初三数学基本图形的对称性复习
- 格式:doc
- 大小:1012.50 KB
- 文档页数:10
一、对称图形的概念对称图形是指具有某种对称性的图形,即某个中心或轴对称线将图形分成两部分,两部分是完全一样的。
在数学中,对称性是研究图形的一个重要方面,对称图形由对称性的特点而形成,对称性是图形的一种性质,涉及到图形的划分、变换和结构等方面。
对称图形的研究对于理解图形的特点、性质和变换等方面具有重要意义。
二、对称图形的种类1. 中心对称图形中心对称图形是指具有中心对称性质的图形,即图形中心有一个点,以这个点为中心,对称于这个点的对应点,使得整个图形是对称的。
常见的中心对称图形有正方形、长方形等。
2. 轴对称图形轴对称图形是指具有轴对称性质的图形,即图形中有一条直线,使得图形在这条直线上的对称点是完全一样的。
常见的轴对称图形有心形、五角星等。
3. 多重对称图形多重对称图形是指具有多个对称性质的图形,即图形可以在不同的中心或轴上具有对称性质。
常见的多重对称图形有十字花、各种花纹图案等。
三、对称图形的性质1. 中心对称图形的性质(1)中心对称图形的任意两条对称轴相交于图形中心,对称轴上的任意一点到图形中心的距离等于该点的对称点到图形中心的距离。
(2)中心对称图形的任意点关于中心对称点的坐标之和等于中心坐标的两倍。
2. 轴对称图形的性质(1)轴对称图形的对称轴上的任意一点到图形的任意一点的距离等于这两点的对称点之间的距离。
(2)轴对称图形的对称轴也是它的轴对称中心。
3. 多重对称图形的性质多重对称图形具有多个对称轴或对称中心,同时具有多个对称性质,其特点是更加复杂和多样化。
1. 艺术设计对称图形常常被用于各种艺术设计中,例如各种花纹、图案等,对称性的特点可以使得作品更加美观、和谐。
2. 建筑设计建筑设计中的各种图形、装饰等常常利用对称性的特点,使得建筑更加稳定、美观。
3. 工艺制作各种工艺制品、礼品等常常利用对称图形的特点进行制作和加工,使得产品更加精致、美观。
4. 科学研究对称图形的研究也对科学研究有着重要的意义,例如在化学、生物学等领域中,对称性常常被用于研究物质的结构和性质等。
中考复习图形的对称知识点总结含考点,中考真题图形的对称【知识梳理】知识点⼀:图形的轴对称1.轴对称图形的概念:如果⼀个图形沿着⼀条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.轴对称的概念:把⼀个图形沿着某⼀条直线翻折过去,如果它能够和另⼀个图形重合,那么这两个图形关于直线对称,两个图形关于直线对称也称轴对称.这条直线叫做对称轴.3.轴对称变换的基本性质(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应⾓相等.4.轴对称和轴对称图形的区别:轴对称涉及两个图形,是两个图形的位置关系;轴对称图形是对⼀个图形本⾝⽽⾔的.5.镜⾯对称原理(1)镜中的像与原来的物体成轴对称.(2)镜⼦中的像改变了原来物体的左右位置,即像与物体左右位置互换.重点:轴对称的认识难点:对称轴在实际⽣活的体现。
知识点⼆:中⼼对称图形和中⼼对称1.在平⾯内,⼀个图形绕某个点旋转180°,能与原来的图形重合,这个图形叫做中⼼对称图形,这个点叫做它的对称中⼼,旋转前后图形上能够重合的点叫做对称点.2.在平⾯内,⼀个图形绕某⼀定点旋转180°,它能够与另⼀个图形重合,就说这两个图形关于这个点成中⼼对称,这个点叫做对称中⼼,旋转后两个图形上能够重合的点叫做关于对称中⼼的对称点.3.中⼼对称与中⼼对称图形的区别与联系区别:(1)中⼼对称是指两个图形的位置关系,⽽中⼼对称图形是指具有某种性质的⼀类图形;(2)成中⼼对称的两个图形的对称点分别在两个图形上,⽽中⼼对称图形的对称点在同⼀个图形上.联系:若把中⼼对称图形的两部分看成两个图形,则它们成中⼼对称;若把成中⼼对称的两个图形看成⼀个整体,则成为中⼼对称图形.重点:正确认识中⼼对称。
难点:正确区分中⼼对称与轴对称图形。
专题01 轴对称考点类型知识串讲(一)轴对称(1)轴对称概念:有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.(二)轴对称图形(1)轴对称图形概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
(对称轴必须是直线)(2)轴对称图形的性质(重点):如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。
(三)尺规作图(1)过一点作已知线段的垂线求作:AB的垂线,使它经过点C作法:①以点C为圆心,大于到线段距离为半径作弧,交AB与点D、E。
②分别以点D 、E 为圆心,大于DE 21长为半径作弧,两弧交于点F 。
