2021高考数学(文)13 解析几何
- 格式:wps
- 大小:239.50 KB
- 文档页数:16
曲线方程新定义问题2. 曲线C 是平面内与两个定点A (-1,0)和B (1,0)的距离积等于常数a 2(a 2>1)的点的轨迹,给出下列结论:(1)曲线C 过坐标原点(2)曲线C 关于原点对称(3)若点P 在曲线C 上,则三角形PAB 的面积不大于12a 2 (4)曲线C 与椭圆x 2a 2+y 2a 2−1=1只有两个公共点其中正确的序号为________3.数学中有许多寓意美好的曲线,曲线22322:()4C x y x y += 被称为“四叶玫瑰线” 给出下列三个结论:① 曲线C 关于直线y x =对称;② 曲线C 上任意一点到原点的距离都不超过1;③ 存在一个以原点为中心、边长为2的正方形,使得曲线C 在此正方形区域内(含边界).其中,正确结论的序号是________4.曲线C :√(x +1)2+y 2⋅√(x −1)2+y 2=3,点P 在曲线C 上.给出下列三个结论: ①曲线C 关于y 轴对称;②曲线C 上的点的横坐标的取值范围是[−2,2];③若A(−1,0),B(1,0),则存在点P ,使△PAB 的面积大于32.其中,所有正确结论的序号是______.5.曲线C是平面内到定点(0,1)l y=-的距离之和等于4的点的轨迹,给出下列F和定直线:1三个结论:①曲线C关于y轴对称;①若点(,)y≤;P x y在曲线C上,则||2①若点P在曲线C上,则1||4≤≤.PF其中真命题的个数是()A.0 B.1 C. 2 D.36.已知集合P={(x,y)|(x−cosθ)2+(y−sinθ)2=4,0≤θ≤π}.由集合P中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的“水滴”.给出下列结论:①“水滴”图形与y轴相交,最高点记为A,则点A的坐标为(0,1);②在集合P中任取一点M,则M到原点的距离的最大值为3;③阴影部分与y轴相交,最高点和最低点分别记为C,D,则|CD|=3+√3;其中正确的有______.。
高考数学考点归纳之 解析几何计算处理技巧中学解析几何是将几何图形置于直角坐标系中,用方程的观点来研究曲线,体现了用代数的方法解决几何问题的优越性,但有时运算量过大,或需繁杂的讨论,这些都会影响解题的速度,甚至会中止解题的过程,达到“望题兴叹”的地步.特别是高考过程中,在规定的时间内,保质保量完成解题的任务,计算能力是一个重要的方面.为此,从以下几个方面探索减轻运算量的方法和技巧,合理简化解题过程,优化思维过程.考点一 回归定义,以逸待劳回归定义的实质是重新审视概念,并用相应的概念解决问题,是一种朴素而又重要的策略和思想方法.圆锥曲线的定义既是有关圆锥曲线问题的出发点,又是新知识、新思维的生长点.对于相关的圆锥曲线中的数学问题,若能根据已知条件,巧妙灵活应用定义,往往能达到化难为易、化繁为简、事半功倍的效果.[典例] 如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A.2B.3C.32D.62[解题观摩] 由已知,得F 1(-3,0),F 2(3,0), 设双曲线C 2的实半轴长为a , 由椭圆及双曲线的定义和已知, 可得⎩⎪⎨⎪⎧|AF 1|+|AF 2|=4,|AF 2|-|AF 1|=2a ,|AF 1|2+|AF 2|2=12,解得a 2=2,故a = 2.所以双曲线C 2的离心率e =32=62. [答案] D [关键点拨]本题巧妙运用椭圆和双曲线的定义建立|AF 1|,|AF 2|的等量关系,从而快速求出双曲线实半轴长a 的值,进而求出双曲线的离心率,大大降低了运算量.[对点训练]1.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1 B.|BF |2-1|AF |2-1 C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1 解析:选A 由题意可得S △BCF S △ACF =|BC ||AC |=x Bx A=|BF |-p2|AF |-p 2=|BF |-1|AF |-1.2.抛物线y 2=4mx (m >0)的焦点为F ,点P 为该抛物线上的动点,若点A (-m,0),则|PF ||P A |的最小值为________.解析:设点P 的坐标为(x P ,y P ),由抛物线的定义,知|PF |=x P +m ,又|P A |2=(x P +m )2+y 2P =(x P +m )2+4mx P,则⎝⎛⎭⎫|PF ||P A |2=(x P +m )2(x P +m )2+4mx P =11+4mx P (x P +m )2≥11+4mx P (2x P ·m )2=12(当且仅当x P =m 时取等号),所以|PF ||P A |≥22,所以|PF ||P A |的最小值为22.答案:22考点二 设而不求,金蝉脱壳设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.[典例] 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的标准方程为( )A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 [解题观摩] 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2,⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,①②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2, 解得b 2=9,a 2=18,所以椭圆E 的方程为x 218+y 29=1.[答案] D [关键点拨](1)本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.(2)在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;①“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.[对点训练]1.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E ,若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34解析:选A 设OE 的中点为G ,由题意设直线l 的方程为y =k (x +a ), 分别令x =-c 与x =0得|FM |=k (a -c ),|OE |=ka , 由△OBG ∽△FBM ,得|OG ||FM |=|OB ||FB |,即12ka k (a -c )=a a +c, 整理得c a =13,所以椭圆C 的离心率e =13.2.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.解析:设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b 2=1,x 22a 2+y22b 2=1,∴(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.∵y 1-y 2x 1-x 2=-12,x 1+x 2=2,y 1+y 2=2,∴-b 2a 2=-12,∴a 2=2b 2.又∵b 2=a 2-c 2,∴a 2=2(a 2-c 2),∴a 2=2c 2,∴c a =22.即椭圆C 的离心率e =22. 答案:22考点三 巧设参数,变换主元换元引参是一种重要的数学方法,特别是解析几何中的最值问题、不等式问题等,利用换元引参使一些关系能够相互联系起来,激活了解题的方法,往往能化难为易,达到事半功倍.常见的参数可以选择点的坐标、直线的斜率、直线的倾斜角等.在换元过程中,还要注意代换的等价性,防止扩大或缩小原来变量的取值范围或改变原题条件.[典例] 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.若|AP |=|OA |,证明直线OP 的斜率k 满足|k |> 3.[解题观摩] 法一:依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0). 由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 20b 2=1, 消去y 0并整理,得x 20=a 2b 2k 2a 2+b2.①由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0. 而x 0≠0,于是x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2⎝⎛⎭⎫a b 2+4. 又a >b >0,故(1+k 2)2>4k 2+4, 即k 2+1>4,因此k 2>3,所以|k |> 3. 法二:依题意,直线OP 的方程为y =kx , 可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,得x 20a 2+k 2x 20b2=1.因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a 2<1,即(1+k 2)x 20<a 2.②由|AP |=|OA |及A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a 1+k 2, 代入②,得(1+k 2)·4a 2(1+k 2)2<a 2,解得k 2>3,所以|k |> 3.法三:设P (a cos θ,b sin θ)(0≤θ<2π), 则线段OP 的中点Q 的坐标为⎝⎛⎭⎫a 2cos θ,b2sin θ. |AP |=|OA |⇔A Q ⊥OP ⇔k A Q ×k =-1. 又A (-a,0),所以k A Q =b sin θ2a +a cos θ,即b sin θ-ak A Q cos θ=2ak A Q . 从而可得|2ak A Q |≤ b 2+a 2k 2A Q <a1+k 2A Q ,解得|k A Q |<33,故|k |=1|k A Q |> 3. [关键点拨]求解本题利用椭圆的参数方程,可快速建立各点之间的联系,降低运算量. [对点训练]设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆C :(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,求r 的取值范围.解:当斜率不存在时,有两条,当斜率存在时,不妨设直线l 的方程为x =ty +m ,A (x 1,y 1),B (x 2,y 2),代入抛物线y 2=4x 并整理得y 2-4ty -4m =0, 则有Δ=16t 2+16m >0,y 1+y 2=4t ,y 1y 2=-4m , 那么x 1+x 2=(ty 1+m )+(ty 2+m )=4t 2+2m , 可得线段AB 的中点M (2t 2+m,2t ), 而由题意可得直线AB 与直线MC 垂直, 即k MC ·k AB =-1,可得2t -02t 2+m -5·1t =-1,整理得m =3-2t 2(当t ≠0时),把m =3-2t 2代入Δ=16t 2+16m >0, 可得3-t 2>0,即0<t 2<3, 又由于圆心到直线的距离等于半径, 即d =|5-m |1+t 2=2+2t 21+t 2=21+t 2=r ,而由0<t 2<3可得2<r <4. 故r 的取值范围为(2,4).考点四 数形结合,偷梁换柱著名数学家华罗庚说过:“数与形本是两相倚,焉能分作两边飞.数缺形时少直观,形少数时难入微.”在圆锥曲线的一些问题中,许多对应的长度、数式等都具有一定的几何意义,挖掘题目中隐含的几何意义,采用数形结合的思想方法,可解决一些相应问题.[典例] 已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________.[解题观摩] 设双曲线的左焦点为F 1,根据双曲线的定义可知|PF |=2a +|PF 1|, 则△APF 的周长为|P A |+|PF |+|AF |=|P A |+2a +|PF 1|+|AF |=|P A |+|PF 1|+|AF |+2a , 由于|AF |+2a 是定值,要使△APF 的周长最小, 则|P A |+|PF 1|最小,即P ,A ,F 1共线, 由于A (0,66),F 1(-3,0),则直线AF 1的方程为x -3+y 66=1,即x =y26-3,代入双曲线方程整理可得 y 2+66y -96=0,解得y =26或y =-86(舍去),所以点P 的纵坐标为26, 所以=12×6×66-12×6×26=12 6. [答案] 126 [关键点拨]要求①APF 的周长的最小值,其实就是转化为求解三角形三边长之和,根据已知条件与双曲线定义加以转化为已知边的长度问题与已知量的等价条件来分析,根据直线与双曲线的位置关系,通过数形结合确定点P 的位置,通过求解点P 的坐标进而利用三角形的面积公式来处理.[对点训练]1.椭圆x 25+y 24=1的左焦点为F ,直线x =m 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是( )A.55B.655C.855D.455解析:选C 如图所示,设椭圆的右焦点为F ′,连接MF ′,NF ′.因为|MF |+|NF |+|MF ′|+|NF ′|≥|MF |+|NF |+|MN |,所以当直线x =m 过椭圆的右焦点时,△FMN 的周长最大.此时|MN |=2b 2a =855,又c =a 2-b 2=5-4=1,所以此时△FMN 的面积S =12×2×855=855.故选C.2.设P 为双曲线x 2-y 215=1右支上一点,M ,N 分别是圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1上的点,设|PM |-|PN |的最大值和最小值分别为m ,n ,则|m -n |=( )A .4 B.5 C .6D .7解析:选C 由题意得,圆C 1:(x +4)2+y 2=4的圆心为(-4,0),半径为r 1=2;圆C 2:(x -4)2+y 2=1的圆心为(4,0),半径为r 2=1.