光波场的描述
- 格式:ppt
- 大小:1.67 MB
- 文档页数:23
物理学中的场和波场和波是物理学中非常重要的概念。
在物理学中,场和波分别代表着不同的物理量。
场代表的是空间中某个量的分布,而波则代表这个量的随时间变化。
场场是物理学中的基本概念。
它是指空间中某个物理量的分布情况。
例如,电场就是指空间中电荷对电荷的相互作用所导致的力的分布情况,而磁场则是指磁物质所产生的力的分布情况。
在场的理论中,场可以通过一系列的基本方程来描述。
这些方程可以解释场在空间中的变化,并且可以用于预测场的行为。
例如,麦克斯韦方程就是用来描述电场和磁场的行为的基本方程。
场的理论在物理学中有着广泛的应用,例如在天文学、航空航天学、电子学和光学等领域。
在这些领域中,场的理论被用来解决很多实际问题。
波波是描述物理现象中频繁出现的另一个重要概念。
波是指某个物理量在空间中传播的过程。
例如,声波就是空气中振动的压力和密度所导致的一种波动。
光波则是一种电磁波,它在空间中的传播速度是光速。
波的理论同样也可以通过一系列的基本方程来描述。
这些方程可以预测波的行为,并且可以被应用于很多不同的领域。
例如,波的理论可以用于描述地震波和水波等自然现象。
物理学中,场和波的关系是非常密切的。
事实上,许多波都可以通过场的变化来解释。
例如,电磁波就可以通过电场和磁场的相互作用来描述。
同时,对场进行激发也可以产生波动。
例如,在声学中,将空气中的压力场激发后就可以产生声波。
结论场和波在物理学中有着非常广泛的应用。
它们帮助我们解决很多实际问题,并且可以用来理解自然现象的本质。
通过对场和波的研究,物理学家们不断地推动着科学发展的进程,使我们的生活变得更加便利。
806《普通物理(乙)》中科院研究生院硕士研究生入学考试《普通物理(乙)》考试大纲一.考试内容:大学工科类专业的《大学物理》或《普通物理》课程的基本内容,包含力学、电学、光学、原子物理、热学等。
二.考试要求:(一) 力学1. 质点运动学:熟练掌握和灵活运用:矢径;参考系;运动方程;瞬时速度;瞬时加速度;切向加速度;法向加速度;圆周运动;运动的相对性。
2.质点动力学:熟练掌握和灵活运用:惯性参照系;牛顿运动定律;功;功率;质点的动能;弹性势能;重力势能;保守力;功能原理;机械能守恒与转化定律;动量、冲量、动量定理;动量守恒定律。
3.刚体的转动:熟练掌握和灵活运用:角速度矢量;质心;转动惯量;转动动能;转动定律;力矩;力矩的功;定轴转动中的转动动能定律;角动量和冲量矩;角动量定理;角动量守恒定律。
4.简谐振动和波:熟练掌握和灵活运用:运动学特征(位移、速度、加速度,简谐振动过程中的振幅、角频率、频率、位相、初位相、相位差、同相和反相);动力学分析;振动方程;旋转矢量表示法;谐振动的能量;谐振动的合成;波的产生与传播;波的能量、能流密度;波的叠加与干涉;驻波;多普勒效应。
5.狭义相对论基础:理解并掌握:伽利略变换;经典力学的时空观;狭义相对论的相对性原理;光速不变原理;洛仑兹变换;同时性的相对性;狭义相对论的时空观;狭义相对论的动力学基础。
(二) 电磁学1.静电场:熟练掌握和灵活运用:库仑定律,静电场的电场强度及电势,场强与电势的叠加原理。
理解并掌握:高斯定理,环路定理,静电场中导体及电介质问题,电容、静电场能量。
了解:电磁学单位制,基本实验。
2.稳恒电流的磁场:熟练掌握和灵活运用:磁感应强度矢量,磁场的叠加原理,毕奥—萨伐尔定律及应用,磁场的高斯定理、安培环路定理及应用。
理解并掌握:磁场对载流导体的作用,安培定律。
运动电荷的磁场、洛仑兹力。
了解:磁介质, 介质的磁化问题, 电磁学单位制,基本实验。
3.电磁感应:熟练掌握和灵活运用:法拉第电磁感应定律,楞次定律,动生电动势。