③作直线CF ,CF 即为所求的直线(1)作已知线段的垂直平分线作法:①以A 为圆心大于AB 21长为半径作弧,以B 为圆心大于AB 21长为半径作弧,两弧交于C 、D 两点 ②连接CD ,即为所求(四)垂直平分线(1)概念:经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线)(2)性质:线段的垂直平分线上的点与这条线段两个端点的距离相等;(3)判定:与一条线段两个端点距离相等的点在这条线段的垂直平分线上. 考点训练考点1:轴对称图形典例1:(2023春·福建福州·九年级校考期中)下列四个图形中,是轴对称图形的是( )A .B .C .D .【答案】B 【分析】根据轴对称图形的概念判断即可.【详解】解:选项B 的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;选项A 、C 、D 的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;故选:B.【点睛】本题考查的是轴对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【变式1】(2023·江苏淮安·统考三模)剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术,是优秀的中华传统文化,下面几幅蝴蝶的剪纸图案,其中不是轴对称图形的是()A.B.C.D.【答案】C【分析】根据轴对称图形的定义:一个平面图形,沿某条直线对折,直线两旁的部分,能够完全重合,进行判断即可.【详解】解:A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、不是轴对称图形,符合题意;D、是轴对称图形,不符合题意.故选:C.【点睛】本题主要考查了轴对称图形的识别.熟练掌握轴对称图形的定义是解题的关键.【变式2】(2023春·宁夏银川·七年级校考期末)下列图标中,()是轴对称图形.A.B.C.D.【答案】D【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A,B,C选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.【变式3】(2023·湖南·统考中考真题)中国的汉字既象形又表意,不但其形美观,而且寓意深刻,观察下列汉字,其中是轴对称图形的是()A.爱B.我C.中D.华【答案】C【分析】根据轴对称图形的定义逐项判断即可.【详解】解:将选项A,B,D中的汉字沿某直线折叠后不能与本身重合,所以不符合题意;将图C中的汉字沿过中心的竖直方向的直线折叠直线两旁的部分能够重合,所以符合题意.故选:C.【点睛】本题主要考查了轴对称图形的判断,掌握定义是解题的关键.即将一个图形沿某直线折叠,直线两旁的部分能够重合,这样的图形是轴对称图形.考点2:轴对称图形的实际应用A.70°B.80°【答案】D【分析】由题意可得∠BDN=∠PDN=12+∠OCD=140°,由对顶角相等可得∠BDN的内角和定理进行计算即可得到答案.【详解】解:根据题意可得:∴∠ODC+∠OCD=180°―40°=140°,∵∠ODC=∠BDN,∠OCD=∠ACM,∴∠BDN+∠ACM=140°,∴∠BDP+∠ACP=280°,∵∠BDP+∠PDC=180°,∠ACP+∠PCD=180°,∴∠PDC+∠PCD=360°―280°=80°,∵∠PDC+∠PCD+∠CPD=180°,∴∠CPD=100°,故选:D.【点睛】本题主要考查了对称的性质、三角形的内角和定理、对顶角相等等知识,熟练掌握对称的性质、三角形的内角和定理、对顶角相等,是解题的关键.【变式1】(2023春·全国·七年级专题练习)如图是台球桌面示意图,阴影部分表示四个入球孔,小明按图中方向击球(球可以多次反弹),则球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋【答案】B【分析】利用轴对称画图可得答案.【详解】解:如图所示,球最后落入的球袋是2号袋,A.35°B.45°【答案】C【分析】根据题意可得∠AOC=∠BOD,进而根据直角三角形的两个锐角互余即可求解.【详解】解:依题意,∠AOC=∠BOD,∠AOC∴∠BOD=35°,A.65°B.62.5°【答案】B【分析】根据折叠得出∠OB′C′=180°―55°=125°.根据折叠得出典例3:(2023春·宁夏银川·七年级校考期末)如图,在△ABC中,AB=7,AC的垂直平分线交AB于点E,交AC于点D,△BCE的周长等于12,则BC的长度为()A.5B.6C.7D.8【答案】A【分析】根据线段垂直平分线的性质可得EC=EA,再利用△BCE的周长为12即可求解.【详解】解:∵DE垂直平分AC,∴EC=EA,∴△BCE的周长=BE+EC+BC=BE+EA+BC=AB+BC=12,∵AB=7,∴BC=5,故选:A.【点睛】本题考查线段垂直平分线的性质,线段垂直平分线上的点到线段两个端点的距离相等.【变式1】(2021秋·广东广州·八年级广州市第八十九中学校考期中)等腰三角形ABC中,AB=AC=12,BC =7.线段AB的垂直平分线交AC于E,连接BE,则△BEC的周长等于()A.12B.13C.19D.31【答案】C【分析】根据线段垂直平分线的性质,可得BE=AE,继而可证得△BEC的周长=BC+AC.