设双曲线x 2-y 215=1的左、右焦点分别为F 1(-4,0),F 2(4,0).如图所示,连接PF 1,PF 2,F 1M ,F 2N ,则|PF 1|-|PF 2|=2.又|PM |max =|PF 1|+r 1,|PN |min =|PF 2|-r 2,所以|PM |-|PN |的最大值m =|PF 1|-|PF 2|+r 1+r 2=5.又|PM |min =|PF 1|-r 1,|PN |max =|PF 2|+r 2,所以|PM |-|PN |的最小值n =|PF 1|-|PF 2|-r 1-r 2=-1,所以|m -n |=6.故选C.考点五 妙借向量,无中生有平面向量是衔接代数与几何的纽带,沟通“数”与“形”,融数、形于一体,是数形结合的典范,具有几何形式与代数形式的双重身份,是数学知识的一个交汇点和联系多项知识的媒介.妙借向量,可以有效提升圆锥曲线的解题方向与运算效率,达到良好效果.[典例] 如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b>0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.[解题观摩] 把y =b 2代入椭圆x 2a 2+y 2b 2=1,可得x =±32a ,则B ⎝⎛⎭⎫-32a ,b 2,C ⎝⎛⎭⎫32a ,b 2, 而F (c,0), 则FB =⎝⎛⎭⎫-32a -c ,b 2,FC =⎝⎛⎭⎫32a -c ,b 2,又∠BFC =90°, 故有FB ·FC =⎝⎛⎭⎫-32a -c ,b 2·⎝⎛⎭⎫32a -c ,b 2=c 2-34a 2+14b 2=c 2-34a 2+14(a 2-c 2)=34c 2-12a 2=0,则有3c 2=2a 2,所以该椭圆的离心率e =c a =63.[答案]63[关键点拨]本题通过相关向量坐标的确定,结合∠BFC =90°,巧妙借助平面向量的坐标运算来转化圆锥曲线中的相关问题,从形入手转化为相应数的形式,简化运算.[对点训练] 设直线l 是圆O :x 2+y 2=2上动点P (x 0,y 0)(x 0y 0≠0)处的切线,l 与双曲线x 2-y 22=1交于不同的两点A ,B ,则∠AOB 为( )A .90° B.60° C .45°D .30°解析:选A ∵点P (x 0,y 0)(x 0y 0≠0)在圆O :x 2+y 2=2上,∴x 20+y 20=2,圆在点P (x 0,y 0)处的切线方程为x 0x +y 0y =2.由⎩⎪⎨⎪⎧x 2-y 22=1,x 0x +y 0y =2及x 20+y 20=2得(3x 20-4)x 2-4x 0x +8-2x 20=0.∵切线l 与双曲线交于不同的两点A ,B ,且0<x 20<2,∴3x 20-4≠0,且Δ=16x 20-4(3x 20-4)·(8-2x 20)>0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4x 03x 20-4,x 1x 2=8-2x 203x 20-4.∵OA ·OB =x 1x 2+y 1y 2=x 1x 2+1y 20(2-x 0x 1)(2-x 0x 2)=x 1x 2+12-x 20[4-2x 0(x 1+x 2)+x 20x 1x 2]=8-2x 203x 20-4+12-x 20⎣⎢⎡⎦⎥⎤4-8x 203x 20-4+x 20(8-2x 20)3x 20-4=0,∴∠AOB =90°. 考点六 巧用“根与系数的关系”某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.[典例] 已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆于M ,N 两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.[解题观摩] (1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以M ⎝⎛⎭⎫-65,45. (2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2), 联立方程⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1,化简得(1+4k 2)x 2+16k 2x +16k 2-4=0. 则x A +x M =-16k 21+4k 2,x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k 21+4k 2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为P ⎝⎛⎭⎫-65,0. 证明如下:因为k MP =y M x M +65=k ⎝⎛⎭⎪⎫2-8k 21+4k 2+22-8k 21+4k 2+65=5k4-4k 2, 同理可得k PN =5k4-4k 2. 所以直线MN 过x 轴上的一定点P ⎝⎛⎭⎫-65,0. [关键点拨]本例在第(2)问中可应用根与系数的关系求出x M =2-8k 21+4k 2,这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.[对点训练]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点P ⎝⎛⎭⎫1,32,左、右焦点分别为F 1,F 2.(1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,若△AF 2B 的内切圆半径为327,求以F 2为圆心且与直线l 相切的圆的方程.解:(1)由c a =12,得a =2c ,所以a 2=4c 2,b 2=3c 2,将点P ⎝⎛⎭⎫1,32的坐标代入椭圆方程得c 2=1, 故所求椭圆方程为x 24+y 23=1.(2)由(1)可知F 1(-1,0),设直线l 的方程为x =ty -1, 代入椭圆方程,整理得(4+3t 2)y 2-6ty -9=0, 显然判别式大于0恒成立,设A (x 1,y 1),B (x 2,y 2),△AF 2B 的内切圆半径为r 0, 则有y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t 2,r 0=327,=12r 0(|AF 1|+|BF 1|+|BF 2|+|AF 2|) =12r 0·4a =12×8×327=1227, 所以12t 2+14+3t 2=1227,解得t 2=1, 因为所求圆与直线l 相切,所以半径r =2t 2+1=2, 所以所求圆的方程为(x -1)2+y 2=2.[课时跟踪检测]1.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点,O 为坐标原点,若圆上一点C 满足OC ―→=54OA ―→+34OB ―→,则r =( )A .210 B.10 C .25D.5解析:选B 已知OC ―→=54OA ―→+34OB ―→,两边平方化简得OA ―→·OB ―→=-35r 2,所以cos ∠AOB =-35,所以cos ∠AOB 2=55,又圆心O (0,0)到直线的距离为|2|2=2, 所以2r =55,解得r =10. 2.设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( )A.33B.23C.22D .1解析:选C 如图所示,设P (x 0,y 0)(y 0>0), 则y 20=2px 0,即x 0=y 202p.设M (x ′,y ′),由PM ―→=2MF ―→,得⎩⎪⎨⎪⎧x ′-x 0=2⎝⎛⎭⎫p 2-x ′,y ′-y 0=2(0-y ′),化简可得⎩⎨⎧x ′=p +x 03,y ′=y3.∴直线OM 的斜率k =y 03p +x 03=y 0p +y 202p =2p2p 2y 0+y 0≤2p 22p 2=22(当且仅当y 0=2p 时取等号).故直线OM 的斜率的最大值为22. 3.(2019·惠州调研)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且直线l 与圆x 2+y 2=4相交所得的弦长为2,O 为坐标原点,则△AOB 面积的最小值为( )A .5 B.4 C .3D .2解析:选C 由直线与圆相交所得的弦长为2,得圆心到直线的距离d =1m 2+n 2=3,所以m 2+n 2=13≥2|mn |,当且仅当m =n 时等号成立.所以|mn |≤16,又A ⎝⎛⎭⎫1m ,0,B ⎝⎛⎭⎫0,1n ,所以△AOB 的面积S =12|mn |≥3,故△AOB 面积的最小值为3.4.(2019·兰州模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 为双曲线右支上一点,若|PF 1|2=8a |PF 2|,则双曲线C 的离心率的取值范围为( )A .(1,3] B.[3,+∞) C .(0,3)D .(0,3]解析:选A 根据双曲线的定义及点P 在双曲线的右支上,得|PF 1|-|PF 2|=2a ,设|PF 1|=m ,|PF 2|=n ,则m -n =2a ,m 2=8an ,∴m 2-4mn +4n 2=0,∴m =2n ,则n =2a ,m =4a ,依题得|F 1F 2|≤|PF 1|+|PF 2|,∴2c ≤4a +2a ,∴e =ca ≤3,又e >1,∴1<e ≤3,即双曲线C的离心率的取值范围为(1,3].5.过抛物线y 2=2px (p >0)的焦点F ,斜率为43的直线交抛物线于A ,B 两点,若AF ―→=λFB ―→(λ>1),则λ的值为( )A .5 B.4 C.43D.52解析:选B 根据题意设A (x 1,y 1),B (x 2,y 2), 由AF ―→=λFB ―→,得⎝⎛⎭⎫p 2-x 1,-y 1=λ⎝⎛⎭⎫x 2-p 2,y 2, 故-y 1=λy 2,即λ=-y 1y 2.设直线AB 的方程为y =43⎝⎛⎭⎫x -p 2, 联立直线与抛物线方程,消去x ,得y 2-32py -p 2=0.故y 1+y 2=32p ,y 1y 2=-p 2,则(y 1+y 2)2y 1y 2=y 1y 2+y 2y 1+2=-94,即-λ-1λ+2=-94.又λ>1,解得λ=4.6.已知椭圆C :x 24+y 2=1,过椭圆上一点A (0,1)作直线l 交椭圆于另一点B ,P 为线段AB 的中点,若直线AB ,OP 的斜率存在且不为零,则k AB k OP =________.解析:法一:(特殊值法)取B ⎝⎛⎭⎫1,32,则P ⎝ ⎛⎭⎪⎫12,2+34,则k AB =3-22,k OP =2+32, 故k AB ·k OP =3-22×2+32=-14. 法二:由题意,设直线l 的方程为y =kx +1, 联立方程⎩⎪⎨⎪⎧y =kx +1,x 24+y 2=1,消去y 得,(1+4k 2)x 2+8kx =0, 得x B =-8k 1+4k 2,即B ⎝ ⎛⎭⎪⎫-8k 1+4k 2,1-4k 21+4k 2.则P ⎝⎛⎭⎪⎫-4k 1+4k 2,11+4k 2,∴k AB =k ,k OP =-14k ,∴k AB ·k OP =-14.法三:(点差法)设A (x A ,y A ),B (x B ,y B ),P (x 0,y 0),则⎩⎨⎧x 2A4+y 2A =1,x2B4+y 2B=1,两式相减得x 2A -x 2B 4+y 2A -y 2B =0, 化简得y A +y B x A +x B ·y A -y B x A -x B =-14,即y A -y B x A -x B ·y 0x 0=-14,∴k AB ·k OP =-14.答案:-147.已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则P A ―→·PB ―→的最小值为________.解析:由题意,设A (cos θ,sin θ),P (x ,x +2), 则B (-cos θ,-sin θ),∴P A ―→=(cos θ-x ,sin θ-x -2), PB ―→=(-cos θ-x ,-sin θ-x -2),∴P A ―→·PB ―→=(cos θ-x )(-cos θ-x )+(sin θ-x -2)·(-sin θ-x -2)=x 2+(x +2)2-cos 2θ-sin 2θ=2x 2+4x +3=2(x +1)2+1,当且仅当x =-1,即P (-1,1)时,P A ―→·PB ―→取最小值1. 答案:18.(2019·武汉调研)已知A ,B 分别为椭圆x 29+y 2b 2=1(0<b <3)的左、右顶点,P ,Q 是椭圆上关于x 轴对称的不同两点,设直线AP ,B Q 的斜率分别为m ,n ,若点A 到直线y =1-mn x 的距离为1,则该椭圆的离心率为________.解析:根据椭圆的标准方程x 29+y 2b2=1(0<b <3)知椭圆的中心在原点,焦点在x 轴上,A (-3,0),B (3,0),设P (x 0,y 0),Q (x 0,-y 0),则x 209+y 20b 2=1,k AP =m =y 0x 0+3,k B Q =n =-y 0x 0-3,∴mn =-y 20x 20-9=b 29,∴1-mn =9-b 23,∴直线y =1-mn x =9-b 23x ,即9-b 2x -3y=0.又点A 到直线y =1-mn x 的距离为1,∴|-39-b 2|9-b 2+9=39-b 218-b 2=1,解得b2=638,∴c 2=a 2-b 2=98,∴e =c 2a 2=18=24. 答案:249.已知椭圆C :x 24+y 2=1的右顶点为A ,上顶点为B .设P 为第三象限内一点且在椭圆C 上,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.