功耗仿真软件使用手册
- 格式:pdf
- 大小:386.51 KB
- 文档页数:13
Elite Power SimulatorUser Guide1 2 31 2 3onsemi’s online Elite Power Simulator Powered by •PLECS is a system level simulator that facilitates the modeling and simulation of complete systems with optimized device models for maximum speed and accuracy.PLECS is not a SPICE-based circuit simulator, where the focus is on low-levelbehavior of circuit components .•Power transistors are treated as simple switches that can be easily configured to demonstrate losses associated with conduction and switching transitions.•The PLECS models, referred to as “thermal models”, are composed of lookup tables for conduction and switching losses, along with a thermal chain in the form of a Cauer or Foster equivalent network.•During simulation, PLECS interpolates and/or extrapolates using the loss tables to get the bias point conduction and switching losses for the circuit operation./elite-power-simulatorElite Power Simulator FeaturesBroad Range ofCircuit Topologies Covering DC-DC, AC-DC, and DC-AC applications, including 32 circuit topologies in industrial (DC fast charging, UPS, ESS, solar inverters), automotive (OBC, traction), and non-traction spacesCorner SimulationCapability onsemi’s PLECS models go beyond nominal data from datasheets to include industry first corner simulation based on physical correlations in the manufacturing environment.Soft Switching Models onsemi provides industry first PLECS models valid for soft switchingapplications such as DC-DC LLC and CLLC Resonant, Dual Active Bridge, and Phase Shifted Full Bridge.Loss & Thermal DataPlottingExplore device conduction loss,switching energy loss, and thermalimpedance in a multifunctional 3Ddata visualization utility.Custom PLECS ModelUploadInterface with onsemi’s industry firstSelf-Service PLECS ModelGenerator(SSPMG) to simulate withmodels tailored to your application.Flexible Design &Fast Simulation ResultsFlexible to capture adjustments tovarious attributes such as, gate driveimpedance, cooling designs, andload profiling./elite-power-simulatoronsemi’s State-of-the-Art PLECS Models•Typical industry PLECS models are composed of measurement-based loss tables that are consistent with datasheets provided by the manufacturer.There are four major problems with this approach:1.The switching energy loss data is dependent on the parasitics of the measurements set ups and circuits.2.The conduction and switching energy loss data is limited and thus is often not dense enough to ensureaccurate interpolation and minimal extrapolation by PLECS.3.The loss data is based on nominal semiconductor process conditions only.4.The switching energy loss data comes from datasheet double pulse generated loss data. This means thePLECS models are only valid for hard switching topology simulation. The models are highly inaccurate if used in soft switching topology simulation.•onsemi’s Self-Service PLECS Model Generator (SSPMG) provides solutions to all four problems.•Ultimate power is delivered to the user to build PLECS models tailored for the user’s application. Unleash the power here: /self-plecs-generatorDeploying PLECS Models in Elite Power SimulatorCorner PLECS ModelsProcess ConditionR DSon , V th , BVCapacitance, Device RGConductionLossSwitching EnergyLossNominalNominal Nominal Nominal Nominal Best Case Conduction Loss, Worst Case Switching LossLow High Low High Worst Case Conduction Loss, Best Case Switching LossHighLowHighLow•Conventional PLECS models based on measurements are only valid for the typical or nominal process case in manufacturing. onsemi has developed accurate corner PLECS models based on real manufacturing distribution.