【详解】解:∵线段AB的垂直平分线交AC于E,∴BE=AE,∴△BEC的周长为:BC+CE+BE=BC+CE+AE=BC+AC=7+12=19.故选:C.【点睛】本题考查了线段垂直平分线的性质以及三角形的周长.掌握线段垂直平分线上任意一点到线段两端点的距离相等是解题的关键.【变式2】(2023·河南信阳·校考三模)如图,在△ABC中,作边AB的垂直平分线,交边BC于点D,连接AD.若∠B=35°,∠C=60°,则∠DAC的度数为( )A.50°B.40°C.35°D.30°【答案】A【分析】根据垂直平分线的性质可得AD=BD,∠B=∠BAD=35°.根据三角形的内角和定理即可求得∠DA C=50°.【详解】根据题意,可知AD=BD,∴∠B=∠BAD=35°.∴∠ADC=70°.在△ADC中,∠C=60°,∠ADC=70°∴∠DAC=180°―60°―70°=50°,A.2个B.3个【答案】B【分析】①由角平分线的性质即可证明;从而可以证明;③假设DM平分错误;④连接BD、CD,证明∵AD平分∠BAC,DE⊥AB,DF∴ED=DF.故①正确;∵∠BAC=60°,AD平分∠BAC∴∠EAD=∠FAD=30°.故选B.【点睛】本题主要考查了角平分线的性质,全等三角形的判定和性质,线段垂直平分线的性质,正确作出辅助线是解题的关键.考点4:垂直平分线的判定典例4:(2023·吉林长春·统考中考真题)如图,用直尺和圆规作∠MAN的角平分线,根据作图痕迹,下列结论不一定正确的是()A.AD=AE B.AD=DF C.DF=EF D.AF⊥DE【答案】B【分析】根据作图可得AD=AE,DF=EF,进而逐项分析判断即可求解.【详解】解:根据作图可得AD=AE,DF=EF,故A,C正确;∴A,F在DE的垂直平分线上,∴AF⊥DE,故D选项正确,而DF=EF不一定成立,故B选项错误,故选:B.【点睛】本题考查了作角平分线,垂直平分线的判定,熟练掌握基本作图是解题的关键.【变式1】(2022秋·山西吕梁·八年级统考期末)如图,已知:AB=AC,MB=MC.求证:直线AM是线段BC的垂直平分线.下面是小彬的证明过程,则正确的选项是()证明:∵AB=AC∴点A在线段BC的垂直平分线上①∵MB=MC∴点M在线段BC的垂直平分线上②∴直线AM是线段BC的垂直平分线③A.①处的依据是:线段垂直平分线上的点与这条线段两个端点的距离相等B.②处的依据是:与线段两个端点距离相等的点在这条线段的垂直平分线上C.③处的依据是:与线段两个端点距离相等的点在这条线段的垂直平分线上D.以上说法都不对【答案】B【分析】根据垂直平分线的判定方法逐项判断即可.【详解】解:①处的依据是:与线段两个端点距离相等的点在这条线段的垂直平分线上,故A选项错误,不合题意;②处的依据是:与线段两个端点距离相等的点在这条线段的垂直平分线上,故B选项正确,符合题意;③处的依据是:两点确定一条直线;故C选项错误,不合题意;综上可知,选项D错误,不合题意;故选B.【点睛】本题考查线段垂直平分线的判定,解题的关键是掌握:与线段两个端点距离相等的点在这条线段的垂直平分线上,两点确定一条直线.【变式2】(2023秋·八年级课时练习)如图,已知AB=AD,∠ABC=∠ADC=90°,有下列结论:①AC平分∠BAD;②CA平分∠BCD;③AC平分BD;④DB平分∠ADC.其中正确的结论是()A.①②B.①②③C.①②④D.只有①【答案】B【分析】先证明Rt△ABC≌Rt△ADC得到∠BAC=∠DAC,∠BCA=∠DCA,BC=CD,即可判断①②③;根据现有条件无法证明④.【详解】解:∵AB=AD,∠ABC=∠ADC=90°,AC=AC,∴Rt△ABC≌Rt△ADC(HL),∴∠BAC=∠DAC,∠BCA=∠DCA,BC=CD,∴AC平分∠BAD,CA平分∠BCD,故①正确,②正确;∵BC=CD,AB=AD,∴AC是线段BD的垂直平分线,∴AC平分BD,故③正确;根据现有条件无法证明∠ADB=∠CDB,即无法证明DB平分∠ADC,故④错误;故选B.【点睛】此题主要考查线段的垂直平分线的性质,角平分线的定义,全等三角形的判定和性质等几何知识,熟知全等三角形的性质与判定定理,线段的垂直平分线的判定定理是解题的关键.【变式3】(2023春·全国·八年级专题练习)如图,在四边形ABCD中,AB=BC,AD=DC,我们把这种两组邻边分别相等的四边形叫做“等形”,连接等形ABCD的对角线AC、BD,下列结论:①∠ABD=∠CBD;②BD垂直平分AC;③四边形ABCD的面积=AC⋅BD;④若∠ABC=60°,∠ADC=120°,点M,N分别是AB,BC边上的动点,且∠MDN=60°,则AM+CN=MN,其中正确的结论是()A.①②B.②③C.①②③D.①②④【答案】D【分析】根据“边边边”证明△ABD≅△CBD可判断①;根据垂直平分线的性质可判断②;由三角形面积计算公式可判断③;延长BC到E,使CE=AM,连接DE,由“边角边”定理判断△ADM≅△CDE,可得DM= DE,由线段和差关系可得AM+CN=MN从而可判断④.【详解】解:①在△ABD和△CBD中,∵∠DAB=∠DCB=90°,∴∠DAB=∠DCE=90°,又∵AM=CE,AD=CD,∴△ADM≅△CDE(SAS),∴AM+CN=MN,故④正确;故选:D.