解:由题意知,A (2,0),B (0,1),设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4,所以直线P A 的方程为y =y 0x 0-2(x -2),令x =0,得y M =-2y 0x 0-2,从而|BM |=1-y M =1+2y 0x 0-2,直线PB 的方程为y =y 0-1x 0x +1,令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1,所以四边形ABNM 的面积S =12|AN ||BM |=12⎝⎛⎭⎫2+x 0y 0-1⎝⎛⎭⎫1+2y 0x 0-2 =x 20+4y 20+4x 0y 0-4x 0-8y 0+42(x 0y 0-x 0-2y 0+2)=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2,从而四边形ABNM 的面积为定值.10.已知离心率为63的椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点为F ,过F 且与x 轴垂直的直线与椭圆交于A ,B 两点,|AB |=233. (1)求此椭圆的方程;(2)已知直线y =kx +2与椭圆交于C ,D 两点,若以线段CD 为直径的圆过点E (-1,0),求k 的值.解:(1)设焦距为2c ,∵e =c a =63,a 2=b 2+c 2,∴b a =33.由题意可知b 2a =33,∴b =1,a =3, ∴椭圆的方程为x 23+y 2=1.(2)将y =kx +2代入椭圆方程,得(1+3k 2)x 2+12kx +9=0, 又直线与椭圆有两个交点,所以Δ=(12k )2-36(1+3k 2)>0,解得k 2>1. 设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2. 若以CD 为直径的圆过E 点, 则EC ―→·ED ―→=0,即(x 1+1)(x 2+1)+y 1y 2=0,而y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4, 所以(x 1+1)(x 2+1)+y 1y 2 =(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5 =9(k 2+1)1+3k 2-12k (2k +1)1+3k 2+5=0, 解得k =76,满足k 2>1,所以k =76.。
2021年数学新高考一卷知识点分布2021年新高考一卷数学试卷的知识点分布是根据教育部对数学教育的要求和考试大纲进行设计的。
下面就逐个模块来进行详细说明。
一、函数模块函数模块是数学新高考一卷中的重点和难点模块,主要包括函数的性质、初等函数的图像与性质、函数的应用等。
1.函数的性质:包括函数的定义、定义域、值域、奇偶性、周期性等基本性质,以及函数的极限、连续性等进阶性质。
2.初等函数的图像与性质:主要包括线性函数、二次函数、指数函数、对数函数、幂函数、三角函数等的图像与性质,包括定义域、值域、最值、增减性、单调性等。
3.函数的应用:主要涉及到数理统计、概率论、数列与数学归纳法、排列与组合等数学概念的应用,经常与实际问题相结合。
二、解析几何模块解析几何模块是新高考一卷数学试卷中的另一个重点,主要包括计算向量的模长、向量的点乘、向量的夹角、平面方程、直线的方程等。
1.向量的模长与夹角:主要包括向量的模长计算、向量夹角的计算、两向量垂直或平行的判断等内容。
2.向量的点乘:主要包括向量的点乘的计算、向量夹角的计算、向量垂直或平行的判断等内容。
3.平面方程与直线方程:主要包括平面的点法式方程、一般式方程、直线的点向式方程、一般式方程等内容。
三、数列与数学归纳法模块数列与数学归纳法是考察学生对数列及其性质的理解和掌握程度的模块。
1.数列的基本概念:主要包括数列的定义、常数数列、等差数列、等比数列等数列的基本概念。
2.数学归纳法:主要包括数学归纳法的基本原理、数学归纳法的应用等。
3.数列的应用:主要与实际问题结合,涉及到等差数列、等比数列的应用等。
四、概率模块概率模块是考察学生对概率及其计算的理解和应用能力的模块。
1.事件与概率:主要包括事件的基本概念、事件的运算与性质、概率的定义与性质等。
2.条件概率与独立性:主要包括条件概率的计算、条件概率的性质、事件的独立性等。
3.排列与组合与概率:主要包括排列与组合的基本概念、概率与排列组合的结合等。
平面解析几何(解答题) 专题汇编1.【2021年全国高考甲卷数学(文)】抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ⊥.已知点()2,0M ,且M 与l 相切.(1)求C ,M 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M 相切.判断直线23A A 与M的位置关系,并说明理由.2.【2021年全国高考乙卷数学(文)】已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.3.【2021年全国新高考Ⅰ卷数学】在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.4.【2021年全国新高考II 卷数学】已知椭圆C 的方程为22221(0)x y a b a b+=>>,右焦点为F . (1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =5.【2021年北京市高考数学】已知椭圆2222:1(0)x y E a b a b+=>>过点(0,2)A -,以四个顶点围成的四边形面积为 (1)求椭圆E 的标准方程;(2)过点P (0,-3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB ,AC 交y =-3于点M 、N ,直线AC 交y =-3于点N ,若|PM |+|PN |≤15,求k 的取值范围.6.【2021年天津高考数学】已知椭圆()222210x y a b a b+=>>的右焦点为F ,上顶点为B ,离心率为25,且5BF =. (1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.7.【2021年浙江省高考数学】如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RNPN QN =⋅,求直线l 在x 轴上截距的范围.8.【2020年高考全国Ⅰ卷文数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.9.【2020年高考全国Ⅱ卷文数】已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.10.【2020年高考全国Ⅲ卷文数】已知椭圆222:1(05)25x y C m m +=<<的离心率为15,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.11.【2020年高考北京】已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值. 12.【2020年高考浙江】如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (B ,M 不同于A ). (Ⅰ)若116p =,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.13.【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.14.【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.15.【2020年新高考全国Ⅱ卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A为其左顶点,且AM 的斜率为12, (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.16.【2020年高考天津】已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点. (Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.17.【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由.18.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.19.【2019年高考全国Ⅲ卷文数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点; (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.20.【2019年高考北京卷文数】已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(1)求椭圆C 的方程;(2)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点. 21.【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已知3||2||OA OB =(O 为原点). (1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程.22.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.23.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程; (2)求12S S 的最小值及此时点G 的坐标.。
新高考数学解析几何试题分析及教学建议作者:***来源:《广东教育(综合)》2021年第09期2021年是广东省实施新高考改革的第一年,高考数学不再分文理科,不同选科(3+1+2)的考生都采用同一套试题. 新高考仍然坚持中国高考评价体系“一核、四层、四翼”的命题指导思想,试题将“四层”的考查内容及学科关键能力的考查与思想道德的渗透有机结合,通过科学设置“学科核心素养”考查的总体布局,实现融知识、能力、价值的综合测评,从而使“立德树人”真正在高考评价实践中落地. 新高考数学试卷呈现新的特点:首先表现在试卷结构上,全卷共22道试题,其中选择题(单选)8道,选择题(多选)4道,填空题4道,解答题6道;其次在试卷的考查内容上,依据课程标准的要求,取消了原来高考数学试题中的选做题(坐标系与参数方程、不等式选讲);在具体题目的设计上也有新的变化. 本文对2021年新高考全国数学Ⅰ卷解析几何试题进行分析并提出教学建议.一、2021年新高考数学解析几何考查的知识点和核心素养情况由右上表可知,2021年新高考全国卷解析几何试题特点为:从内容来看,覆盖了直线、圆、椭圆、双曲线、抛物线等知识,着力于圆锥曲线的定义、方程、几何性质等主干知识的价值和考查力度;从思想方法来看,突出对数形结合、函数与方程、化归与转化、分类与整合等数学思想、方法的理解与应用;从核心素养来看,试题体现对数学运算、直观想象、逻辑推理等核心素养的考查. 其中,特别凸显直观想象与数学运算素养的考查,解析几何中的逻辑推理可利用“形”的特征,结合曲线的定义与平面几何的有关性质予以证明或转化为代数运算来证明. 也就是说,逻辑推理核心素养的考查一般寓于直观想象和数学运算之中. 由于每道试题的解法多样,不同的解法体现不同的数学核心素养,同一解法中也不只涉及一种核心素养. 一道试题的完成需要学生具有良好的数学素养,要综合运用多方面的核心素养分析问题并解决问题. 上表中试题体现的数学核心素养的水平判断,是依据《普通高中数学课程标准(2017版2020年修订)》中核心素养水平的界定原则而确定的.二、2021年新高考数学解析几何典型试题分析新高考数学解析几何试题解法入口宽,且隐含着一般性结论. 也就是说,命题者是将一般化的结论特殊化处理后得到了高考试题.例1.(2021年新高考全国数学Ⅰ卷第5题)已知F1,F2是椭圆C:+=1的两个焦点,点M在C上,则MF1·MF2的最大值为()A. 13B. 12C. 9D. 6分析:这是一道单选题,解题方法多,既可用基本不等式也可用二次函数最值进行求解.解法1:由椭圆定义得MF1+MF2=2a=6,再根据基本不等式MF1·MF2≤()2(等号当且仅当MF1=MF2=3时成立),故选C.解法2:设MF1=t,则MF2=6-t,则MF1·MF2=-(t-3)2+9,由二次函数性质知,MF1·MF2的最大值为9,故选C.此题隐含的一般结论为:定理1:已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,点M在C上,则MF1·MF2的最大值为a2,最小值为b2.证明:设MF1=t,则MF2=2a-t,且a-c≤t≤a+c,c为半焦距.则MF1·MF2=-(t-a)2+a2,而a-c≤t≤a+c,当t=a时,MF1·MF2的最大值为a2,当t=a+c 或t=a-c时,MF1·MF2的最小值为a2-c2,即为b2.例2.(2021年新高考全国数学Ⅰ卷第21题)在平面直角坐标系xOy中,已知点F1(-,0),F2(,0),点M满足MF1-MF2=2. 记M的轨迹为C.(1)求C的方程;(2)设点T在直线x=上,过T的两条直线分别交C于A,B两点和P,Q两点,且TA·TB=TP·TQ,求直线AB的斜率与直线PQ的斜率之和.分析:本题第1问,利用双曲线的定义即可求解,但要注意双曲线定义的严谨性,由于MF1-MF2=2<2=F1F2,故只能是双曲线的右支;第1问还可以直接建立动点M的方程,然后通过化简得出所求的轨迹.当然,这种方法在化简方程时较为繁琐. 第一种方法比较快捷.(1)因为MF1-MF2=2<2=F1F2,所以轨迹C是以F1,F2为焦点,实轴长2a=2的双曲线的右支,则a=1,c=,所以b2=c2-a2=16,所以C的方程为x2-=1(x≥1).