90α︒-,∴α>90α︒-,∴α>45︒, ∴290α∠=>︒BOA ,∵90∠≤︒BOA ,∴此种情况不存在. ······················ (1分)松江区25.(本题满分14分,第(1)小题4分,第(2)小题每个小题各5分)如图,已知△ 中,∠90°,2,3,以点C 为圆心、为半径的圆交于点D ,过点A 作∥,交延长线于点E. (1)求的长;(2)P 是 延长线上一点,直线、交于点Q.① 如果△ ∽△,求的长;② 如果以点A 为圆心,为半径的圆与⊙C 相切,求的长.C BA D EC BADE25.(本题满分14分,第(1)小题4分,第(2)小题每个小题各5分) 解:(1)∵∥ ∴BC DCBE AE =…………………………………1分∵∴ …………………………………1分 设 则2 ∵ ∠90°, ∴222AC CE AE +=即229(2)x x +=+………………………1分 ∴54x =即54CE = (1)分(2)①∵△ ∽△,∠>∠P∴∠∠P …………………………………1分C B A DEPQ(第25题图)C B ADE又∵∥ ∴∠∠∴∠∠P ………………………………1分 ∴△ ∽△,…………………………1分 ∴2AC CE CP =⋅…………………………1分 即2534CP =⋅∴365CP = (1)分②设,则54PE t =-∵∠90°, ∴29AP t =+ ∵∥∴AQ EC APEP=……………………………1分即255454594AQ t t t ==-+-∴25945t AQ t +=-……………………………1分若两圆外切,那么259145t AQ t +==- 此时方程无实数解……………………………1分若两圆内切切,那么259545t AQ t +==- ∴21540160t t -+= 解之得2041015t ±=………………………1分又∵54t >∴2041015t +=………………………1分徐汇区25. 已知四边形ABCD 是边长为10的菱形,对角线AC 、BD 相交于点E ,过点C 作CF ∥DB 交AB 延长线于点F ,联结EF 交BC 于点H .(1)如图1,当EF BC ⊥时,求AE 的长;(2)如图2,以EF 为直径作⊙O ,⊙O 经过点C 交边CD 于点G (点C 、G 不重合),设AE 的长为x ,EH 的长为y ; ① 求y 关于x 的函数关系式,并写出定义域;③ 联结EG ,当DEG ∆是以DG 为腰的等腰三角形时,求AE 的长.杨浦区25、(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图9,在梯形中,5,1,9,点P为边上一动点,作⊥,垂足H 在边上,以点P为圆心为半径画圆,交射线于点E.(1)当圆P过点A时,求圆P的半径;(2)分别联结和,当△△时,以点B为圆心,r为半径的圆B 与圆P相交,试求圆B的半径r的取值范围;(3)将劣弧沿直线翻折交于点F,试通过计算说明线段和的比值为定值,并求出此定值。
初三数学二模试卷 2017学年奉贤区调研测试九年级数学试卷 2018.04(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)1.下列二次根式中,与是同类二次根式的是()(A);(B);(C);(D).2.某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛.小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的()(A)众数;(B)中位数;(C)平均数;(D)方差.4.如果将直线l1:平移后得到直线l2:,那么下列平移过程正确的是()(A)将l1向左平移2个单位;(B)将l1向右平移2个单位;(C)将l1向上平移2个单位;(D)将l1向下平移2个单位.5.将一把直尺和一块含30°和60°角的三角板ABC按如图2所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()(A)10°;(B)15°;(C)20°;(D)25°.6.直线AB、CD相交于点O,射线 OM平分∠AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是()(A)相离;(B)相切;(C)相交;(D)不确定.