【点睛】本题主要考查了全等三角形的判定,垂直平分线,理解“筝形”的性质和添加恰当的辅助线构造全等三角形是解题的关键.考点5:垂直平分线的实际应用典例5:(2023·河北廊坊·统考一模)在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放在△ABC的()A.三边垂直平分线的交点B.三条中线的交点C.三条角平分线的交点D.三条高所在直线的交点【答案】A【分析】根据题意可知,当木凳所在位置到A、B、C三个顶点的距离相等时,游戏公平,再由线段垂直平分线的性质即可求解.【详解】解:由题意可得:当木凳所在位置到A、B、C三个顶点的距离相等时,游戏公平,∵线段垂直平分线上的点到线段两端的距离相等,∴木凳应放的最适当的位置是在△ABC的三边垂直平分线的交点,故选:A.【点睛】本题考查线段垂直平分线的性质的应用,掌握线段垂直平分线的性质是解题的关键.【变式1】(2021春·四川成都·八年级统考阶段练习)在国家精准扶贫政策的指导下,在镇党委的大力扶持下,有两个村庄P、Q都开发了绳网项目,生产体育绳网、安全绳网等.为了让绳网通过互联网迅速销往各地,当地政府准备在两个村庄的公路m旁建立公用5G移动通信基站,要使基站到两个村庄的距离相等,那么基站应该建立在()A.A处B.B处C.C处D.D处【答案】B【分析】根据线段垂直平分线上的点到线段两端的距离相等进行求解即可.【详解】由题意知,村庄P.Q连线的垂直平分线与公路的交点就是所求,即选在点B,故选B.【点睛】本题主要考查了线段垂直平分线的性质,熟知性质是解题的关键.【变式2】(2023春·全国·八年级专题练习)如图,在△ABC中,AB=7,BC=5,AC的垂直平分线分别交AB,AC于点D,E,点F是DE上任意一点,△BCF的周长的最小值是( )A.2B.12C.5D.7【答案】B【分析】由于A,C关于直线DE为对称,所以F和D重合时,FC+FB最小,最小值等于AB,即可求得ΔBCF 的周长的最小值.【详解】解:∵DE是线段AC的垂直平分线,∴A,C关于直线DE为对称,∴F和D重合时,FC+FB最小,即ΔBCF的周长的最小值,∵DE是线段AC的垂直平分线,∴DC=DA,∴FC+FB的最小值=DC+DB=AB=7,∴ΔBCF的最小周长=FC+FB+BC=7+5=12,故选:B.【点睛】本题主要考查了轴对称――最短路线问题,线段垂直平分线的性质,解题的关键是熟练掌握线段垂直平分线的性质.【变式3】(2023春·全国·八年级专题练习)电信部门要再S区修建一座手机信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路OC,OD的距离也必须相等,则发射塔应建在()A.∠COD的平分线上任意某点处B.线段AB的垂直平分线上任意某点处C.∠COD的平分线和线段AB的交点处D.∠COD的平分线和线段AB垂直平分线的交点处【答案】D【分析】利用线段垂直平分线的性质、角平分线的性质即可求解.【详解】解:∵发射塔到两个城镇A,B的距离必须相等,∴发射塔应建在线段AB垂直平分线上.∵发射塔到两条高速公路OC,OD的距离相等,∴发射塔应建在∠COD的平分线上.∴发射塔应建在∠COD的平分线和线段AB垂直平分线的交点处.故选D.【点睛】本题考查线段垂直平分线和角平分线的实际应用,解题的关键是掌握线段垂直平分线上的点到线段两端的距离相等,角平分线上的点到角的两边的距离相等.考点6:尺规作图(垂直平分线、垂线)典例6:(2023春·山东东营·七年级校考阶段练习)尺规作图:(保留作图痕迹,不写作法)(1)要在如图所示的S区内找一点P,使它到直线m,n的距离相等,同时该点到A,B两点的距离也相等.(2)已知直线m和m上一点P,作过P与m垂直的直线n.【答案】(1)见解析(2)见解析【分析】(1)只需要尺规作直线m,n所夹锐角的角平分线和线段AB的垂直平分线,两线的交点即为所求作;(2)利用尺规作过点P的垂线即可.【详解】(1)如图,点P即为所求作;(2)如图:直线n即为所作.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质和角平分线与线段垂直平分线的尺规作图,正确理解题意、熟练掌握尺规作角平分线与线段垂直平分线的方法是解题的关键.【变式1】(2023春·湖南永州·八年级校考期中)如图,在直线l上求作一点C,使得CA=CB(保留作图痕迹).【答案】答案见解析【分析】作线段AB的中垂线交AB于一点D,则中垂线与直线l的交点为C为所求.【详解】解:以点B为圆心,AB的长为半径作圆,以点A为圆心,AB的长为半径作圆,两圆交点分别为M、N,连接MN交AB于一点D,延长MN交l于一点C,此时直线CD为AB的垂直平分线,即CA=CB(线段垂直平分线上的任意一点到线段两端点的距离相等),如图所示:.【点睛】本题考查了线段垂直平分线的性质,准确找到线段AB的中垂线是解题的关键.【变式2】(2023春·江苏南京·七年级南京市竹山中学校考阶段练习)尺规作图题(1)已知BE与CF是△ABC的高,请只用无刻度直尺画BC边上的高AD;(2)请只用无刻度直尺与圆规作直角三角形ABC的高CD.