第2问可根据两点间的距离公式,直接求出TA·TB以及TP·TQ,从而得出直线AB的斜率与直线PQ的斜率关系;也可利用平面几何知识转化为A,B,P,Q四点共圆问题,从而找出经过A,B,P,Q四点的曲线方程,根据圆的方程特征,确定直线AB的斜率与直线PQ的斜率关系.(2)解法1:用直线的点斜式方程和弦长公式求解.设点T(,t),若过点T的直线的斜率不存在,此时该直线与曲线C无公共点,不妨设直线AB的方程为y-t=k1(x-),即y=k1x+t-k1,联立y=k1x+t-k1,16x2-y2=16,消去y并整理可得:(k12-16)x2+k1(2t-k1)x+(t-k1)2+16=0設点A(x1,y1)、B(x2,y2),则x1>且x2>. 由韦达定理可得x1+x2=,x1x2= 所以:TA·TB=(1+k12)·x1-·x2-=(1+k12)·(x1x2-+)=.设直线PQ的斜率为k2,同理可得TP·TQ=,因为TA·TB=TP·TQ,即=,整理得k12=k22,即(k1-k2)(k1+k2)=0,显然k1-k2≠0,故k1+k2=0. 因此,直线AB与直线PQ的斜率之和为0.解法2:用圆的方程特征求解.因为点T在直线x=上,故设T(,n),设过点T的直线AB的方程为y-n=k1(x-),设过点T的直线PQ的方程为y-n=k2(x-),则直线AB,PQ的方程为(k1x-y+n-k1)(k2x-y+n-k2)=0.又A,B,P,Q四点在曲线C上,即x2-=1,所以A,B,P,Q四点在如下的曲线上,(k1x-y+n-k1)(k2x-y+n-k2)+x2--1=0.因为TA·TB=TP·TQ,根据圆的切割线定理的逆定理,知A,B,P,Q四点共圆,所以上面这个方程表示过A,B,P,Q四点的圆,所以左边展开后x2,y2项的系数相等,且xy项的系数为零. 而xy项的系数为-(k1+k2),故 k1+k2=0.解法2充分利用了曲线与方程的关系,结合圆的方程的特征得出结论.此题第2问隐含的一般结论为:定理2:过点T的两条直线分别交曲线C:ax2+by2=c(a≠b)于A,B两点和P,Q两点,且TA·TB=TP·TQ,则直线AB的斜率与PQ直线的斜率之和为零.定理3:设两条直线y=kix+bi(i=1,2)与曲线ax2+by2+cx+dy+e=0(a≠b)有四个不同的交点,若这四个交点共圆,则k1+k2=0.定理2与定理3本质相同,因为由平面几何切割线定理的逆定理知:TA·TB=TP·TQ等价于A,B,P,Q四点共圆.证明:两直线组成的曲线方程为(k1x-y+b1)(k2x-y+b2)=0,则过四个交点的曲线方程可设为:(k1x-y+b1)(k2x-y+b2)+λ(ax2+by2+cx+dy+e)=0……①若四点共圆,则方程①表示圆,那么①式左边展开式中xy项的系数为零,即有k1+k2=0.显然,例2是定理2、定理3的一个特例,近年高考命题常以一般结论为源,将其特殊化而得. 由于将一般命题特殊化的题目往往有多种解法,为不同水平的考生提供展示才能的机会.三、新高考数学解析几何的教学建议解析几何是高中数学的重要内容,也是高考数学的重点和难点,学生得分一直不太理想. 教师要加强研究,明晰高考解析几何的试题特点,调整教学策略,提升学生数学核心素养.(一)注重通性通法,强化四种意识解析几何的教学要狠抓基础,熟练方法. 对定义法、待定系数法、数形结合、求轨迹的几种常见方法、定点、定值、最值等基本方法要牢固掌握;解析几何教学与复习要强化四种意识.1. 回归定义的意识圆锥曲线定义体现了圆锥曲线的本质属性,运用圆锥曲线定义解题是一种最直接、最本质的方法,往往能收到立竿见影之效. 回归定义与数形结合相得益彰,成为解题中最美的风景,体现几何直观与数学推理的素养. 教师要提醒学生千万不可“忘本忘形”. 波利亚说:“当你不能解决一个问题时,不妨回到定义去.”定义是解决问题的原动力. 不可忽视定义在解题中的应用. 凡涉及圆锥曲线焦点、准线、离心率与曲线上的点的有关问题,可考虑借助圆锥曲线定义来转化.2. 数形结合意识华罗庚先生曾这样描述数形关系:“数与形,本是相倚依,焉能分作兩边飞. 数缺形时少直觉,形少数时难入微. 数形结合百般好,隔裂分家万事非. 切莫忘,几何代数统一体,永远联系,切莫分离!”数形结合是解析几何的基本方法,是直观想象与数学运算、逻辑推理的具体体现.3. 设而不求的意识用解析法处理几何问题,常常设出点的坐标而不具体求出. 根据点在曲线上,坐标是有关方程解的代数特征,灵活运用方程理论,通过整体思想处理坐标关系,是设而不求的实质. 如果涉及曲线交点的问题,可不求出交点的坐标,而是转化为利用韦达定理或“点差法”的形式,可快速做出正确的解答.4. 应用“韦达定理”的意识如果直线与二次曲线的位置关系,联立直线方程和二次曲线方程,消去一个变量后得到一个一元二次方程,利用判别式和韦达定理. 其中判别式是前提,通过判别式确定参数范围,应引起重视.(二)活用四种思想,加强知识联系高考解析几何解答题综合性强,需要综合运用多种数学思想,对学生的数学素养要求高. 函数思想、方程思想、不等式思想以及化归与转化思想等在解析几何中有着广泛的应用. 解析几何中的参数范围、圆锥曲线的几何性质以及直线与圆锥曲线的位置关系,一直是高考考查的热点. 求解的关键是根据圆锥曲线的有关性质,构造方程或不等式,根据直线与圆锥曲线的位置关系确立目标函数,将问题化归为目标函数的最大值或最小值等问题. 这些都需要灵活运用函数、方程、不等式以及化归与转化等数学思想.注:本文系广东省教育科研“十三五”规划课题“高中数学核心素养的培养及评价研究”(课题批准号:2017 YQJK023)的阶段性成果.责任编辑罗峰。
高考数学解析几何第13讲构造同构式方程简化运算知识与方法1.同构式方程“同构式方程”指“结构相同的方程”,是指除了变量不同,其余结构均相同的等式.如11220Ax By C Ax By C ++=⎧⎨++=⎩22(0)A B +≠,两式中除了,x y 的下标不同之外,其余结构完全相同,两式为同构式方程.说明()()1122,,,A x y B x y 两点坐标满足直线方程:0Ax By C ++=,则直线AB 的方程为:0Ax By C ++=.又如21122200ax bx c ax bx c ⎧++=⎪⎨++=⎪⎩(0)a ≠,两式中除了x 的下标不同之外,其余结构完全一致,说明12,x x 为方程20ax bx c ++=的两根,由韦达定理可得:1212b x x a c x x a ⎧+=-⎪⎪⎨⎪+=⎪⎩2.解析几何中同构式的应用同构思想简化运算的基本思路:构造方程,巧用韦达定理.①构造两个直线方程;②构造一个二次方程的两根(坐标,斜率,定比).典型例题【例1】已知椭圆2222Γ:1(0)x y a b a b+=>>内有一点()1,1P ,过P 的两条直线12,l l 分别于椭圆Γ交于,A C 和,B D 两点,且满足,(AP PC BP PD λλ==其中0λ>,且1)λ≠,若λ变化时,AB 的斜率总为14-,则椭圆E 的离心率为______________.【例2】已知拋物线22y px =上三点()2,2,,A B C ,直线AB AC ,是圆22(2)1x y -+=的两条切线,则直线BC 的方程为()A. 2630x y ++= B.3640x y ++= C.2630x y ++= D.320x y ++=【例3】过椭圆22221(0)x y a b a b+=>>的右焦点2F 的直线l 交椭圆于,A B 两点,交y 轴于P ,若12PA AF λ= ,22PB BF λ=,求证:12λλ+为定值.【例4】在平面直角坐标系中,点()00,M x y 在椭圆2222:1(0)x y C a b a b+=>>上,从原点O 向圆()()22200:M x x y y r -+-=作两条切线分别与椭圆C 交于点,P Q ,若直线,OP OQ 的斜率分别为12,k k ,且2122b k k a=-(1)求证:2222||;OP OQ a b +=+(2)求证:22222a b r a b =+.强化训练1.过抛物线21:C y x =上一点()2,4P -作圆222:(2)1C x y +-=的两条切线分别交1C 于点,A B ,求直线AB 的方程.2.如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b +=>>过点2⎛⎫ ⎪ ⎪⎝⎭,离心率为32,又椭圆内接四边形ABCD (点,,,A B C D 在椭圆上)的对角线,AC BD 相交于点11,4P ⎛⎫⎪⎝⎭,且2AP PC =,2BP PD= (1)求椭圆的方程;(2)求直线AB 的斜率.3.已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为),离心率为(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.4.过点()1,1P 的直线l 与椭圆22143x y +=交于点A 和B ,且AP PB λ= .点Q 满足AQ QB λ=-,若O 为坐标原点,则OQ 的最小值为_________________.5.已知抛物线21:C x y =,圆222:(4)1C x y +-=的圆心为点M .(1)求点M 到抛物线1C 的准线的距离;(2)已知点P 是抛物线1C 上一点(异于原点),过点P 作圆2C 的两条切线,交抛物线1C 于,A B 两点,若过,M P 两点的直线l 垂直于AB ,求直线l 的方程.6.设O 为坐标原点,椭圆22221(0)x y a b a b +=>>的离心率32,以椭圆C 的长轴长,短轴长分别为两邻边的矩形的面积为8.(1)求椭圆C 的方程;(2)若,,P Q M 是椭圆上的点,且圆M 与直线,OP OQ 相切,14OP k k ⋅=-,求圆M 的半径.7.已知椭圆C 的中心在原点,离心率为22,其右焦点是圆22:(1)1E x y -+=的圆心.(1)求椭圆C 的标准方程;(2)如图,过椭圆C 上且位于y 轴左侧的一点P 作圆E 的两条切线,分别交y 轴于点 M N ,.试推断是否存在点P ,使14||3MN =?若存在,求出点P 的坐标;若不存在,请说明理由.8.如图,已知抛物线2:4C y x =,直线l 过点4,05P ⎛⎫- ⎪⎝⎭与抛物线C 交于第一象限内两点,A B ,设,OA OB 的斜率分别为12,k k .(1)求12k k +的取值范围;(2)若直线,OA OB恰好与圆222:(1)(2)(0)Q x y r r -+-=>相切,求r的值.9.已知圆22:()()9M x a y b -+-=,圆心M 在抛物线2:2(0)C x py p =>上,圆M 过原点且与C 的准线相切.(1)求抛物线C 的方程;(2)设点(0,)(0)Q t t ->,点P (与Q 不重合)在直线:l y t =-上运动,过点P 作C 的两条切线,切点分别为,A B ,求证:AQO BQO ∠=∠.10.已知抛物线2y x =和C ,过抛物线上的一点()()000,1P x y y ≥,作C 的两条切线,与y 轴分别相交于,A B 两点.(1)若切线PB 过抛物线的焦点,求直线PB 斜率;(2)求面积ABP ∆的最小值.11.如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线2:4C y x =存在不同的两点,A B 满足,PA PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆221(0)4y x x +=<上的动点,求PAB ∆面积的取值范围.参考答案【例1】已知椭圆2222Γ:1(0)x y a b a b+=>>内有一点()1,1P ,过P 的两条直线12,l l 分别于椭圆Γ交于,A C 和,B D 两点,且满足,(AP PC BP PD λλ==其中0λ>,且1)λ≠,若λ变化时,AB 的斜率总为14-,则椭圆E 的离心率为______________.【答案32e =】【解析】设()11,A x y ,则2211221x y a b +=.由AP PC λ= ,得1111,.x y C λλλλ+-+-⎛⎫⎪⎝⎭代入椭圆方程22221x y a b +=,得()()22112222111x y a b λλλλ+-+-+=.整理,得()()()()2211222222121111x y a b a bλλλλλ++++--++=,即112212x y a b λ-+=①设()22,B x y ,同理可得22221.2x y a b λ-+=②由①②可得直线AB 的方程为2212x y a b λ-+=,所以AB 直线斜率为2214b a -=-,即224a b =,易得椭圆E 的离心率为2e =.【例2】已知拋物线22y px =上三点()2,2,,A B C ,直线AB AC ,是圆22(2)1x y -+=的两条切线,则直线BC 的方程为()A. 2630x y ++=B.3640x y ++= C.2630x y ++= D.320x y ++=【答案】B【解析】解法1:同构式1+韦达定理由抛物线22y px =过()2,2A ,得22221p p =⨯⇒=,拋物线方程为22y x =.设22,,,22b c B b C c ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则():20BC x b c y bc -++=,同理():2220AC x c y c -++=,由AB 与圆相切得1=,整理得231280c c ++=.同理有:231280b b ++=,于是,b c 是方程231280x x ++=的两根,所以84,3b c bc +=-=,得:3640.BC x y ++=故选:B.【注】过拋物线任意两点()()1122,,,x y x y 的直线方程为()121220px y y y y y -++=.解法2:同构式2由抛物线22y px =过()2,2A ,得22221p p =⨯⇒=,拋物线方程为22y x =.设()()1122,,,B x y C x y ,则2112y x =,直线()11:2220AB x y y y -++=,由AB 与圆相切得1=,整理得211380y y +=将2112y x =代入,得1161280x y ++=,即113640x y ++=①同理可得223640x y ++=②①②两式说明:直线3640x y ++=经过,B C 两点而过,B C 两点的直线有且只有一条,故直线BC 的方程为3640x y ++=.