二、填空题(本大题共12题,每题4分,满分48分)7.计算:.9.方程的根是.小,那么它的图像所在的象限是第象限.11.如果将抛物线平移,使平移后的抛物线顶点坐标为(1,2),那么所得新抛物线12.将6本相同厚度的书叠起来,它们的高度是9厘米.如果将这样相同厚度的书叠起来的高度是42厘米,那么这些书有本.15.如图4,在梯形ABCD中,AD//BC,BC=2AD,E、F分别是边AD、BC的中点,设,16.如果一个矩形的面积是40,两条对角线夹角的正切值是,那么它的一条对角线长是.17.已知正方形ABCD,AB=1,分别以点A、C为圆心画圆,如果点B在圆A外,且圆A与圆C外切,那么圆C的半径长的取值范围是.18.如图5,将△ABC的边AB绕着点A顺时针旋转得到,边AC绕着点A逆时针旋转得到,联结B′C′.当时,我们称△A B′C′是△ABC的“双旋三角形”.如果等边△ABC的边长为,那么它的“双旋三角形”的面积是三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算:.20.(本题满分10分)解方程组:21.(本题满分10分,每小题满分各5分)已知:如图6,在△ABC中,AB=13,AC=8,,BD⊥AC,垂足为点D,E是BD的中点,联结AE 并延长,交边BC于点F.某学校要印刷一批艺术节的宣传资料,在需要支付制版费100元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件.甲印刷厂提出:所有资料的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过200份的,超过部分的印刷费可按8折收费.23.(本题满分12分,每小题满分各6分)已知:如图7,梯形ABCD,DC∥AB,对角线AC平分∠BCD,(2)分别延长CD、EA相交于点F,若,求证:.已知平面直角坐标系(如图8),抛物线与轴交于点A、B(点A在点B左侧),与轴交于点C,顶点为D,对称轴为直线,过点C作直线的垂线,垂足为点E,联结DC、BC.(1)当点C(0,3)时,求这条抛物线的表达式和顶点坐标;(2)当CB平分∠DCO时,求的值.已知:如图9,在半径为2的扇形AOB中,∠AOB=90°,点C在半径OB上,AC的垂直平分线交OA于点D,交弧AB于点E,联结BE、CD.(1)若C是半径OB中点,求∠OCD的正弦值;(2)若E是弧AB的中点,求证:;(3)联结CE,当△DCE是以CD为腰的等腰三角形时,求CD的长.答案:一、选择题:1、C;2、B;3、D;4、C;5、A;6、A;二、填空题:22、(1);(2)乙;23、(1)略;(2)略;25、(1);(2)提示:证∽;(3)2或;。
2018年上海市奉贤区高三二模数学卷(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2017学年第二学期奉贤区调研测试 高三数学试卷 (2018.4)(考试时间:120分钟,满分150分)一、填空题(本大题满分54分)本大题共有12题,考生应在答题纸相应编号的空格内直接写正确的结果,1-6每个空格填对得4分,7-12每个空格填对得5分,否则一律得零分.1、集合⎭⎬⎫⎩⎨⎧<-=02x x x A ,{|}B x x Z =∈,则A B ⋂等于 .2、已知半径为2R 和R 的两个球,则大球和小球的体积比为 .3、抛物线2y x =的焦点坐标是 .4、已知实数,x y 满足20102x y x y -≤⎧⎪-≤⎨⎪+≥⎩,则目标函数2u x y =+的最大值是 .5、已知在ABC ∆中,a ,b ,c 分别为AB ∠∠,,C ∠所对的边.若222b c a +-=,则A ∠= .6、三阶行列式13124765x -中元素5-的代数余子式为()x f ,则方程()0f x =的解为____.7、设z 是复数,()a z 表示满足1n z =时的最小正整数n ,i 是虚数单位,则⎪⎭⎫⎝⎛-+i i a 11=______.8、无穷等比数列{}n a 的通项公式()nn x a sin =,前n 项的和为n S ,若lim 1n n S →∞=,()π,0∈x 则x = .9、给出下列函数:①1y x x=+;②x x y +=2;③2xy =;④23y x =;⑤x y tan =;⑥()sin arccos y x =;⑦(lg lg 2y x =-.