【答案】(1)见解析(2)见解析【分析】(1)根据三角形三条高所在的直线交于一点作图即可;(2)先以C为圆心,AC长为半径画弧与AB交于E,再分别以E、A为圆心,AC长为半径画弧交于F,连接CF 交AB于D,线段CD即为所求.【详解】(1)如图所示(2)如图所示试说明PQ⊥a的理由:解:连接AP、BP、AQ、BQ.在△APQ与△BPQ中,AP _____ PQ所以△APQ≌△BPQ(______∵∠ACP+∠BCP=180°,∴∠ACP=∠BCP=90°,∴PQ是AB的中垂线;【点睛】本题考查的是线段的垂直平分线的作图,全等三角形的判定与性质,线段的垂直平分线的定义,熟练掌握线段的垂直平分线的作图是解本题的关键.同步过关一、单选题1.(2023春·山东菏泽·七年级校联考阶段练习)下列图形中,不是轴对称图形的是( )A.B.C.D.【答案】A【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、不是轴对称图形,故此选项符合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项不合题意;故选:A.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.2.(2023春·广东佛山·七年级校考期中)下面是科学防控知识的图片,其中是轴对称图形的是()A.B.C.D.【答案】A【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:B,C,D选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;A选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(2023·广西贵港·统考三模)贴窗花是过春节时的一项重要活动.这项活动历史悠久.风格独特,深受国内外人士的喜爱.下列窗花作品为轴对称图形的是()A.B.C.D.【答案】A【分析】根据轴对称图形定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,逐项验证即可得到答案.【详解】解:A、该图形是轴对称图形,符合题意;B、该图形不是轴对称图形,不符合题意;C、该图形不是轴对称图形,不符合题意;D、该图形不是轴对称图形,不符合题意;故选:A.【点睛】本题考查轴对称图形的定义与判断,熟练掌握轴对称图形的定义是解决问题的关键.4.(2023·广东深圳·七年级统考期末)1给出的下列平面图形中,属于轴对称图形的是( )A.B.C.D.【答案】A【分析】根据轴对称图形的概念求解即可.【详解】解:根据轴对称图形的概念知B、C、D都不是轴对称图形,只有A是轴对称图形.故选A.已知:如图,∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.作法:①以点O为圆心,OA为半径作△ABC的外接圆;②在弧ACB上取一点P,连接AP,BP.所以∠APB=∠ACB.....形叫做轴对称图形,这条直线叫做对称轴可得答案.【详解】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.8.(2023秋·福建龙岩·八年级校考期末)下列图形①角,②线段,③等腰三角形,④直角三角形,⑤圆,⑥正五角星,其中轴对称图形的个数是()A.5B.4C.3D.2【答案】A【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线对称,进而判断得出答案.【详解】解:①角,②线段,③等腰三角形,④直角三角形,⑤圆,⑥正五角星,其中轴对称图形的是:①②③⑤⑥,共5个.故选:A.【点睛】此题主要考查了轴对称图形,正确掌握轴对称图形的定义是解题关键.9.(2023秋·河南许昌·八年级统考期末)如图,在△ABC中,∠ACB=90°,∠A<∠B,点是AB边(不与端点重合)上一点,将△ACD沿CD翻折后得到△ECD,射线CE交射线AB于点F.若AD=CD=CF,则∠A=()A.25°B.30°C.36°D.40°【答案】C【分析】先根据翻折性质和等腰三角形的性质以及三角形的外角性质得到∠CDF=2∠A,∠CFD=∠B+∠BCF,∠CDF=∠CFD,再利用直角三角形的两锐角互余得到2∠A=90°-∠A+90°-2∠A,然后解方程求解即可.【详解】解:由翻折性质得:∠ACD=∠DCE,∵AD=CD=CF,∴∠A=∠ACD,∠CDF=∠CFD,∴∠CDF=∠A+∠ACD=2∠A,∠CFD=∠B+∠BCF,∵∠ACB=90°,∴∠B=90°-∠A,∠BCF=90°-2∠A,∵∠CDF=∠CFD,∴2∠A=90°-∠A+90°-2∠A,解得:∠A=36°,故选:C.【点睛】本题考查翻折性质、等腰三角形的性质、三角形的外角性质、直角三角形的两锐角互余等知识,熟练掌握相关知识的联系与运用是解答的关键.10.