§2—2 单色光波及其描述一,什么是单色光波波动的特征 波,振动的传播.振动在空间的传播形成物理量在空 间的分布,形成波场. 波动的最基本特征是具有周期性光波场具有时间和空间两重周期性 波场中任一点:具有振动 的周期性,即时间周期 性,用振动的周期T描述. 任一时刻:波场具有空间 分布的周期性,即物理量 在空间作周期分布,用波 长λ描述.单色光波可用下列波函数表示 v v E = E0 ( p ) cos[ωt ( p )] v v H = H 0 ( p ) cos[ωt ( p )] 具有下述性质的波场为定态波场: (1)空间各点的振动是同频率的简谐振动; (2)波场中各点扰动的振幅不随时间变化,在空间形成一个稳 定的振幅分布; (3)初始相位的空间分布与时间无关; (4)光波的波列在空间上无线延伸,光源发光时间无限长; 满足上述要求的光波应当充满全空间,是无限长的单色波列. 但当波列的持续时间比其扰动周期长得多时,可将其当作无限 长波列处理. 任何复杂的非单色波都可以分解为一系列单色波的叠加.光波是电磁波(矢量波),电场分量,磁场分 量,波的传播方向即波矢等物理量,都是矢量.v v E ( p , t ) = E 0 ( p ) cos [ω t ( p ) ]电场分量的 振幅,磁场分 量的振幅,波 长,频率,速 度等物理量是 标量.二,有关光波的几个概念一列沿z轴正向传播的平面简谐电磁波可表示为v v z E = E 0 ( p ) cos ω (t ) + E v v v H = H ( p ) cos ω (t z ) + 0 M v E,H,V三者相互垂直,构 成右手系.光波是横波, 有两个偏振态. 电场和磁场的振幅都是常 数,并且相互成比例. E与B同相位.平面单色光波示意图2π时间内的频率,圆频 率(角频率) 2π 长 度 内 的 频 率 , 角波数,波矢 波的相位,与时间和空 间相关ω = 2πν = 2πc λk = 2π / λxr r1r K ( P , t ) = ω t kx + 0振动取决于相位,所以振动 的传播就是相位的传播. yr r2 z波矢的方向角表示 在数学中常用方向余弦表示矢量的方向,即用矢量与坐标轴间 的夹角表示 在光学中习惯上采用波矢与平面间的夹角表示矢量的方向Xv k0 θ2βYθ3 αθ1γZr r r r k = k (cos αex + cos βe y + cos γez ) r r r r k = k (sin θ1ex + sin θ 2 e y + sin θ 3ez )波面:波场空间中相位相同的曲面构成光波的等相位 面,也称波阵面. 波前:光波场中的任一曲面,如物平面,像平面,透镜 平面,以及波场中任意被考察的平面. 等幅面:振幅相等的空间点构成的曲面. 波线:能量传播的路径. 在各向同性介质中,波线与波面垂直,与波矢的方向相 同;几何光学中,波矢就是光线. 共轭波:复振幅互为共轭的波. 互为共轭的波,其传播方向应该是相关联的.一般来 说,共轭波是原波的逆行波,但是若考虑某一平面的复 振幅分布,则产生其共轭复振幅的共轭波有两个.三,平面单色波和球面单色波的物理描述可根据波面的形状将光波分类:平面波,球面波,柱面波等. 位相相同的空间点应满足下述方程(相同时刻): ( p ) = Const .波场空间中任意一点P的位置矢量场点:r r r P ( x , y , z ) = xe x + ye y + z e z波线波面平面波柱面波球面波1. 平面波:波面是平面 振幅为常数 空间相位为直角坐标的线性函数r r ( p) = k r + 0 = k x x + k y y + k z z + 0波面r r k r = Const.满足上式的点构成与波矢垂直的一系列平面波场中一点(x,y,z)处的相位为 ( x, y, z ) = k ( x sin θ 1 + y sin θ 2 + z sin θ 2 ) + 0通常取一平面在z=0处,则该平面上的相位分布为 ( x, y,0) = k ( x sin θ 1 + y sin θ 2 ) + 0XOY平面OZ如果平面波沿z向传播,则其波面垂直于z轴.轴上某 一点z处的波面在t时刻的位相为 ( z , t ) = kz ωt + 0在下一时刻,t ′ = t + dtz ′ = z + dz设该波面的位置为kz ωt + 0 = k ( z + dz ) ω (t + dt ) + 0kdz = ωdt相速度 (沿+z向传播)dz ω 2πν = = = νλ v= dt k 2π λ如果波面的表达式为 (t , z ) = kz ωt + 0其相速度为dz ω v= = = νλ dt k向-z方向传播2. 