从这7个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是 . 10、代数式2521(2)(1)x x+-的展开式的常数项是 .(用数字作答)11、角α的始边是x 轴正半轴,顶点是曲线2522=+y x 的中心,角α的终边与曲线2522=+y x 的交点A 的横坐标是3-,角α2的终边与曲线2522=+y x 的交点是B ,则过B点的曲线2522=+y x 的切线方程是 .(用一般式表示)12、已知函数()()θ-=x x f 2sin 5,⎥⎦⎤⎝⎛∈2,0πθ,[]π5,0∈x ,若函数()()3-=x f x F 的所有零点依次记为n x x x x ,,,,321 ,且n n x x x x x <<<<<-1321 ,*N n ∈若π283222212321=++++++--n n n x x x x x x ,则=θ .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在 答题纸的相应编号上,将代表正确答案的小方格涂黑,选对得5分,否则一律得零分.13、已知曲线的参数方程为)50(12322≤≤⎪⎩⎪⎨⎧-=+=t t y t x ,则曲线为 ( ). A .线段 B .双曲线的一支 C .圆弧 D .射线14、设直线l 的一个方向向量()3,2,6=d ,平面α的一个法向量()0,3,1-=n ,则直线l 与平面α的位置关系是 ( ). A .垂直 B .平行C .直线l 在平面α内D .直线l 在平面α内或平行15、已知正数数列{}n a 是公比不等于1的等比数列,且0lg lg 20191=+a a ,若()212x x f +=,则()()()=+++201921a f a f a f ( ). A .2018 B .4036 C .2019 D .403816、设R a ∈,函数()ax x x f cos cos +=,下列三个命题:①函数()ax x x f cos cos +=是偶函数.②存在无数个有理数a ,函数()x f 的最大值为2. ③当a 为无理数时,函数()ax x x f cos cos +=是周期函数.以上命题正确的个数为 ( ). A .3 B .2 C .1 D .0三、解答题(本大题共有5题,满分76分)解答下列各题必须写出必要的步骤.17、已知几何体BCED A -的三视图如图所示,其中左视图和俯视图都是腰长为4的等腰直角三角形,主视图为直角梯形. (1)求几何体BCED A -的体积;(2)求直线CE 与平面AED 所成角的大小.18、已知函数()1212-+=x x k x f ,0≠k ,R k ∈. (1)讨论函数()x f 的奇偶性,并说明理由;(2)已知()x f 在(]0,∞-上单调递减,求实数k 的取值范围.19、某旅游区每年各个月份接待游客的人数近似地满足周期性规律,因而第n 个月从事旅游服务工作的人数()f n 可近似地用函数()()k wn A n f ++=θcos 来刻画,其中正整数n 表示月份且[]1,12n ∈,例如1n =表示1月份,A 和k 是正整数,0w >,()πθ,0∈. 统计发现,该地区每年各个月份从事旅游服务工作的人数有以下规律: ①每年相同的月份,该地区从事旅游服务工作的人数基本相同;②该地区从事旅游服务工作的人数最多的8月份和最少的2月份相差400人;③2月份该地区从事旅游服务工作的人数为100人,随后逐月递增直到8月份达到最多. (1)试根据已知信息,求()f n 的表达式;(2)一般地,当该地区从事旅游服务工作的人数在400或400以上时,该地区也进入了一年中的旅游“旺季”,那么,一年中的哪几个月是该地区的旅游“旺季”请说明理由.20、设复平面上点Z 对应的复数yi x z +=()R y R x ∈∈,(i 为虚数单位)满足622=-++z z ,点Z 的轨迹方程为曲线1C .双曲线2C :122=-ny x 与曲线1C 有共同焦点,倾斜角为4π的直线l 与双曲线2C 的两条渐近线的交点是A 、B ,2=⋅OB OA ,O 为坐标原点.