(2023·江苏·九年级专题练习)我们研究过的图形中,圆的任何一对平行切线间的距离总是相等的,所以圆是“等宽曲线”除了圆以外,还有一些几何图形也是“等宽曲线”,如莱洛三角形(如图1),它是分别以等边三角形的每一个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.图2是等宽的菜洛三角形和圆形滚木的截面图.有下列4个结论:①莱洛三角形是轴对称图形;②图1中,点A到弧BC上任意一点的距离都相等;③图2中,莱洛三角形的周长、面积分别与圆的周长、面积对应相等;④使用截面的莱洛三角形的滚木搬运东西,会发生上下抖动.上述结论中,所有正确结论的序号是()A.①②B.①②④C.②③④D.①②③【答案】A【分析】根据轴对称的性质,圆的性质,等边三角形的性质、扇形面积和弧长公式,平行线间的距离判断故正确说法为①②,故选:A【点睛】本题考查了平行线的距离,等边三角形的性质,轴对称的性质,扇形面积公式,弧长公式等知识,正确的理解题意是解题的关键.二、填空题11.(2023秋·安徽池州·七年级统考期末)如图,将一张长方形纸条折叠,若∠1=52°,则∠2=___________.【答案】76°【分析】依据邻补角的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图,由折叠性质可知∠3=∠1+∠2,∴∠1=∠3-∠2=180°-∠1-∠2,∠2=180°-2∠1=180°-2×52°=76°.故答案为:76°.【点睛】本题考查邻补角的性质以及折叠问题,解题的关键是掌握折叠的性质.12.(2023秋·江苏淮安·七年级统考期末)如图,将长方形纸条的一部分CDEF沿EF折叠到GHEF的位置.若∠HEF=65°,则∠AEH的度数为_____.【答案】18°/18度【分析】根据正五边形的性质解答.【详解】解:∵多边形∴∠BCD=∠ABC=AH⊥BC∵AB=AC,AH⊥BC,∴BC=2BH=6,故答案为:6.【点睛】本题考查的是翻折变换的性质、勾股定理、等腰三角形的性质,翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.(2023秋·浙江杭州·八年级统考阶段练习)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC 外的A′处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA′=γ,则α,β,γ的关系为_______.【答案】γ=2α+β【分析】根据三角形的外角得:∠BDA′=∠A+∠AFD,∠AFD=∠A′+∠CEA′,代入已知可得结论.【详解】解:如图,由折叠得:∠A=∠A′,∵∠BDA′=∠A+∠AFD,∠AFD=∠A′+∠CEA′,∵∠A=α,∠CEA′=β,∠BDA′=γ,∴∠BDA′=γ=α+α+β=2α+β,故答案为:γ=2α+β.【点睛】本题考查了三角形外角的性质,轴对称的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.三、解答题(1)在图①中,画△ABC的高线AD.(2)在图②中,画△ABC的中线BE.(3)在图③中,画△ABF,使△ABF的面积为6【答案】(1)见解析(2)(3)如图③,△ABF的面积为【点睛】本题考查了网格中应用与设计作图,用到了三角形高,中线,和三角形的面积等知识,解题的关键是正确掌握三角形面积求法,灵活应用所学知识解决问题.18.(2023秋·北京石景山图过程.证明:连接QA,QB.∵QA=______,PA=PB,∴PQ⊥l(______)(填推理的依据).【答案】(1)见解析;(2)QB,三线合一【分析】(1)根据要求作出图形即可;(2)利用等腰三角形的性质解决问题即可.【详解】解:(1)如图,直线PQ即为所求作.(2)理由:连接QA,QB.∵QA=QB,PA=PB,∴PQ⊥l(三线合一).故答案为:QB,三线合一.【点睛】本题考查作图-复杂作图,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(2023春·广东佛山·七年级佛山市第十四中学校考期中)如图,△ABC和△ADE关于直线l对称,已知AB=15,DE=10,∠D=70°.求∠B的度数及BC、AD的长度.【答案】∠B=70°,BC=10、AD=15【分析】根据轴对称的性质,对应边相等,对应角相等即可得出答案.【详解】解:∵△ABC和△ADE关于直线l对称,。
数学关于对称知识点总结对称的基本概念对称是指一个物体或图形在某种变换下不变的性质。
在几何中,对称常常通过不同的对称变换来描述。
其中,轴对称是指物体在某个轴线旋转180°后不变;中心对称是指物体关于一个点旋转180°后不变。
而在代数中,对称通常指的是函数的对称性,即函数在某种变换下保持不变的性质。
轴对称和中心对称是对称的两种基本形式。
轴对称通常通过一条轴线来描述,如直线、曲线、多边形等。
中心对称通常通过一个点来描述,如圆、球体等。
两种对称形式在几何中有着不同的性质和应用场景,但它们都是对称的基本形式,对称理论的研究离不开它们。