故选:B.【例3】过椭圆22221(0)x y a b a b+=>>的右焦点2F 的直线l 交椭圆于,A B 两点,交y 轴于P ,若12PA AF λ= ,22PB BF λ=,求证:12λλ+为定值.【答案】见解析.【解析】证明:设()0,P m ,由21PA AF λ= 得,111,11c m A λλλ⎛⎫⎪++⎝⎭,代入椭圆方程得:()()2222222221120b a c a b a b m λλ-++-=,同理可得:()()2222222222220b a c a b a b m λλ-++-=,所以,,λμ是二次方程()()22222222220b a c a b a b m λλ-++-=的两根,故()22212222222a b a b b a c λλ+=-=--为定值.【例4】在平面直角坐标系中,点()00,M x y 在椭圆2222:1(0)x y C a b a b+=>>上,从原点O 向圆()()22200:M x x y y r -+-=作两条切线分别与椭圆C 交于点,P Q ,若直线,OP OQ 的斜率分别为12,k k ,且2122b k k a=-(1)求证:2222||;OP OQ a b +=+(2)求证:22222a b r a b =+.【答案】见解析.【解析】(1)()()2,0,1,0A B ,设()()1122,,,P x y Q x y ,由2122,b k k a=-得212212y y b x x a =-,所以4224221212a y y b x x =.,P Q 在椭圆上,22222222112212122222221,1,1,1x y x y x x y y a b a b a a ∴+=+=∴=-=-,于是22222242212122211x x a b a b b x x a a ⎡⎤⎡⎤⎛⎫⎛⎫-⋅-=⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦⎣⎦,即()()2222221212a x a x x x --=,化简得22212x x a +=.所以()22222222222222121212122||2b OP OQ x x y y x x b x x a b a+=+++=++-+=+(2)设直线,OP OQ 的方程分别为1y k x =与2y k x =,过原点O 作圆的切线y kx =,由圆心()00,M x y 到直线0kx y -=的距离等于半径,r =,即()()222001,k r y kx +=-即()22222000020x r k x y k y r --+-=因为12,k k 是方程的两根,所以2220122220y r b k k x r a -==--,所以222220022a yb x r a b +=+因为()00,M x y 在椭圆上,所以2200221x y a b+=,即22222200b x a y a b +=,所以22222a b r a b =+.强化训练1.过抛物线21:C y x =上一点()2,4P -作圆222:(2)1C x y +-=的两条切线分别交1C 于点,A B ,求直线AB 的方程.【答案】4310x y -+=【解析】解法1:()12,4P -,设()()1122,,,A x y B x y 则221212121212AB y y x x k x x x x x x --===+--同理122,2PA Pb k x k x =-=-,直线PA 的方程为()()1422y x x -=-+,即()11220x x y x --+=,由直线PA 与圆相切,1=,即()()22112221x x -=-+,化简得2114310x x -+=,即114310x y -+=.由直线PB 与圆相切,同理可得224310x y -+=.说明()()1122,,,A x y B x y 两点都在直线4310x y -+=上,故直线AB 的方程为4310x y -+=.解法2:由题意知,切线的斜率均存在,设过点()2,4P -且与圆相切的直线方程为()42y k x -=+,即240kx y k -++=,1=,所以22(22)1k k +=+,即23810k k ++=,设12,PA PB k k k k ==,则12,k k 是上面方程的两根,所以12128,13k k k k +=-=,由()242y k x y x ⎧-=+⎨=⎩得2240x kx k ---=,即()()220,2,2x x k x x k +--=≠-∴=+ .设()()1122,,,A x y B x y ,则11222, 2.x k x k =+=+进而1212844433x x k k +=++=-+=()()()1212121216122241533x x k k k k k k =++=+++=-+=-而221212121212ABy y x x k x x x x x x --===+--,直线AB 的方程为()()21121y x x x x x -=+-即()1212y x x x x x =+-,即4133y x =+,即4310x y -+=.解法3:设()()1122,,,A x y B x y ,则()1212:0AB x x x y x x +--=,同理()11:220PA x x y x --+=,由PA 与圆相切得:1=,整理得2113410x x --=,将211y x =代入,得114310x y ++=,同理有:2223410x x --=,于是12,x x 是方程23410x x --=的两根,所以121241, 33x x x x +==-,得:4310AB x y -+=.2.如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b +=>>过点2⎛⎫ ⎪ ⎪⎝⎭,离心率为32,又椭圆内接四边形ABCD (点,,,A B C D 在椭圆上)的对角线,AC BD 相交于点11,4P ⎛⎫⎪⎝⎭,且2AP PC =,2BP PD=(1)求椭圆的方程;(2)求直线AB 的斜率.【答案】(1)2214x y +=,(2)1-【解析】(1)依题意,2222221314c aa b c a b ⎧=⎪⎪⎪+=⎨⎪=-⎪⎪⎩,解得2241a b ⎧=⎨=⎩,所求椭圆的方程为22 1.4x y +=(2)设()11,A x y ,则221114x y +=.由2AP PC = ,得11334,.28x y C --⎛⎫ ⎪⎝⎭代入椭圆方程2214x y +=,得21213342 1.48x y -⎛⎫⎪-⎛⎫⎝⎭+= ⎪⎝⎭整理,得()22111131904216x y x y +-+-=,即111.8x y +=-①设()22,B x y ,同理可得221.8x y +=-②由①②可得直线AB 的方程为18x y +=-,所以AB 直线斜率为1-.3.已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为),离心率为(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【答案】(1)221;94x y +=(2)2213x y +=.【解析】(1)222553,9543c c e a b a c a a ====∴=----=,椭圆C 的标准方程为22194x y +=.(2)若两切线斜率都存在,设切线方程为()00y y k x x -=-,代入椭圆方程得:()()()22200009418940k x k y kx x y kx ⎡⎤++-+--=⎣⎦,由判别式为零得:()()()22220000(18)364940k y kx y kx k ⎡⎤----+=⎣⎦,整理得:()2220009240x k x y k y --+-=,所以k 是方程()2220009240x k x y k y --+-=的一个根,同理1k-是方程()2220009240x k x y k y --+-=的另一个根,所以20204119y k k x -⎛⎫⋅-==- ⎪-⎝⎭,即220013x y +=;若两切线中有斜率不存在,则()3,2P ±±,也满足220013;x y +=故点P 的轨迹方程为2213x y +=.4.过点()1,1P 的直线l 与椭圆22143x y +=交于点A 和B ,且AP PB λ= .点Q 满足AQ QB λ=-,若O 为坐标原点,则OQ 的最小值为_________________.【答案】125【解析】设点,,Q A B 的坐标分别为()()()1122,,,,,x y x y x y ,由题设有,,,,PA AQ BQ Q A P B=∣∣四点共线,故可设(),0,1PA AQ PB BQ μμμ==-≠±,于是111111x x y y μμμμ+⎧=⎪+⎪⎨+⎪=⎪+⎩①2211 11x x y y μμμμ-⎧=⎪-⎪⎨-⎪=⎪-⎩②点()11,A x y 在椭圆22143x y +=上,将①代入椭圆方程整理得()()22234122341250x y x y μμ+-++--=③点()22,B x y 在椭圆上,将②代入,同理可得()()22234122341250x y x y μμ+--+--=④由③④知:,μμ-是方程()()22234122341250x y t x y t +--+--=的两根,由韦达定理得34120x y +-=,点Q 的轨迹方程为34120x y +-=,故||OQ 的最小值就是点O 到直线34120x y +-=的距离125d ==.5.已知抛物线21:C x y =,圆222:(4)1C x y +-=的圆心为点M .(1)求点M 到抛物线1C 的准线的距离;(2)已知点P 是抛物线1C 上一点(异于原点),过点P 作圆2C 的两条切线,交抛物线1C 于,A B 两点,若过,M P 两点的直线l 垂直于AB ,求直线l 的方程.【答案】(1)17;4(2)4y =+.【解析】(1)抛物线21:C x y =的准线为14y =-,圆心(0,4)M ,点M 到准线的距离174d =.(2)解法1:设点()()()222001122,,,,,P x x A x x B x x ,由题意知00120,1,x x x x ≠≠±≠.设过点P 的圆2C 的切线方程为:()00y y k x x -=-,由直线与圆2C相切有()()()22200001124410d x k x y k y ==⇒-+-+--=设,PA PB 的斜率为12,k k ,则()00122241x y k k x -+=-.由于2210101101010y y x x k x x x x x x --===+--,02201201,4AB PM x k x x k x x k y -=+=+==-.因此()000122002414x y x k k x y -+==--,解得20235x =,即235P ⎛⎫ ⎪ ⎪⎝⎭.所以直线l方程为4y =±.解法2:设()()()2221122,,,,,P t t A x x B x x ,由题意得120,1,t t x x ≠≠≠,可得1212,,AB AP BP k x x k t x k t x =+=+=+,所以直线()()21:AP y t t x x t -=+-化简得()11y t x x tx =+-.因为AP 与圆相切,所以1d =,化简得()221116150t x tx -++=同理可得()222216150t x tx -++=.所以12,x x 是方程()2216150tx tx -++=的两根.所以121222615,11t x x x x t t -+==--.又24MPt k t-=,由,1AB MP MP AB k k ⊥⋅=-,解得2235t =.即点P的坐标为235⎛⎫ ⎪ ⎪⎝⎭,所以直线l 的方程为31154115y x =±+.6.设O 为坐标原点,椭圆22221(0)x y a b a b +=>>以椭圆C 的长轴长,短轴长分别为两邻边的矩形的面积为8.(1)求椭圆C 的方程;(2)若,,P Q M 是椭圆上的点,且圆M 与直线,OP OQ 相切,14OP k k ⋅=-,求圆M 的半径.【答案】(1)2214x y +=;(2)r =【解析】(1)由已知得222228c a a b a b c ⎧=⎪⎪⎪⋅=⎨⎪+=⎪⎪⎩,解得21a b =⎧⎨=⎩,所以椭圆的方程为2214x y +=.(2)过原点O 作圆的切线y kx =,设()00,M x y ,圆半径为(0)r r >,由圆心()00,M x y 到直线0kx y -=的距离等于半径,r =,即()()222001k r y kx +=-,即()22222000020x r k x y k y r --+-=,,OP oQ k k 是方程的两根,2222200022041,45OP oQy r x y k k r x r -+∴==-∴=-,因为()00,M x y 在椭圆上,所以222004251,,455x y r r +=∴=∴=.7.已知椭圆C 的中心在原点,离心率为22,其右焦点是圆22:(1)1E x y -+=的圆心.(1)求椭圆C 的标准方程;(2)如图,过椭圆C 上且位于y 轴左侧的一点P 作圆E 的两条切线,分别交y 轴于点 M N ,.试推断是否存在点P ,使14||3MN =?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)2212x y +=;(2)存在点21,2P ⎛⎫-± ⎪ ⎪⎝⎭满足条件.【解析】(1)设椭圆方程22221(0)x y a b a b+=>>,半焦距为c ,因为椭圆的右焦点是圆E 的圆心,则1c =,又因为22e =,即2a =,从而2221b a c =-=,故椭圆C 的方程为2212x y +=.(2)设点()()000,0,(0,),(0,)P x y x M m N n <,则直线PM 的方程为00y my x m x -=+,即()0000y m x x y mx --+=,因为圆心(1,0)E 到直线PM 的距离为1,即()0022001y m x my m x-+=-+,即()()()222220000002y m x y m x m y m x m -+=-+-+,即()2000220x m y m x -+-=,同理()2000220x n y n x -+-=.