(1)求点Z 的轨迹方程1C ; (2)求直线l 的方程;(3)设PQR ∆的三个顶点在曲线1C 上,求证:当O 是PQR ∆的重心时,PQR ∆的面积是定值.21、对于任意*n N ∈,若数列{}n x 满足11n n x x +->,则称这个数列为“K 数列”. (1)已知数列:1,1+m ,2m 是“K 数列”,求实数m 的取值范围;(2)设等差数列{}n a 的前n 项和为n S ,当首项1a 与公差d 满足什么条件时,数列{}n S 是“K 数列”(3)设数列{}n a 的前n 项和为n S ,11=a ,且11232n n S S a +-=,*n N ∈.设()11+-+=n nn n a a c λ,是否存在实数λ,使得数列{}n c 为“K 数列”.若存在,求实数λ的取值范围;若不存在,请说明理由.2018年奉贤区高三数学二模参考答案一、填空题(1-6,每个4分,7-12每个5分,合计54分)1、{}1或{}1=x x 2、8或1:8 3、(0,14) 4、4 5、4π或045 6、2log 3x = 7、4 8、6π或56π9、3710、311、7241250x y ±+= 12、9π阅卷评分标准说明:第1题必须集合形式,两种形式都可以;第2题1:8也可以;第5题也可以写045; 第8题必须两解,而且必须弧度制,漏解或角度制均不给分; 第9题答案必须最简结果,唯一表达形式;第11题直线方程必须一般式;第12题必须弧度制,角度制均不给分;; 请严格执行此标准阅卷二、选择题(每个5分,合计20分)13、A 14、D 15、C 16、B三、解答题(14+14+14+16+18=76分)17、(1)AC S V BCED ⋅⋅=31……………………………………………………………3分340=…………………………………………………………………………3分踩分点,两个步骤环节,每一个3分(2)分别以CA 、CB 、CE 方向为z y x 、、轴建立空间直角坐标系,则: ()0,0,0C 、()4,0,0E 、()0,0,4A 、()1,4,0D , …………………………………2分 所以()4,0,0=CE ,()4,0,4-=AE ,()3,4,0-=ED设平面AED 的法向量为()z y x n ,,=⎪⎩⎪⎨⎧=⋅=⋅00ED n AE n ⇒⎪⎩⎪⎨⎧==43z y z x ,……………………………………………………………… 2分 于是可以取()4,3,4=n .……………………………………………………………………1分 设CE 与平面AED 所成的角为θ,则:41414sin ==θ,………………………………………………………………2分 所以CE 与平面AED 所成的角为41414arcsin.…………………………………………1分 建系设点2分,列方程组2分,求出法向量1分,套用公式1分,求出角2分18、(1)函数定义域为R ……………………………………………………………………1分01)0(≠=kf()x f ∴不是奇函数……………………………………………………………………2分()1221-+⋅=-xxk x f ,令()()()02211=-⎪⎭⎫ ⎝⎛-⇒=--x x k x f x f 恒成立, 所以当1=k 时,函数()x f 为偶函数;……………………………………………4分 当1≠k 时,函数()x f 是非奇非偶函数。
上作在草稿纸、本试卷上答题一律无效.0 2 .若 x =2, y = -1,那互为相反数;2y0 3 5 .下列说法中,正确的是(▲) B. 4;2018 学年奉贤区调研测试九年级数学(满分 150 分,考试时 100 分钟)间2018.04考生注意:1 .本试卷含三个大题,共25 题.答题时,考生务必按答题要求在答题纸规定的位置答,2 .除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6 题,每题 4 分,满分24 分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题 纸的相应位置上】1 .如果两个实数 b 满足a b,那么a ,b 一定是(▲)a ,B.一正一负;C. D .互为倒数.A .都等于么代数式x 2 2xy 的值是(▲);A .0; B. 1;C. 2;D. 4.3 .函数y-2x 的图像不经过(▲)A .第一象限;B.第二象限;C.第三象限;D.第四象限.4 .一组数据3,3, 2, 5,8, 8的中位数是(▲)C. 5;D. 8.A . 3;A.关于某条直线对称的两个三角形一定全等;B.两个全等三角形一定关于某条直线对称;C.