对称性质及其应用对称在数学中有着丰富的性质和应用,其中包括对称图形的性质、对称函数的性质、对称矩阵的性质等。
在几何中,对称图形有多种性质,如对称图形的对角线相等、对称图形的对应边相等等。
这些性质在几何中有重要的应用,如在证明几何定理、计算几何问题等方面。
在代数中,对称函数通常是指满足一定对称性质的函数,如偶函数、奇函数等。
对称函数在微积分、泰勒展开等方面有着重要的应用,它们具有很好的性质和计算简便的特点。
另外,在线性代数中,对称矩阵是一类有重要应用价值的矩阵,它们具有许多重要的性质和结论,在物理、工程等领域有广泛的应用。
另外,在图论中,对称性也有着重要的应用。
图的对称性一般指的是与图的自同构相关的性质。
图的自同构指的是图与自身的一种一一对应,它们具有相同的结构性质。
对于有对称性的图,可以通过自同构来简化问题的分析和计算,这在图的论证和求解问题中有着重要的应用。
对称的应用还可以在密码学、物理学、化学等的领域中找到。
在密码学中,对称加密是指发送和接收方使用相同的密钥对数据进行加密和解密,这种加密方式具有高效和简单的特点,广泛应用于网络通信、数据传输等领域。
在物理学和化学中,对称性是分析和研究分子结构、化学反应等的重要工具,它有助于简化问题的分析、找出规律和规则等。
中考数学对称知识点总结一、平面图形的对称1. 点、线、面的对称(1)点的对称:一个点是自身的对称点,即对称中心就是这个点本身。
如果有两个点A和B,在A关于B的对称点是A’,则B关于A的对称点是B’,即A’与B’互为对称中心。
(2)直线的对称:直线与自身关于某点对称,这个点就是直线的对称轴。
直线的对称轴有无穷多条,包括垂直于直线的直线,穿过直线中点的直线等。
(3)平面的对称:平面与自身关于某条直线对称,这条直线就是平面的对称轴。
例如,一个正方形以对角线为对称轴,一个等边三角形以高为对称轴。
2. 图形的对称性(1)关于原点的对称:一个点(x, y)关于原点对称的点为(-x, -y),例如点(2, 3)关于原点对称的点为(-2, -3),这个性质也适用于图形。
(2)关于x轴、y轴的对称:关于x轴对称,点(x, y)的对称点为(x, -y);关于y轴对称,点(x, y)的对称点为(-x, y)。
例如,对称线为y=x的图形在这条直线两侧有对称的关系。
(3)关于直线的对称:一些图形与自身关于某条直线对称,这条直线就是图形的对称轴。
例如,一个圆与其直径垂直的直线对称,一个正方形与其两条对角线对称。
3. 图形的对称变化(1)平移:沿着一定的方向移动图形,使其保持形状不变,这种变化叫做平移。
平移是图形的一种刚体变换,对称性质不变。
(2)旋转:围绕一个点旋转图形,使其在平面内发生转动。
旋转的中心点叫做旋转中心,旋转的角度叫做旋转角。
例如,一个正方形以其中心点为旋转中心旋转90度,可以得到另一个正方形。
(3)镜像:将一个图形绕一条直线对称,得到另一个图形。
这条直线叫做镜像线。
镜像变换不会改变图形的大小和形状,只是改变了图形的位置。
例如,一个长方形以其长边为镜像线镜像,可以得到另一个长方形。
二、立体图形的对称1. 立体图形的转动对称(1)立方体:具有四个旋转对称轴,分别为通过中心点的三条对角线以及直角棱的垂直平分面。
(2)正四面体:只有一个四面体通过四个顶点的垂直平分面,因此只有一个4次旋转对称。
初中数学对称知识点总结一、对称的定义1. 点的对称:如果图形中任意一点关于某条直线对称,那么这个图形就是关于这条直线对称的。
对称的直线称为对称轴。
2. 图形的对称:如果图形关于某条直线对称,那么这个图形就是关于这条直线对称的。
对称的直线称为对称轴。
当一个图形关于一个点对称时,这个点称为图形的中心。
3. 对称性质:对称可以分为轴对称和中心对称。
轴对称是指图形可以关于一条直线对称,中心对称是指图形可以关于一个点对称。
4. 对称图形:轴对称的图形称为轴对称图形,中心对称的图形称为中心对称图形。
轴对称图形有对称轴,中心对称图形有对称中心。
二、对称的性质1. 对称性质是指图形、函数、方程等在平移、旋转或翻转后的性质不变。
2. 对称性质通常包括镜像对称、轴对称、中心对称等。
3. 对称性质在代数、几何、组合等数学领域中有着广泛的应用。
三、对称图形1. 关于坐标系的对称图形:在平面直角坐标系中,可以通过坐标变换和对称变换来研究对称图形的性质。
常见的对称图形包括点、直线、圆等。
2. 关于轴对称的图形:轴对称图形是指图形可以关于一条直线对称的图形。
常见的轴对称图形包括正方形、矩形、菱形等。
3. 关于中心对称的图形:中心对称图形是指图形可以关于一个点对称的图形。
常见的中心对称图形包括正圆、正多边形等。
四、对称的应用1. 对称在代数中的应用:对称性质在代数中有着重要的应用,可以简化问题的求解和证明过程。
2. 对称在几何中的应用:对称性质在几何中有着广泛的应用,可以帮助求解几何问题和证明几何定理。
3. 对称在组合中的应用:对称性质在组合问题中有着重要的应用,可以帮助求解排列组合和图形的对称性质等问题。
总之,对称是数学中一个非常重要的概念,它在数学的各个领域都有着广泛的应用。
对称性质可以帮助简化问题的求解和证明过程,可以帮助学生更好地理解和掌握数学的知识。