由此可知,,m n 为方程()2000220x x y x x -+-=的两个实根,所以00002,22y xm n mn x x +=-=---,()()22220000220004444||||()4222y x x y x MN m n m n mn x x x +-=-=+-=+=---因为点()00,P x y 在椭圆C 上,则220012x y +=,220012x y =-则||MN ===,143,则()2029x -=,因为00x <,则01x =-,22001122xy =-=,即0y =故存在点21,2P ⎛-± ⎪⎝⎭满足条件.8.如图,已知抛物线2:4C y x =,直线l 过点4,05P ⎛⎫- ⎪⎝⎭与抛物线C 交于第一象限内两点,A B ,设,OA OB 的斜率分别为12,k k .(1)求12k k +的取值范围;(2)若直线,OA OB 恰好与圆222:(1)(2)(0)Q x y r r -+-=>相切,求r 的值.【答案】(1));+∞(2)12r =【解析】(1)设4:,(0)5l x ty t =->,代入24y x =,得22166440,16055y ty t -+=∆=->,得t >设221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则1212164,5y y t y y +==()121212124445y y k k t y y y y ++=+==>,所以12k k +的取值范围是)+∞.(2)由(1)知1211165k k y y ==,设过原点且与圆相切的直线为y kx =,r =,整理得()2221440r k k r --+-=2122451r k k r -==-,得214r =,所以12r =.9.已知圆22:()()9M x a y b -+-=,圆心M 在抛物线2:2(0)C x py p =>上,圆M 过原点且与C 的准线相切.(1)求抛物线C 的方程;(2)设点(0,)(0)Q t t ->,点P (与Q 不重合)在直线:l y t =-上运动,过点P 作C 的两条切线,切点分别为,A B ,求证:AQO BQO ∠=∠.【答案】(1)28x y =;(2)见解析【解析】(1)∵圆M 与抛物线准线相切,∴32p b =-.又圆过0,2p ⎛⎫⎪⎝⎭和原点,∴4p b =.∴324p p-=,解得4p =.∴抛物线C 的方程为28x y =.(2)设()()1122,,,,(,1),A x y B x y P m C -方程为211.84y x y x =∴'=,∴抛物线在点A 处的切线的斜率114k x =,∴切线PA 的方程为()11114y y x x x -=-,即()21111184y x x x x -=-,化简得:2111184y x x x =-+,又因过点(,1)P m -,故可得21111184x x m -=-+,即211280x x m --=.同理可得:222280x x m --=.∴12,x x 为方程2280x mx --=的两根,∴12122,8x x m x x +==-.∴()()221212121212121211882208888AQ BQx x x x y y x x m m k k x x x x x x ++++++-+=+=+=+==∴AQO BQO ∠=∠.10.已知抛物线2y x =和C ,过抛物线上的一点()()000,1P x y y ≥,作C 的两条切线,与y 轴分别相交于,A B 两点.(1)若切线PB 过抛物线的焦点,求直线PB 斜率;(2)求面积ABP ∆的最小值.【答案】(1)4;3k =(2)23.【解析】(1)抛物线的焦点为1,04F ⎛⎫⎪⎝⎭,设切线PB 的斜率为k ,则切线PB 的方程为:14y k x ⎛⎫=- ⎪⎝⎭,即104kx y k --=.1(1)1041k k⋅--⋅-=,解得:43k =±.∵()()0004,1,3P x y y k ∴=(2)设切线方程为y kx m =+,由点P 在直线上得:00y m k x -=圆心C1=,整理得:2210m km --=将(1)代入(2)得:()2000220x m y m x +--=设方程的两个根分别为12,m m ,所以001212002,22y xm m m m x x +==-++,从而12||AB m m =-==,)001||12ABPS AB x x x ∆==≥记函数()2223()(1)(2)x x x g x x x +=≥+,则()22321118()0(2)x x x g x x ++'=>+,()min 2,3PAB ABP S S ∆∆==的最小值为23,当01x =取得等号.11.如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线2:4C y x =存在不同的两点,A B 满足,PA PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆221(0)4y x x +=<上的动点,求PAB ∆面积的取值范围.【答案】(1)见解析;(2)4⎡⎢⎣⎦.【解析】(1)设()22120012,,,,,44y y P x y A y B y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则PA 中点为20011,282x y y y ⎛⎫++ ⎪⎝⎭,由AP 中点在抛物线上,可得2201014228y y x y ⎛⎫+⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,化简得2210100280y y y x y -+-=,显然21y y ≠,且对2y 也有2220200280y y y x y -+-=,所以12,y y 是二次方程22000280y y y x y -+-=的两不等实根,所以1212002,2M P y y y y y y y y ++====,即PM 垂直于x 轴.(2)()()()120121122M P M M M S x x y y y y x x y y =--+-=--,由(1)可得()()()()222212012000000122,8,248840y y y y y x y x y y x y y +==-∆=--=->≠,此时()00,P x y 在半椭圆221(0)4y x x +=<上,∴()()()222000000848414321y x x x x x ⎡⎤∆=-=--=--⎣⎦,∵01210,0,||x y y a -<∴∆>∴-===()()()22222200001212120000428644238888M P y x y x y y y y y y x x x x x x ---+-+-=-=-==()20031x x =--,所以()2301200112M S x x y y x x =--=--=,51,2t ⎡=⎢⎣⎦,所以315104S ⎡=∈⎢⎣⎦,即PAB∆的面积的取值范围是4⎡⎢⎣⎦.21。
2021高考数学考试大纲文I.考试性质一般高等学校招生全国统一考试是合格的高中毕业生和具有一样学力的考生参加的选拔性考试.高等学校依照考生成绩,按已确信的招生打算,德、智、体全面衡量,择优录取.因此,高考应具有较高的信度、效度,必要的区分度和适当的难度.Ⅱ.考试内容依照一般高等学校对新生文化素养的要求,依据中华人民共和国教育部2003年公布的《一般高中课程方案(实验)》和《一般高中数学课程标准(实验)》的必修课程、选修课程系列1和系列4的内容,确信文史类高考数学科考试内容 .数学科的考试,依照“考查基础知识的同时,注重考查能力”的原那么,确立以能力立意命题的指导思想,将知识、能力和素养融为一体,全面检测学生的数学素养 .数学科考试,要发挥数学作为要紧基础学科的作用,要考查考生对中学的基础知识、大体技术的把握程度,要考查考生对数学思想方式和数学本质的明白得水平,要考查考生进入高等学校继续学习的潜能 .一、考核目标与要求1.知识要求知识是指《一般高中数学课程标准(实脸)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理和由其内容反映的数学思想方式,还包括依照必然程序与步骤进行运算、处置数据、绘制图表等大体技术.各部份知识的整体要求及其定位参照《课程标准》相应模块的有关说明对知识的要求依次是了解、明白得、把握三个层次 .(1)了解:要求对所列知识的含义有初步的、感性的熟悉,明白这一知识内容是什么,依照必然的程序和步骤照样仿照,并能(或会)在有关的问题中识别和熟悉它.这一层次所涉及的要紧行为动词有:了解,明白、识别,仿照,会求、会解等.(2)明白得:要求对所列知识内容有较深刻的理性熟悉,明白知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具有利用所学知识解决简单问题的能力 .这一层次所涉及的要紧行为动词有:描述,说明,表达,推测、想象,比较、判定,初步应用等 .(3)把握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,而且加以解决 .这一层次所涉及的要紧行为动词有:把握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.2.能力要求能力是指空间想象能力、抽象归纳能力、推理论证能力、运算求解能力、数据处置能力和应用意识和创新意识 .(1)空间想象能力:能依照条件作出正确的图形,依照图形想象出直观形象;能正确地分析出图形中的大体元素及其彼此关系;能对图形进行分解、组合;会运用图形与图表等手腕形象地揭露问题的本质.空间想象能力是对空间形式的观看、分析、抽象的能力,要紧表现为识图、画图和对图形的想象能力.识图是指观看研究所给图形几何元素之间的彼此关系;画图是指将文字语言和符号语言转化为图形语言和对图形添加辅助图形或对图形进行各类变换;对图形的想象要紧包括有图想图和无图想图两种,是空间想象能力高层次的标志.(2)抽象归纳能力:抽象是指舍弃事物非本质的属性,揭露其本质的属性;归纳是指把仅仅属于某一类对象的一起属性区分出来的思维进程.抽象和归纳是彼此联系的,没有抽象就不可能有归纳,而归纳必需在抽象的基础上得出某种观点或某个结论.抽象归纳能力是对具体的、生动的实例,在抽象归纳的进程中,发觉研究对象的本质;从给定的大量信息材料中归纳出一些结论,并能将其应用于解决问题或做出新的判定.(3)推理论证能力:推理是思维的大体形式之一,它由前提和结论两部份组成;论证是由已有的正确的前提到被论证的结论的连续串的推理进程.推理既包括演绎推理,也包括合情推理;论证方式既包括按形式划分的演绎法和归纳法,也包括按试探方式划分的直接证法和间接证法 .一样运用合情推理进行猜想,再运用演绎推理进行证明 .中学数学的推理论证能力是依照已知的事实和已取得的正确数学命题,论证某一数学命题真实性的初步的推理能力 .(4)运算求解能力:会依照法那么、公式进行正确运算、变形和数据处置,能依照问题的条件寻觅与设计合理、简捷的运算途径,能依照要求对数据进行估量和近似计算.运算求解能力是思维能力和运算技术的结合 .运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形和几何量的计算求解等,运算能力包括分析运算条件、探讨运算方向、选择运算公式、确信运算程序等进程中的思维能力,也包括在实施运算进程中碰到障碍而调整运算的能力 .(5)数据处置能力:会搜集、整理、分析数据,能从大量数据中抽取对研究问题有效的信息,并做出判定.数据处置能力要紧依据统计或统计案例中的方式对数据进行整理、分析,并解决给定的实际问题.(6)应用意识:能综合应用所学数学知识、思想和方式解决问题,包括解决相关学科、生产、生活中简单的数学问题;能明白得对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方式解决问题进而加以验证,并能用数学语言正确地表达和说明 .应用的要紧进程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.(7) 创新意识:能发觉问题、提出问题,综合与灵活地应用所学的数学知识、思想方式,选择有效的方式和手腕分析信息,进行独立的试探、探讨和研究,提出解决问题的思路,制造性地解决问题 .创新意识是理性思维的高层次表现.对数学问题的“观看、猜想、抽象、归纳、证明”,是发觉问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越高 .3. 个性品质要求个性品质是指考生个体的情感、态度和价值观. 要求考生具有必然的数学视野,熟悉数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维适应,体会数学的美学意义 .要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时刻,以事实求是的科学态度解答试题,树立战胜困难的信心,表现锲而不舍的精神 .4. 考查要求数学学科的系统性和周密性决定了数学知识之间深刻的内在联系,包括各部份知识的纵向联系和横向联系,要擅长从本质上抓住这些联系,进而通过度类、梳理、综合,构建数学试卷的框架结构 .(1)对数学基础知识的考查,既要全面又要突出重点.对于支撑学科知识体系的重点内容,要占有较大的比例,组成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意迫求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考查达到必要的深度.(2)对数学思想方式的考查是对数学知识在更高层次上的抽象和归纳的考查,考查时必需要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想方式的把握程度.