面积相等的两个三角形一定关于某条直线之间对称;D.周长相等的两个三角形一定关于某条直线之间对称.6 .已知⊙ O1与⊙ O 2外离,⊙ O 1的半径是 O 1O 2 5 ,圆心距7 ,那么 ⊙ O 2 的半径可以是( ▲)A.4; B.3; C.2; D.1.二、填空题:(本大题共12题,每题4分,满分48分)7.化简:16a=▲;8.因式分解:2a a▲;yx1的定义域是3 ,那么n =▲;x ,在其图像所在的每个象限内,y 的值随x 的值增▲;x16 .四边形 示ABCD 中,ABCD9 .函数1▲;10 .一个不透明的袋子中装有若干个除颜色外形状大小完全相同的小球,如果其中有球,n 个黄球,从中随机摸出白球的概率是x1 2的解集是 ▲; 11 .不等式组2x822 个白12 .已知反比例函数y 3大而(填“增大”或“减小”)113 .直线ykx (b k)平行于直线 且经过点(0, 2 ),那么这条直y2 线的解析式是▲;14 .小明在高为18 米的楼上看到停在地面上的一辆汽车的俯角为底的距离是▲米;(结果保留根号)60 o ,那么这辆汽车到楼a15 .如图,在△ ABC 中,点 D 在边 BC 上,且 DC=2BD ,点E 是边AC 的中点,设 BC =,AC = b ,那么 DE = ▲;(用)到四边形a 、b 的线性组合表AD //BC ,∠ D=90 o ,如果再添加一个条件,可以得是矩形,那么可以添加的条件是 ▲;(不再添加线或字母,写出一种情况即可)17 .如图,在 RtABC 中,∠ACB=90o ,AD 是BC 边上的中线,如果 AD=BC ,那么cot ∠ CAB的值是 ▲;18 .如图,在△ ABC 中,∠ C=30 o , AC=2 ,点D 在 BC 上,将△ACD 沿B=45 o ,∠直线 ADCF 的值是 ▲;翻折后,点 C 落在点E 处,边AE 交边BC 于点BFF,如果DE// AB ,那么AAAEBD C第 15 题图BDCB第 18 题图 C三、解答题:(本大题共7题,满分78分)第17题图19.(本题满分2)-1-81320.(本题满分10分)解方程:x212.x16作 DE ⊥ AD ,垂足为点 D ,交 BE 延21 .(本题满分10 分,每小题满分各5 分)已知:如图,在 Rt △ ABC 中,∠ ACB=90 o , AB=4 , AD 是∠ D BAC 的角平分线,过点1. AAB 于点 E ,且AB 4( 1 )求线段 BD的长;( 2 )求∠ADC 的正切值.ECD 第21 题图B22 .(本题满分10 分,第( 1 )小题 4 分,第( 2 )小题 6 分)今年 3月 5 日,某中学组织六、七年 200 位学生参与了“走出校门,服务社会”的活级 动.该校某数学学习小组的同学对那天参与打扫街道、敬老院服务和社区文艺演出的三组人数进行分别统计,部分数据如图所示.( 1 )参与社区文艺演出的学生人数是▲人,参与敬老院服务的学生人数是 ▲人;( 2 )该数学学习小组的同学还发现,六、七年级参与打扫街道的学生人数分别比参与敬老院服务的学生人数多了40% 和 60% .求参与敬老院服务的六、七年级学生分别有多少人?打扫 街道 90 人社区文 艺 演出 25 %敬老院 服务第 22 题图23 .(本题满分12 分,每小题满分各6 分)已知:如图,梯形 ABCD 中, DC ⊥ AB ,AD=BC=DC ,AC 、 BD 是对角线,线上一点,且∠ E 是ABBCE=长∠ ACD , 联结 CE .( 1 )求证:四边形 DBEC 是平行四边形;D C(2)求证:2AD AE.B EA第23题图2c5 的菱形 ABCD 中, CE ,24 .(本题满分12 分,每小题满分各4 分) 已知在平面直角坐标系xoy (如图)中,抛物线y b x 与 x 轴交于点 A(-1, 0)与点 C ( 3, 0 ),与y 轴交于点B ,点 B 作射线AP 的垂线,垂足P 为 OB 上一点,过点 为点 D ,射线 BD 交 x 轴于点 E.( 1 )求该抛物线解析式; ( 2 )联结 BC ,当 P 点坐标为( 0, 2 )时,求△ EBC 的面积; 3( 3 )当点 D 落在抛物线的对称轴上时, P 的坐标.求点yyBBDPAOE C x A OC x第24 题图备用图25 .