球面波:波面是球面波面为球面,从点源发出或向点源汇聚; 振幅沿传播方向正比于1/r. x K P(x,y,z)Eo (r ) = A0 / rO∑0z ∑如果波源为O(0,0,0),波面为 ( p ) = kr ωt + 0 kr ωt + 0 = k (r + dr ) ω (t + dr ) + 0dr ω v= = dt k从原点发出的发散球面波如果波面为 ( p) = kr ωt + 0向原点汇聚的球面波ω dr = v= dt k(0,0,z0)发出的球面波在(x,y,0)平面的振动为E+ ( x, y,0) =A0 x + y + z02 2 2cos[k x 2 + y 2 + z0 ωt + 0 ]2(0,0,-z0)出发出的球面波在(x,y,0)平面上的振动亦为 A0 2 2 2 E ( x , y ,0 ) = cos[k x + y + z0 ωt + 0 ] 2 2 2 x + y + z0向(0,0,z0)点汇聚的球面波为E *+ ( x, y,0) = A0 x + y + z02 2 2cos[ k x + y + z0 ωt + 0 ]2 2 2向(0,0,-z0)点汇聚的球面波为E * ( x, y,0) = A0 x + y + z02 2 2cos[k x 2 + y 2 + z0 ωt + 0 ]2四.光波的复振幅描述可以用复指数的实部或虚部表示余弦或正弦函数,所 以可以用复数来描述光波的振动r r i [ ω t ( p )] E ( p , t ) = E 0 ( p )e上式中的实部是正态光场的波函数,复数波函数也可 以等价地来描述单色光波.同样单色光波的标量波函 数也可写成复数形式~ i[ωt ( p )] i ( p ) i ωt E ( p , t ) = E0 ( p ) e = E0 ( p ) e e定态光波的频率都是相等的,可以不写在表达式中. 定态部分,即与时间无关部分为,定义为复振幅~ i ( p ) E ( p ) = E0 ( p ) e复振幅包含了振幅和位相,直接表示了定态光波在空间P点 的振动,或者说复振幅表示了波在空间的分布情况. 单色平面光波的复振幅rr ~ E ( p) = E0 ( p )e i ( k r 0 ) = E0 ei [k ( x cosα + y cos β + z cos γ ) 0 ]单色球面光波的复振幅A0 i ( krrr 0 ) ~ E ( p) = e r光强的复振幅表示能流密度(即坡印廷矢量)的瞬时值如光波做简谐振动,E0为简谐振动的振幅,则有r r r r 2 n r2 S = S = E × H = ε r ε 0 μ r μ0 | E | = E cμ0r2 1 2 E = E0 2即r I= S =I = E02n 2 2 E0 ∝ nE0 2cμ 0在均匀介质中,通常取 光波场在P点的强度~ ~* I ( P) = E ( p) = E ( p) E ( p)2 0五,波的位相与光程 平面波,在一维情况下,位相为 ( p ) = kx + 0kx = 2πk =2πλ0nx =2πλ=2π nλ0λ0nsns为介质中波的光程位相由光程决定 即同一时刻,空间中光程相同的点,其位相也相同, 振动也相同. 波在不同媒质中,光程改变,产生折射,方向和波面 都会发生改变.棱镜,透镜的原理都可以从光程的变 化进行解释.反射和折射时波面的变化n1n2光波经过棱镜和透镜时波面的变化。
中科院研究生院硕士研究生入学考试《普通物理(甲)》考试大纲一.考试内容:大学理科的《大学物理》或《普通物理》课程的基本内容,包含力学、电学、光学、原子物理、热学等。
二.考试要求:(一) 力学1. 质点运动学:熟练掌握和灵活运用:矢径;参考系;运动方程;瞬时速度;瞬时加速度;切向加速度;法向加速度;圆周运动;运动的相对性。
2.质点动力学:熟练掌握和灵活运用:惯性参照系;牛顿运动定律;功;功率;质点的动能;弹性势能;重力势能;保守力;功能原理;机械能守恒与转化定律;动量、冲量、动量定理;动量守恒定律。
3.刚体的转动:熟练掌握和灵活运用:角速度矢量;质心;转动惯量;转动动能;转动定律;力矩;力矩的功;定轴转动中的转动动能定律;角动量和冲量矩;角动量定理;角动量守恒定律。
4.简谐振动和波:熟练掌握和灵活运用:运动学特征(位移、速度、加速度,简谐振动过程中的振幅、角频率、频率、位相、初位相、相位差、同相和反相);动力学分析;振动方程;旋转矢量表示法;谐振动的能量;谐振动的合成;波的产生与传播;面简谐波波动方程;波的能量、能流密度;波的叠加与干涉;驻波;多普勒效应。