•Physics dictates that worst case conduction and switching losses do not happen simultaneously for example.•Depending on the application, the influence of conduction and switching energy losses on the overall system performance will vary. The onsemi corner PLECS models provide the user the flexibility to investigate the entire correlated space.•Accurate corner and statistical modeling covered in detail in−SiC MOSFET Corner and Statistical SPICE Model Generation –Proceeding of International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 154-147, September 2020•For Hard Switching , the conventional Double Pulse Test is the good method to calculate losses for models.•For Soft Switching , it depends on the topology and the operating mode (Transition or Switching)−The Double Pulse Test is NOT representative of SoftSwitching. Using double pulse switching energy losses in the simulation of a Soft Switching Topology is highly inaccurate.−A Soft Switching energy loss schematic is implemented in SSPMG to deliver Soft Switching models accurate for topologies such asDC-DC LLC and CLLC Resonant, Dual Active Bridge, Phase Shifted Full Bridge, othersHard vs. Soft Switching Energy LossesH a r d S w i t c h i n g S o f t S w i t c h i n gOutline of User Guide123Access Elite Power Simulator with MYON AccountMYON MyON is required to use the Elite Power SimulatorLoginReturning UserFirst Time UserAccess Through Direct Link or Product PageIn addition to direct access to the Elite Power Simulator/elite-power-simulatorAccess is available on each EliteSiC Product Page.Learn more about EliteSiC at/silicon-carbideOutline of User Guide123Step 1: Select Application and TopologyApplication choice filters the available topologiesBasic circuit schematic displayedTopologiesgrouped byconverter classStep 2: Select DeviceInputs used to filtervalid devicesChoose discretes ormodulesSelect device to move onto next step Direct datasheet downloadStep 3: Configure Device Set parallel devicesLink to product pageUpload custom PLECS model from onsemi’s Self-Service PLECS Model Generator (SSPMG)Set circuit RGSet deviceprocess corner condition View loss and thermal dataView Device Loss Data SelectMOSFET orBody DiodeToggle on/offtemperatures in 3D plotInteractive 3D plotToggle table datawith temperature View loss dataView Device Thermal Data View thermal chainStep 4: Configure Circuit ParametersSet Circuit parameters, varies by topologySet modulation scheme, varies by topologyStep 5: Configure CoolingSet Thermal interface resistanceConfigure Heat sink as ideal with fixed temperatureor input custom thermal impedanceCustom Heat Sink Thermal Impedance UtilityChoose Foster or Cauer formatwith automatic conversion featureUp to 5 rungs possibleToggle log/linear Y axisStep 6a: Run SimulationDetailed temperature, loss,and efficiency reportedPivot table,export csv LaunchSimulationStep 6b: View PlotsZooming and cursor featuresStep 6c: Compare Multiple Simulation CasesCompare•Device Selection•Device Configuration✓Corner process loss data✓SSPMG Model•Circuit Parameters•CoolingCompare Results Go back to steps 2, 3, 4, or 5 to make changesStep 7: Review Summary TableDownload PLECS ModelsHighlight rows to be print or downloaded to CSVLoad Profile SimulationTopologies with Load Profiling NPC inverter (1 phase, 3 level)NPC inverter (3 phase, 3 level)T-Type inverter (1 phase, 3 level)T-Type inverter (3 phase, 3 level)ANPC inverter (1 phase, 3 level)ANPC