(本题满分 14 分,第( 1 )小题 5 分,第(2 )小题 5分,第( 3 )小题4 分)已知:如图,在边长为3,点cosA=5 A 为圆P 为边 AB 上一点,以心、AP 为半径的⊙ A 与边AD 交于点E ,射线F . 与⊙A 另一个交点为点( 1 )当点 E 与点 D 重合时,求 EF 的长; ( 2 )设 AP=x , CE=y ,求 y 关于 x 的函数关系式 及定义域;( 3 )是否存在一点 P ,使得 EF 2 PE 若存在,求AP 的长,若不存在,请说明理由.ED CD CFA P BAB备用图第25题图7. 4a ; 8.a( a1); 1 32 17 . 218 .4 . y ) 321 解 分)216 0x 2CAD = ∠ BAD ⊥∠ BAD= ∠ 2分5 ⊥ o2018 学年奉贤区调研测试九年级数学答案一、选择题:(本大题共6 题,每题4 分,满分24 分)1.C ;2.B ; 3.C ;2018.046. D .4. B ;5.A ;9. x ;10 . 1 ; 11 . x > ;12 .减二、填空题:(本大题共12 题,每题小;12 1 313分,满分 x ; 48 分14 . 6 ;b ; 16 . AD=BC 等; ; 2 15 .a33 ;三、解答题:(本大题共 7 题,满分19 .(本题满分78 分)10:原式 2-= 1- 2 -22,,,,,,,,,,,,,,,,,,,,,,,, 各 2分22= 1- 2,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 2分20.(本题满分10 分)解:方程两边同乘以 4),,,,,,,,,,,,,,,,,,,,,,,( x1分得:(x2)(x2),,,,,,,,,,,,,,,,,,,,,,3分整理,得:解得:x 2 3x 10 ,,,,,,,,,,,,,,,,,,,,,,x 1 2 , x 2 5 ,,,,,,,,,,,,,,,,,,,,,,,2分2分经检验:x 1 2 是增根, 5 是原方程的根,,,,,,,,,,,,,1分所以原方程的根是x1分21 .(本题满分 10 分,每小题满分各,,,,,,,,,,,,,,,,,,,,,,, 5 分)BE 1解:( 1 )∵ ⊥ BE= 1,,,,,,,,,,,,,,,,,,,,1AB=4 ,AB 4分∵DE ⊥ AD ,∠ACB=90 ∠ CAD+ ∠ ADC= ∠ BDE+ ∠ ADC. ⊥∠CAD= ∠ BDE∵ AD 是∠ BAC 的角平分线,⊥∠BDE,,,,∵∠ B= ∠ B ⊥△ BDE ⊥△BADBDBDAB ⊥ BD= 2,,,,,,,,,,,,,,,,,,,,,,( 2 )解法一:∵△ BDE ⊥△BE,,,,,,,,,,,,,,DE 1 BAD ⊥BD AD21分1分1分⊥AD2分AB 4 2 AC 21 ADC=Rt ( 2 )小题 6 分)每空各证明:( 1 )6∵ ) ∵∠ BCE= ∠ ACD, BC=DC ⊥△ADC CBE △⊥ ,,,,,,, EBC,,,,,,,,,,,行四边形∵DC ⊥ AB ,⊥∵∠ ∵∠ E= ∠ E ⊥△ ECB ⊥△ BE EC∵∠ CAD= ∠ BAD ,∠ ADE=90 o ,∠ ACB=90 o ⊥∠AED= ∠ 1 分ADC ,,,,1分 ⊥ tan ∠ ADC=2 ,即:∠ ADC 的正切值为 2,,,,,,,,,,,,,,解法二:过点 D 作 DH ⊥ AB 于点 H ,,,,,,,,,,,,,,,,,,,,,,⊥∠ AHD =90 o ∵ AD 是∠ BAC 的角平分线,∠ACB=90 CD=DH ,,,∵∠ AHD = ∠ ACB=90 ,∠ B= ∠ B ,BDH ⊥△ o BAC ,,,,,,,,,,,,DH BD 2 ,⊥ CD 1⊥ ,,,,,,,,,,,,,,,,,,AC1分o ⊥ 1分1分1分⊥在 △AC ACD 中,∠ACD=90o ,tan ∠CD2 即:∠ ADC 的正切值为 1分2,,22 .(本题满分10 分,第( 1 )小题 4 分,第( 1 ) 50 , 60 ; ,,,,,,,,,,,,,,,,,,,,,,,,,,,, 2分( 2 )设参与敬老院服务的六、七年级学生分别有x 人、 y 人 ,,,,,,,,,, 1分根据题意,得:解得x y 60,,,,,,,,,,,, ( 1 40%) x ( 1 60%) y90x 30y 30,,,,,,,,,,,,,,,,,,,,,,,3分2分答:参与敬老院服务的六、七年级学生各有30 人.23 .