5.狭义相对论基础:理解并掌握:伽利略变换;经典力学的时空观;狭义相对论的相对性原理;光速不变原理;洛仑兹变换;同时性的相对性;狭义相对论的时空观;狭义相对论的动力学基础;相对论的质能守恒定律。
(二) 电磁学1.静电场:熟练掌握和灵活运用:库仑定律,静电场的电场强度及电势,场强与电势的叠加原理。
理解并掌握:高斯定理,环路定理,静电场中导体及电介质问题,电容、静电场能量。
了解:电磁学单位制,基本实验。
2.稳恒电流的磁场:熟练掌握和灵活运用:磁感应强度矢量,磁场的叠加原理,毕奥—萨伐尔定律及应用,磁场的高斯定理、安培环路定理及应用。
理解并掌握:磁场对载流导体的作用,安培定律。
运动电荷的磁场、洛仑兹力。
了解:磁介质, 介质的磁化问题,电磁学单位制,基本实验。
2019年中国科学院大学806普通物理(乙)考研初试大纲《普通物理(乙)》考试大纲一、考试科目基本要求及适用范围概述本《普通物理(乙)》考试大纲适用于中国科学院大学工科类的硕士研究生入学考试。
普通物理是大部分专业设定的一门重要基础理论课,要求考生对其中的基本概念有深入的理解,系统掌握物理学的基本定理和分析方法,具有综合运用所学知识分析问题和解决问题的能力。
二、考试形式考试采用闭卷笔试形式,考试时间为180分钟,试卷满分150分。
试卷结构:单项选择题、简答题、计算题,其分值约为1:1:3三、考试内容:大学工科类专业的《大学物理》或《普通物理》课程的基本内容,包含力学、电学、光学、原子物理、热学等。
四、考试要求:(一) 力学1. 质点运动学:熟练掌握和灵活运用:矢径;参考系;运动方程;瞬时速度;瞬时加速度;切向加速度;法向加速度;圆周运动;运动的相对性。
2.质点动力学:熟练掌握和灵活运用:惯性参照系;牛顿运动定律;功;功率;质点的动能;弹性势能;重力势能;保守力;功能原理;机械能守恒与转化定律;动量、冲量、动量定理;动量守恒定律。
3.刚体的转动:熟练掌握和灵活运用:角速度矢量;质心;转动惯量;转动动能;转动定律;力矩;力矩的功;定轴转动中的转动动能定律;角动量和冲量矩;角动量定理;角动量守恒定律。
4.简谐振动和波:熟练掌握和灵活运用:运动学特征(位移、速度、加速度,简谐振动过程中的振幅、角频率、频率、位相、初位相、相位差、同相和反相);动力学分析;振动方程;旋转矢量表示法;谐振动的能量;谐振动的合成;波的产生与传播;波的能量、能流密度;波的叠加与干涉;驻波;多普勒效应。
5.狭义相对论基础:理解并掌握:伽利略变换;经典力学的时空观;狭义相对论的相对性原理;光速不变原理;洛仑兹变换;同时性的相对性;狭义相对论的时空观;狭义相对论的动力学基础。
(二) 电磁学1. 静电场:熟练掌握和灵活运用:库仑定律,静电场的电场强度及电势,场强与电势的叠加原理。
麦克斯韦方程组是电磁学中描述电磁场行为的基本方程组,由詹姆斯·麦克斯韦在19世纪提出。
它由四个方程组成,分别描述了电场和磁场的生成、传播和相互作用的规律。
麦克斯韦方程组包括以下四个方程:
1.高斯定律:描述了电场与电荷之间的关系,指出电场通过电荷的流出和流入来形成。
可以用于计算电场的分布和电荷的分布情况。
2.安培定律:描述了磁场与电流之间的关系,指出磁场通过电流的流过来形成。
可以用于计算磁场的分布和电流的分布情况。
3.法拉第电磁感应定律:描述了通过磁场变化所产生的电场。
指出当磁场发生变化时,会在相应的区域产生电场。
可以用于计算感应电流和感应电场的分布情况。
4.波动方程:描述了电磁场的传播规律,指出电磁场以电磁波的形式在空间中传播。
可以用于计算电磁波的传播速度和传播方向。
光场是光学中的概念,表示光的空间分布和光场的变化情况。
在光学中,可以使用麦克斯韦方程组来描述光场的行为,特别是光的传播和相互作用规律。
通过麦克斯韦方程组,可以研究光的干涉、衍射、折射等现象,解释光的传播特性和与物质的相互作用。
光场的描述可以包括光波的电场强度、电场振幅、相位等参数,可以用数学模型和计算方法进行分析和计算。
通过研究光场的行为,可以深入了解光的本质和性质,推动光学的发展,并应用于光通信、光计算、光存储等领域,以及光学器件和光学系统的设计与优化。