inverter (3 phase, 3 level)Inverter (3 phase, 2 level, grid load)Inverter (3 phase, 2 level, motor load)Traction Inverter (3 phase)•Load profile simulation enables power and thermal estimations at multiple, user-defined operating points •Simple intuitive flowLoad ProfileSet up parameter profilesSetupLinearrampingwhenstepped Set up time intervalschanges notenabledAdd orsubtracttimeintervals Real time plotting ofload profileparameters forinspection beforelaunching simulationLoad Profile Simulation Mission Profilesimulation button isenabled (orange)when any circuitparameter is enabledwith a load profileExample Load Profile Simulation ResultsLosses can be tracked over the load profileby enabling the cursor Junction TemperatureQuestion?Have questions, comments, or need support with your Self-Service PLECS Model Generator needs? We’re here to help! Write us an email at ********************.•Self-Service PLECS Model Generator: /self-plecs-generator•Elite Power Simulator: /elite-power-simulatorFollow Us @onsemi。
powerfactory中文教程PowerFactory是一款强大的电力系统仿真软件,它提供了一套完整的工具和功能,用于分析和设计电力系统。
本文将介绍PowerFactory的中文教程,帮助读者快速入门并掌握该软件的基本操作和功能。
PowerFactory可以在Windows操作系统上运行,它提供了一个直观的用户界面,使用户可以轻松地进行模型建立、仿真运行和结果分析。
在开始使用PowerFactory之前,我们需要安装并启动软件。
安装完成后,我们可以通过菜单栏或快捷方式打开PowerFactory。
在PowerFactory中,我们可以创建一个新的电力系统模型。
模型包括各种元件,例如发电机、变压器、线路和负荷等。
我们可以通过拖放元件图标来创建模型,并根据需要进行连接和设置参数。
模型建立完成后,我们可以对其进行仿真运行。
PowerFactory提供了多种仿真模式,包括潮流计算、短路计算、稳定性分析和动态仿真等。
在潮流计算中,我们可以分析电力系统中各个节点的电压、功率和电流等参数。
短路计算可以用于分析故障情况下电力系统的电流和电压的变化。
稳定性分析可以用于评估电力系统的稳定性和抗干扰能力。
动态仿真可以模拟电力系统的动态响应和暂态过程。
除了以上的仿真功能,PowerFactory还提供了一些高级功能,例如灵敏度分析、可靠性评估和优化设计等。
在灵敏度分析中,我们可以分析电力系统参数变化对结果的影响。
可靠性评估可以用于评估电力系统的可靠性和可用性。
优化设计可以帮助我们寻找最佳的电力系统配置和操作策略。
在PowerFactory中,我们还可以进行数据管理和结果分析。
PowerFactory支持多种数据格式,例如Excel、CSV和XML等。
我们可以导入和导出数据,进行数据处理和转换。
结果分析可以通过图表、报表和数据表格等方式展示和解释仿真结果。
PowerFactory是一款功能强大的电力系统仿真软件,它提供了丰富的工具和功能,用于分析和设计电力系统。
ultrasim的使用手册UltraSim使用手册一、简介1.1 UltraSim是什么UltraSim是一款先进的电子仿真软件,用于模拟和分析电路设计中的信号传输和电磁特性。
它是用于电子产品开发的重要工具,可以帮助工程师快速评估和改进设计,提高产品质量和性能。
1.2 UltraSim的主要特点- 强大的电路模拟能力,支持高精度的电路和信号传输仿真。
- 快速的仿真速度,能够处理大规模复杂电路设计。
- 灵活的数据分析和结果展示功能,便于用户对仿真结果进行深入分析。
二、安装和配置2.1 系统要求- 操作系统:Windows 7/8/10,Mac OS X,Linux等。
- 内存:建议至少8GB的内存空间。
- 存储空间:至少100GB的硬盘空间。
- 显卡:支持OpenGL 2:0及以上版本的显卡。
2.2 安装步骤UltraSim安装程序,并按照安装向导执行以下步骤:1:运行安装程序,选择安装路径。
2:执行必要的授权步骤,输入许可证密钥。
3:等待安装完成,启动UltraSim。
2.3 配置UltraSim在首次启动UltraSim时,您需要进行以下配置: 1:设置仿真器:选择适合您的仿真需求的仿真器。
2:设置工作目录:选择一个用于存储仿真结果和中间文件的目录。
3:配置仿真参数:设置仿真的时间范围、时钟频率等参数。
三、基本操作3.1 创建电路设计1:在UltraSim中创建新项目文件。
2:添加电路元件:包括电源、电阻、电容、电感和逻辑门等。
3:连接电路元件:使用线缆或导线连接各个元件。
3.2 设置仿真参数1:设定仿真时间范围:确定仿真所需模拟的时间范围。
2:配置时钟频率:指定时钟信号的频率。
3:设置输入信号:定义输入信号的波形和参数。
3.3 运行仿真1:运行按钮开始仿真。
2:观察仿真结果:包括电压波形、电流波形和逻辑状态等。
四、高级功能4.1 参数扫描1:设定扫描参数范围和步进值。
2:运行参数扫描仿真。
3:分析扫描结果,并相关报告。
IGBT损耗仿真软件使用说明IGBT损耗仿真软件是一种用于模拟和预测绝缘栅双极型晶体管(IGBT)损耗的软件工具。
IGBT是一种常用的功率半导体器件,广泛应用于各种交流和直流电源,电力变换以及电力电子应用中。
准确地预测和评估IGBT的损耗对设备的设计和性能至关重要。
以下是IGBT损耗仿真软件的使用说明:2.创建新项目:打开软件后,你可以选择“新建项目”创建一个新的仿真项目。
在项目名称和路径中输入所需的信息,并确保选择正确的IGBT模型和损耗模型。
4.设置仿真参数:在导入了IGBT模型后,你可以设置仿真参数,包括输入电压和电流波形、温度、开关频率等。
这些参数将影响到仿真结果的准确性和可靠性,因此需要根据实际情况进行设置。
5.运行仿真:在设置好了仿真参数后,你可以点击“运行仿真”按钮开始进行仿真。
软件将根据你所设定的参数和模型,模拟和计算出IGBT 的损耗情况。
仿真时间的长短取决于你设定的仿真时间和频率。
6.分析结果:仿真完成后,软件将生成一个仿真结果报告,其中包括IGBT的损耗值、电压和电流波形、温度分布等。
你可以通过查看报告来评估和分析IGBT的性能和损耗情况,以便进行进一步的改进和优化。
7.优化设计:根据仿真结果报告的分析,你可以确定IGBT的性能和损耗是否满足设计要求。
如果发现了性能不足或损耗过大的问题,你可以通过优化设计来改进。
这可能涉及到更换更适合的IGBT模型、调整电路设计、改变工作条件等。
8. 导出数据:除了报告之外,软件还可以导出仿真数据供进一步分析和处理。
你可以将数据导出为Excel或其他格式,以便在其他软件中进行更详细的分析。
总结:IGBT损耗仿真软件是一种强大的工具,能够帮助工程师准确地预测和评估IGBT的损耗情况。
然而,为了获得准确和可靠的仿真结果,需要正确设置仿真参数、导入合适的IGBT模型以及正确分析和优化设计。
希望以上的使用说明能够对你在使用IGBT损耗仿真软件时提供帮助。