(本题满分 12 分,每小题满分各分DC ⊥ AB ,AD=BC=DC⊥∠ DCB= ∠ ADC ,∠ DCB= ∠ ⊥∠ ADC = ∠CBE⊥ AD =B E ⊥ DC =B E ,,,,,,,,,,,,,,,,,,,,∵ DC ⊥ AB ⊥四边形 DBEC 是平,,,,,,,,,,,,,,1分2分2分1分( 2 )∵四边形 DBEC 是平 ⊥ BD=CE行四边形⊥AC=BDAC=BD ,,,,,,,,,,1分AD=BC=DC DCA= ∠ ∠ BCE= ∠ ACD ⊥∠ BCE= ∠ CABCAB3分EAC,,,,,,,,,,,,,,,,,,,, ⊥⊥ CE 2 BE AEEC AE即AC2AD AE ,,,,,,,,,2分24 .(本题满分12 分,每小题满分各(1) ∵抛物线 y4分)x2bx交x轴交于点A(1,0)点C(3,0)⊥1b c093b c解得:b2c3,,,,,,,,,,,,,,,,,,3分⊥该抛物线的解析式:y x22x3,,,,,,,,,,,,,,,,1分c和1 , 2y x 21 y 2⊥ yBP PD3y 解得:y 1 1,21分2y 1 1,都是原方程的根 , 过点⊙ AA 作 , AH ⊥EF=2 EH 点,∠ AHEH ,,,,,,,,,,,,,,,,,,, EF 于=90 oAE 5 ⊥ EH= 32x)( 2 )由x 2 2x3 得点 B(0 ,3),,,,,,,,,,,,,,,,,,,,分y∵ AD ⊥ CD⊥∠ DBP+ ∠ BPD= 90 °∵∠POA= 90 ⊥⊥∠OAP+ ∠ APO= 90 °∵∠ BPD= ∠ APO ⊥∠DBP= ∠ OAP ∵∠AOP= ∠ BOE= 90 ⊥⊥△ AOP ⊥△BOE , 分2⊥AO POBO OE2∵ OA=1 , PO= , BO=3 3⊥1 33 OE ⊥OE=2,,,,,1分∵ OC=3⊥ EC=1⊥SEBC1 3 1 32 2,,,,,,,,,,,,,,,1分( 3 )设点P (0, y) 则OP=AP= 1 y y , BP=3 ,∵点D 在抛物线的对称轴上,过点 D 作DH ⊥轴,垂足为点 H⊥ AH= 2 ⊥ AO=OH ⊥ PD =AP=1 y∵∠ BPD = ∠ APO ∠ AOP= ∠ BDP= 90 ° ⊥△AOP ⊥△ BDP ,,,,,,,1分⊥AP PO1y2 1 y . ,,,,,,经检验:y 21 2⊥ P 1 (0,1) P 2(0, 1) ,,,,,, 22分25 .(本题满分 14 分,第( 1 )小题 5 分,第( 2 )小题 5分,第( 3 )小题 4 分)(1 )解:当点 E 与点 D 重合时, AE=5 , EF//AB ⊥∠ 1分ADF = ∠ DAB,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1分⊥在 中 EH 3⊥ cos ∠ ADF=cos ∠ DAB = =EF=6,,,,,,,,,,,,( 2 )解:过点 C 作 CM ⊥ AD 交 AD 延长线于点 M ,,,,,,,,,,,,,,,3在 Rt △ CMD 中,∠ CMD =90 o , cos ∠ MDC=cosA = , CD= 5 5⊥ MD =3 ,⊥CM=4,,,,,,,,,,,,,,,,,,,,,,,,,,,1分2分1分1分在 RtCME 中,∠CME =90o ,⊥CE2CM2ME2∵ CM =4 , MD =3 , DE=5- x , CE=y ⊥y 2 4 2 ( 3 5 ,,,,,,,, 1分⊥ yx16x800<x⊥5),,,,,,,,,,,,,,,,,,2分2,,,(3)解:假设存在一点P,使得EF2PE过圆心A作AH⊥EF于点H,交⊙A为1分点N,,,,,,,,,,,,,,,,⊥EF2EN∵EF2PE⊥PE∠NAE=∠PAE,,,,,,1分∵AH⊥EF,⊥∠NAE+∠HEA=90°.∠CME=90°,⊥∠CEM+∠ECM=90°.(MC43834∵∠HEA=∠CEM,⊥∠NAE=∠ECM=∠PAE=∠⊥tan∠ECM=tan∠MDC=MDC.3⊥在Rt△CME中,∠CME=90o,CM=4,ME=MD+DE=3+5-xME8x48tan∠ECM=,解得,,,,,,,,,,,,,,,,x=3即:存在点P,使得EF2PE,此时.AP长为2分。