(3)对数学能力的考查,强调“以能力立意”,确实是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,偏重表现对知识的明白得和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度和进一步学习的潜能 .对能力的考查要全面,强调综合性、应用性,并要符合考生实际 .对推理论证能力和抽象归纳能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查要紧体此刻对文字语言、符号语言及图形语言的相互转化上;对运算求解能力的考查主若是对算法和推理的考查,考查以代数运算为主;对数据处置能力的考查主若是考查运用概率统计的大体方式和思想解决实际问题的能力 .(4)对应用意识的考查要紧采纳解决应用问题的形式 .命题时要坚持“切近生活,背景公平,操纵难度”的原那么,试题设计要符合中学教学的实际和考生的年龄特点,并结合实践体会,使教学应用问题的难度符合考生的水平 .(5)对创新意识的考查是对高层次理性思维的考查 .在考试中创设新颖的问题情境,构造有必然深度和广度的数学问题时,要注重问题的多样化,表现思维的发散性;精心设计考查数学主体内容,表现数学素养的试题;也要有反映数、形运动转变的试题和研究型、探讨型、开放型等类型的试题 .数学科的命题,在考查基础知识的基础上,注重对数学思想方式的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和现实性,重试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,尽力实现全面考查综合数学素养的要求 .二、考试范围与要求本部份包括必考内容和选考内容两部份 .必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”等3个专题 .(一)必考内容与要求1.集合(1)集合的含义与表示①了解集合的含义、元素与集合的属于关系.②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(2)集合间的大体关系①明白得集合之间包括与相等的含义,能识别给定集合的子集.②在具体情境中,了解全集与空集的含义.(3)集合的大体运算①明白得两个集合的并集和交集的含义,会求两个简单集合的并集和交集 .②明白得在给定集合中一个子集的补集的含义,会求给定子集的补集.③能利用韦恩(Venn)图表达集合的关系及运算 .2.函数概念与大体初等函数Ⅰ(指数函数、对数函致、幂函数)(1)函数①了解组成函数的要素,会求一些简单函数的概念域和值域;了解映射的概念 .②在实际情境中,会依照不同的需要选择适当的方式(如图像法、列表法、解析法)表示函数.③了解简单的分段函数,并能简单应用.④明白得函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.⑤会运用函数图像明白得和研究函数的性质.(2)指数函数①了解指数函数模型的实际背景.②明白得有理指数幂的含义,了解实数指数幂的意义,把握幂的运算 .③明白得指数函数概念,明白得指数函数的单调性,把握指数函数图像通过的特殊点.④明白指数函数是一类重要的函数模型.(3)对数函数①明白得对数的概念及其运算性质,明白用换底公式将一样对数转化成自然对数或经常使用对数:了解对数在简化运算中的作用 .②明白得对数函数的概念,明白得对数函数的单调性,把握对数函数图像通过的特殊点. ③明白对数函数是一类重要的函数模型 .④了解指数函y =a x 与对函数y =log a x 互为反函数(a >0,且a ≠1).(4)幂函数①了解幂函数的概念 . ②结合函数2132,1,,,x y x y x y x y x y =====的图像,了解它们的转变情形 .(5)函数与方程①结合二次函数的图像,了解函数的零点与方程根的关系,判定一元二次方程根的存在性及根的个数 .②依照其体函数的图像,能够用二分法求相应方程的近似解 .(6)函数模型及其应用①了解指数函数、对数函数和幂函数的增加特征,明白直线上升,指数增加,对增加等不同函数类型增加的含义 .②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍利用的函数模型)的普遍应用 .3.立体几何初步①熟悉柱、锥、台、球及其简单组合体的结构特点,并能运用这些特点描述现实生活中的简单物体的结构 .②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.③会用平行投影与中心投影两种方式画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.④会画某些建筑物的视图与直观图(在不阻碍图形特点的基础上,尺寸、线条等不做严格要求).⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式.(2)点、直线、平面之间的位置关系.①明白得空间直线、平面位置关系的概念,并了解如下能够作为推理依据的公理和定理 .●公理1:若是一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内 .●公理2:过不在同一条直线上的三点,有且只有一个平面 .●公理3:若是两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 .●公理4:平行于同一条直线的两条直线相互平行.●定理:空间中若是一个角的两边与另一个角的两边别离平行,那么这两个角相等或互补.②以立体几何的上述概念、公理和定理为起点,熟悉和明白得空间中线面平行、垂直的有关性质与判定定理 .明白得以下判定定理.●若是平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.●若是一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.●若是一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.●若是一个平面通过另一个平面的垂线,那么这两个平面相互垂直.明白得以下性质定理,并能够证明 .●若是一条直线与一个平面平行,那么通过该直线的任一个平面与此平面的交线和该直线平行.●若是两个平行平面同时和第三个平面相交,那么它们的交线彼此平行.●垂直于同一个平面的两条直线平行.●若是两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平而垂直.③能运用公理、定理和已取得的结论证明一些空间图形的位置关系的简单命题 .4.平面解析几何初步(1)直线与方程①在平面直角坐标系中,结合具体图形,确信直线位置的几何要素 .②明白得直线的倾斜角和斜率的概念,把握过两点的直线斜率的计算公式 .③能依照两条直线的斜率判定这两条直线平行或垂直 .④把握确信直线位置的几何要素,把握直线方程的几种形式(点斜式、两点式及一样式),了解斜截式与一次函数的关系 .⑤能用解方程组的方式求两条相交直线的交点坐标 .⑥把握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.(2)圆与方程①把握确信圆的几何要素,把握圆的标准方程与一样方程.②能依照给定直线、圆的方程判定直线与圆的位置关系;能依照给定两个圆的方程判定两圆的位置关系.③能用直线和圆的方程解决一些简单的问题.④初步了解用代数方式处置几何问题的思想.(3)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标表示点的位置 .②会推导空间两点间的距离公式 .5.算法初步(1)算法的含义、程序框图①了解算法的含义,了解算法的思想.②明白得程序框图的三种大体逻辑结构:顺序、条件分支、循环 .(2)基本算法语句明白得几种大体算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.6.统计(1)随机抽样①理解随机抽样的必要性和重要性.②会用简单随机抽样方式让从整体中抽取样本;了解分层抽样和系统抽样方式 .(2)用样本估量整体①了解散布的意义和作用,会列频率散布表,会画频率散布直方图、频率折线图、茎叶图,明白得它们各自的特点.②明白得样本数据标准差的意义和作用,会计算数据标准差.③能从样本数据中提取大体的数字特点(如平均数、标准差),并给出合理的说明 .④会用样本的频率散布估量整体散布,会用样本的大体数字特点估量整体的大体数字特点,明白得用样本估量整体的思想 .⑤会用随机抽样的大体方式和样本估量整体的思想解决一些简单的实际问题.(3)变量的相关性①会作两个有关联变量的数据的散点图,会利用散点图熟悉变量间的相关关系.②了解最小二乘法的思想,能根据给出的线性回归方程系数公式成立线性回归方程.7.概率(1)事件与概率①了解随机事件发生的不确信性和频率的不稳固性,了解概率的意义,了解频率与概率的区别.②了解两个互斥事件的概率加法公式.(2)古典概型①明白得古典概型及其概率计算公式.②会用列举法计算一些随机事件所含的大体事件数及事件发生的概率.(3)随机数与几何概型①了解随机数的意义,能运用模拟方式估量概率.②了解几何概型的意义 .8.大体初等函数Ⅱ(三角函数)(1)任意角的概念、弧度制①了解任意角的概念 .②了解弧度制的概念,能进行弧度与角度的互化.(2)三角函数①明白得任意角三角函数(正弦、余弦、正切)的概念. ②能利用单位圆中的三角函数线推导出απααπ±±,的正弦、余弦、余弦、正切的诱导公式,能画出y =sin x ,y =cos x ,y =tan x 的图像,了解三角函数的周期性 .③明白得正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值和与x 轴的交点等),明白得正切函数在区间)2,2(ππ-内的单调性 . ④明白得同角三角函数的大体关系式:22sin cos 1x x +=,sin tan cos x x x = . ⑤了解函数y =A sin(ωx +φ)的物理意义;能画出y =A sin (ωx +φ)的图像,了解参数A 、ω、φ对函数图像转变的阻碍 .⑥了解三角函数是描述周期转变现象的重要函数模型,会用三角函数解决一些简单实际问题 .9.平面向量(1)平面向量的实际背景及大体概念①了解向量的实际背景.②明白得平面向量的概念,明白得两个向量相等的含义.③明白得向量的几何表示.(2)向量的线性运算①把握向量加法、减法的运算,并明白得其几何意义.②把握向量数乘的运算及其几何意义,明白得两个向量共线的含义 .③了解向量运算的性质及其几何意义 .(3)平面向量的大体定理及坐标表示①了解平面向量的大体定理及其意义 .②把握平面向量的正交分解及其坐标表示 .③会用标表示平面向量的加法、减法与数乘运算.④明白得用坐标表示的平面向量共线的条件.(4)平面向量的数量积①明白得平面向量数量积的含义及其物理意义 .②了解平面向量的数量积与向量投影的关系 .③把握数量积的坐标表达式,会进行平面向量数量积的运算 .④能运用数量积表示两个向量的夹角,用数量积判定两个平面向量的垂直关系.(5)向量的应用①会用向量方式解决某些简单的平面几何问题.②会用向量方式解决简单的力学问题与其他一些实际问题.10.三角恒等变换(1)和与差的三角函数公式①会用向量的数量积推导出两角差的余弦公式.②能利用两角差的余弦公式导出两角差的正弦、正切公式.③能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.(2)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求经历).11.解三角形(1)正弦定理和余弦定理把握正弦定理、余弦定理,并能解决一些简单的三角形气宇问题.(2)应用能够运用正弦定理、余弦定理等知识和方式解决一些与侧量和几何计算有关的实际问题 . 12.数列(1)数列的概念和简单表示法①了解数列的概念和几种简单的表示方式(列表、图像、通项公式) .②了解数列是自变量为正整数的一类函数 .(2)等差数列、等比数列①明白得等差数列、等比数列的概念.②把握等差数列、等比数列的通项公式与前n项和公式 .③能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题 .④了解等差数列与一次函数、等比数列与指数函数的关系 .13.不等式(1)不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景 .(2)一元二次不等式①会从实际情境中抽象出一元二次不等式模型 .②通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.(3)二元一次不等式组与简单线性计划问题①会从实际情境中抽象出二元一次不等式组 .②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组 .③会从实际情境中抽象出一些简单的二元线性计划问题,并能加以解决.(4)大体不等式:)0,(2≥≥+b a ab b a ①了解基本不等式的证明进程.②会用大体不等式解决简单的最大(小)值问题 .14.经常使用逻辑用语(1)命题及其关系①明白得命题的概念 .②了解“假设p ,那么q ”形式的命题及其逆命题、否命题与你否命题,会分析四种命题的彼此关系 .③明白得必要条件、充分条件与充要条件的意义.(2)简单的逻辑联结词了解逻辑联结词“或”、“且”、“非”的含义 .(3)全称量词与存在量词①明白得全称量词与存在量词的意义 .②能正确地对含有一个量词的命题进行否定 .15.圆锥曲线与方程①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.②把握椭圆的概念、几何图形、标准方程及简单几何性质.③了解双曲线、抛物线的概念、几何图形和标准方程,明白它们的简单几何性质.④明白得数形结合的思想.⑤了解圆锥曲线的简单应用.16.导数及其应用(1)导数概念及其几何意义①了解导数概念的实际背景 .②明白得导数的几何意义.(2)导数的运算①能依照导数概念求函数y=C(C为常数),y=x,y=2x,y=1的导数 .x②能利用下面给出的大体初等函效的导数公式和导数的四那么运算法那么求简单函数的导数.。
热点(十三) 数学文化1.[2020·石家庄模拟](古典概率中的数学文化)古希腊数学家毕达哥拉斯在公元前六世纪发现了“完全数”6和28,后人进一步研究发现后续3个“完全数”分别为496,8 128,33 550 336,现将这5个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为( )A. 15B. 25C.35D. 110 2.[2020·山东六地市部分学校线上考试]《九章算术》是我国古代数学名著,其中有这样一个问题:“今有宛田,下周三十步,径十六步,问为田几何?”意思说:现有扇形田,弧长三十步,直径十六步,问面积多少?书中给出计算方法:以径乘周,四而一,即扇形的面积等于直径乘以弧长再除以4.在此问题中,扇形的圆心角的弧度数是( )A.415B. 158C.154 D .120 3.(函数图象中的数学文化)我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.如函数f (x )=x 4|4x -1|的图象大致是( )4.(概率中的数学文化)我国古代有着辉煌的数学研究成果.《周髀算经》《九章算术》《海岛算经》《孙子算经》……《缉古算经》等10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是魏晋南北朝时期专著的概率为( )A.1415B.115C.29D.79 5.(数列中的数学文化)《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,如“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,这位公公的长儿的年龄为( )A .23岁B .32岁C .35岁D .38岁6.[2020·新高考Ⅰ卷](立体几何中的数学文化)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°7.(解析几何中的数学文化)唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河”.诗中隐含着一个有趣的数学问题——“将军饮马”的问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为x2+y2≤1,若将军从点A(2,0)出发,河岸线所在直线方程x+y-4=0,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为()A.10 B.25-1C.2 5 D.10-18.(圆中的数学文化)阿波罗尼斯(约公元前262~190年)证明过这样一个命题:平面内到两定点距离之比为常数k(k>0,k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点A、B间的距离为2,动点P满足|P A||PB|=2,则|P A|2+|PB|2的最小值为() A.36-24 2 B.48-24 2C.36 2 D.24 29.如图所示,在著名的汉诺塔问题中,有三根高度相同的柱子和一些大小及颜色各不相同的圆盘,三根柱子分别为起始柱、辅助柱及目标柱.已知起始柱上套有n个圆盘,较大的圆盘都在较小的圆盘下面,现把圆盘从起始柱全部移到目标柱上,规则如下:每次只能移动一个圆盘,且每次移动后,每根柱上较大的圆盘不能放在较小的圆盘上面,规定一个圆盘从任一根柱上移动到另一根柱上为一次移动.若将n个圆盘从起始柱移动到目标柱上最少需要移动的次数记为p(n),则p(4)=()A.33 B.31C.17 D.1510.(解三角形中的文化)《数书九章》中对已知三角形三边长求三角形面积的求法填补了我国数学史中的一个空白,虽与著名的海伦公式形式上有所不同,但实质完全等价,由此可以看出我国古代已经具有很高的数学水平.其求法是:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积.”把以上这段文字用数学公式表示,即S=14⎣⎡⎦⎤c2a2-⎝⎛⎭⎫c2+a2-b222(S,a,b,c分别表示三角形的面积、大斜、中斜、小斜).现有周长为42+25的△ABC满足sin A︰sin B︰sin C=(2+1)︰5︰(2-1),试用以上给出的数学公式计算△ABC的面积为()A. 3 B.2 3C. 5 D.2 511.(立体几何中的数学文化)我国古代《九章算术》里记载了一个求“羡除”体积的例子,羡除,隧道也,其所穿地,上平下邪.小明仿制羡除裁剪出如图所示的纸片,在等腰梯形ABCD 中,AB=10,BC=CD=DA=8,在等腰梯形ABEF中,EF=6,AF=BE=6.将等腰梯形ABCD 沿AB折起,使DF=CE=26,则五面体ABCDFE中异面直线AC与DE所成角的余弦值为()A.0 B.2 4C.-24 D.2212.(多选题)(生活中的数学文化)《九章算术·衰分》中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”翻译为“今有甲持钱560,乙持钱350,丙持钱180,甲、乙、丙三个人一起出关,关税共计100钱,要按个人带钱多少的比例交税,问三人各应付多少税?”则下列说法中正确的是()A.甲付的税钱最多B.乙、丙两人付的税钱超过甲C.乙应出的税钱约为32D.丙付的税钱最少13.(三角函数中的文化)公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可表示为m=2sin 18°.若m2+n=4,则1-2cos2 27°3m n=________.14.(数列中的数学文化)“斐波那契”数列由十三世纪意大利数学家斐波那契发现.数列中的一系数数字常被人们称之为神奇数.具体数列为1,1,2,3,5,8…,即从该数列的第三项数字开始,每个数字等于前两个相邻数字之和.已知数列{a n}为“斐波那契”数列,S n为数列{a n}的前n项和,若a2 020=M,则S2 018=________.(用M表示)15.[2020·山东烟台、菏泽联考](二项式定理中的数学文化)杨辉三角,又称贾宪三角、帕斯卡三角,是二项式系数在三角形中的一种几何排列.在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中用三角形解释二项和的乘方规律,称之为“杨辉三角”,由杨辉三角可以得到(a+b)n展开式的二项式系数.根据相关知识可求得(1-2x)5展开式中的x3的系数为________.16.[2020·山东肥城一中模拟](立体几何中的数学文化)在我国古代数学名著《九章算术》中,把两底面为直角三角形的直棱柱称为“堑堵”.已知三棱柱ABC -A1B1C1是一个“堑堵”,其中AB=BC=BB1=2,点M是A1C1的中点,则四棱锥M-B1C1CB的外接球的表面积为________.热点(十三) 数学文化1.答案:B解析:记5个“完全数”中随机抽出2个为第一组,剩下3个为第二组,则基本事件总数为C 25=10.又6和28恰好在第一组有1种情况,6,28和其他3个数中的1个在第二组有3种情况,所以所求概率为1+310=25,故选B.2.答案:C解析:由题意,根据给出计算方法:以径乘周,四而一,即扇形的面积等于直径乘以弧长再除以4,再由扇形的弧长公式,可得扇形的圆心角α=l r =308=154(弧度),故选C.3.答案:D解析:因为f (x )=⎩⎪⎨⎪⎧x 44x -1,x >0,x41-4x,x <0,f (-x )=x 4|4-x -1|=x 4·4x|4x -1|≠f (x ),且f (-x )≠-f (x ),所以f (x )没有奇偶性,而A ,B 选项中的图象关于y 轴对称,排除A ,B ;当x →-∞时,f (x )=x 41-4x→+∞,排除C ,选D. 4.答案:A解析:设所选2部专著中至少有一部是魏晋南北朝时期专著为事件A ,所以P (A )=C 23C 210=115,因此P (A )=1-P (A )=1-115=1415,故选A.5.答案:C解析:设这位公公的第n 个儿子的年龄为a n , 由题可知{a n }是等差数列,设公差为d ,则d =-3, 又由S 9=207,即S 9=9a 1+9+82×(-3)=207,解得a 1=35,即这位公公的长儿的年龄为35岁.故选C. 6.答案:B解析:过球心O 、点A 以及晷针的轴截面如图所示,其中CD 为晷面,GF 为晷针所在直线,EF 为点A 处的水平面,GF ⊥CD ,CD ∥OB ,∠AOB =40°,∠OAE = ∠OAF =90°,所以∠GF A =∠CAO =∠AOB =40°.故选B.7.答案:B解析:设点A 关于直线x +y =4的对称点A ′(a ,b ),k AA ′=ba -2, AA ′的中点为⎝⎛⎭⎪⎫a +22,b 2,故⎩⎪⎨⎪⎧ba -2=1a +22+b 2=4解得a =4,b =2,要使从点A 到军营总路程最短,即为点A ′到军营最短的距离,即为点A ′和圆上的点连线的最小值,即为点A ′和圆心的距离减半径, “将军饮马”的最短总路程为 4+16-1=25-1,故选B.8.答案:A解析:以经过A 、B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系,则A (-1,0)、B (1,0),设P (x ,y ),∵|P A ||PB |=2,∴(x +1)2+y 2(x -1)2+y2=2,两边平方并整理得x 2+y 2-6x +1=0⇒(x -3)2+y 2=8,所以P 点的轨迹是以(3,0)为圆心,22为半径的圆,则有|P A |2+|PB |2=2(x 2+y 2)+2=2|OP |2+2,如图所示:当点P 为圆与x 轴的交点(靠近原点)时,此时, OP 取最小值,且OP =3-22,因此,|P A |2+|PB |2≥2×(3-22)2+2=36-242,故选A. 9.答案:D解析:由题意,把圆盘从起始柱全部移到目标柱上最少需要移动的次数记为p (n ),则把起始柱上的(除最底下的)圆盘从起始柱移动到辅助柱最少需要移动的次数为p (n -1),则有p (n )=2p (n -1)+1,所以p (n )+1=2[p (n -1)+1],又p (1)=1,即{p (n )+1}是以p (1)+1=2为首项,2为公比的等比数列,由等比数列通项公式可得,p (n )+1=2n ,所以p (n )=2n -1,故p (4)=24-1=15,故选D.10.答案:A解析:因为sin A ︰sin B ︰sin C =(2+1)︰5︰(2-1), 则由正弦定理得a ︰b ︰c =(2+1)︰5︰(2-1). 设a =(2+1)x ,b =5x ,c =(2-1)x , 又周长为42+25,所以42+25=(2+1)x +5x +(2-1)x ,解得x =2. 所以S =14×⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫42×(2-1)2×(2+1)2-⎣⎢⎡⎦⎥⎤22×(2+1)2+22×(2-1)2-2022 = 3.故选A.11.答案:B解析:如图,过点C 作AB 的垂线,H 为垂足,易知BH =1,CH =37,AC =12.同理,在等腰梯形CDFE 中,对角线DE =6 2.过点C 作CG ∥DE 交FE 的延长线于点G ,易知四边形CDEG 是平行四边形,DE 綉CG ,连接AG ,则异面直线AC 与DE 所成的角即直线AC 与CG 所成的角.过点A 作AT ⊥EF ,交EF 的延长线于点T ,则易知AT =42,TG =16,所以AG =12 2. 在△ACG 中,AG =122,AC =12,CG =DE =62,由余弦定理得cos ∠ACG =144+72-2882×12×62=-24.因为异面直线所成的角在⎝⎛⎦⎤0,π2范围内,所以异面直线AC 与DE 所成角的余弦值为24,故选B.12.答案:ACD 解析:甲付的税钱最多、丙付的税钱最少,可知A 、D 正确;乙、丙两人付的税钱占总税钱的53109<12不超过甲。
2021高考全国甲卷数学试卷分析(1)一、试卷分析。
1.这次的甲卷非常符合“难点分散”的原则,没有极致的难题,但每道题都有卡到学生的地方。
压轴题12,16,21题难度相对往年的试卷有所下降,至少思维难度不大。
2.计算量和阅读量较去年有所增加,从第2题开始就需要计算,接着第4、5、8、9都需要计算,第5题考查了双曲线离心率的求法,求解过程中用到了余弦定理,综合性较强,在前6道题出现,对学生有一定挑战;第8题属于三角函数的实际应用问题,体现了高考理论联系实际的要求,题干复杂,阅读量较大,但只要理清条件,结合图形求解即可;9题需要考查三角函数的线切互化,有一定的综合性。
16题计算也比较大。
3.反套路意味明显,试题考查的主干知识内容相较前几年变化不大,但是呈现的形式有较大的边化,例如离心率放在了第5题,三角函数以小题考查为主,数列仍然考查大题,并采用了开放设问的形式,引导我们在教学上要重视数学概念的教学,培养核心素养,克服机械刷题。
立体几何意外地考查了一个动态问题,如果不能抓住平行的本质第一问的证明会无从下手。
解析几何考查了抛物线的切线问题,有着高等数学的背景,如果平时没做过类似问题的学生做对较困难。
二、对于教学的启示:1、大胆猜测今后几年的试题形式和难度可能会波动不定,命题进入“开疆拓土”模式,在总体保持平稳的基础上推陈出新。
“核心素养”“能力立意”可能不再是一句空话,怎样培养学生的能力值得更多思考;2、纯靠淘题型做出来的题目比例减少,教学中应更加注重对知识的深层次理解,关注知识的整体结构和内在联系3、高三复习更应个性化,针对不同的学生制定不同的策略,关注学生的考试心态心理以及抗击打的能力。
2021年全国高考甲卷数学试题分析和点评2021年高考甲卷(文科)主体重视数学基础知识和基本能力,和前两年所不同的是与理科试题不同题数量增多,难度差异较大,具体如下:选择题12个题有7个题不同,其中10、12两个题与理科同题是姊妹题;填空题4个题有3个不同,文科的13和理科的14是从不同方向考的平面向量,文科15和理科16是条件相同要求不同;解答题6个有3个不同:18题数列,理科以开放的形式出的,文理都设成了一题一问的证明;19题立体几何,文理条件相同,要求不同;文科20题和理科21题函数与导数,试题内容不同,要求也不完全相同,文科第一问涉及对参数的讨论(分类讨论)比理科的第一问难,第二问考查方向一样。