因此,学生应该认真学习对称的知识,掌握对称的定义、性质和应用,以便更好地应用对称来解决问题和证明定理。
图形推理对称知识点总结一、基本概念1. 对称轴:对称图形上的直线,对称图形在这条直线两侧的部分完全相同。
2. 对称中心:对称图形上的点,对称图形上任意一点都可以通过对称中心找到对应的点,使得这两个点关于对称中心对称。
3. 对称图形:对称图是指通过某个对称变换,图形能够重合的图形。
4. 对称变换:指图形在直线、点或者平面上的对称移动。
二、图形的对称分类1. 按对称轴分类:- 垂直对称:对称轴为垂直线,如正方形、长方形等。
- 水平对称:对称轴为水平线,如等边三角形、圆等。
- 斜对称:对称轴为斜线,如等腰三角形、菱形等。
2. 按对称次数分类:- 奇次对称:对称轴上的点不动,图形经过对称后和原来的位置有区别。
- 偶次对称:对称轴上的点随着对称存在的次数成对出现。
三、对称的性质1. 对称图形的性质:- 对称图形的对角、对边、对顶角相等。
- 对称图形的对边互为垂直平分线。
- 对称图形的对角线互相垂直且平分。
2. 对称中心的性质:- 同一个图形的对称中心只有一个。
- 对称中心一定在对称图形的内部、外部或边上。
四、对称的判定方法1. 观察法:通过观察图形的外观,判断其是否对称。
2. 折叠法:将图形按对称轴折叠,两边是否完全重合即可判定是否对称。
3. 水平/垂直线判断法:通过水平和垂直线的对称性质判断图形是否对称。
五、对称图形的应用1. 制作图案:对称图形易于绘制,可以用来制作装饰图案、传统刺绣等。
2. 场合布置:对称图形的布局美观大方,常用来布置庆典场合、展览会等。
3. 平面设计:对称图形的应用广泛,可用来设计商标、字体、广告等。
六、图形推理对称题型1. 找对称中心:给定一个对称图形,要求找出其对称中心的位置。
2. 补全对称图形:给定一部分对称图形,要求补全其对称部分,使得整体对称。
3. 判断对称图形:给定一组图形,要求判断哪些是对称的,哪些不是。
4. 进行对称变换:给定一组图形,要求进行一定次数的对称变换,找出最终的对称图形。
图形对称九年级上册知识点图形对称是初中数学中的重要概念之一,在九年级上册中也有相应的知识点。
本文将为你详细介绍九年级上册中与图形对称相关的知识。
1. 线对称与点对称在九年级上册中,我们首先学习了线对称和点对称的概念。
线对称是指关于一条直线对称,两侧的图形完全相同。
而点对称是指关于一个点对称,点对称的图形在对称中心点上重合。
2. 图形的对称性质学习了线对称和点对称的概念后,我们进一步学习了图形的对称性质。
图形对称时,它们的一些性质也会具有对称性,比如对称图形的面积、周长、角度等都是相等的。
3. 线对称和点对称的判断在九年级上册中,我们学习了如何通过观察判断一个图形是线对称还是点对称。
对于线对称,我们可以寻找一条直线,使得图形两侧完全对称;对于点对称,我们可以寻找一个点,使得图形通过该点对称。
4. 判断对称图形的坐标在学习图形对称时,我们也需要了解如何通过坐标来判断一个图形是否对称。
对于线对称,我们可以通过判断图形上的点的坐标是否存在关于对称中线的对称点;对于点对称,我们可以通过判断图形上的点的坐标是否存在关于对称中心点的对称点。
5. 利用对称性解决问题图形对称的概念不仅仅是一个抽象的概念,它也有实际应用。
在九年级上册的数学题目中,我们会遇到很多利用对称性解决问题的情况。
比如,利用对称性求解线或点的位置和坐标,利用对称性证明两个图形相等等。
通过学习九年级上册的图形对称知识点,我们能够更好地理解和运用对称性质解决问题。
图形对称是整个数学知识体系的重要组成部分,对于我们的数学学习和思维能力培养都具有重要意义。
总结起来,九年级上册的图形对称知识点主要包括线对称和点对称的概念、图形的对称性质、判断对称图形的方法以及利用对称性解决问题的应用。
通过学习这些知识,我们能够更好地理解和应用图形对称,提高数学解题能力。
【初中数学】初中数学期末复习对称知识点总结
一、轴对称与轴对称图形:
1.轴对称性:沿直线折叠图形。
如果它能与另一个图形重合,那么这两个图形在直线上是对称的。
两个图形中的对应点称为对称点,对应的线段称为对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注:对称轴是一条直线,而不是一段
3.轴对称的性质:
(1)两个关于一条线对称的图形是全等的;
(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;
(3)两个数字围绕一条直线对称。
如果它们对应的线段或尺寸界线相交,则交点位于对称轴上;
(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段的垂直平分线:
(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:① 从线段垂直平分线上的点到线段两个端点的距离相等;
②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注:根据线段垂直平分线的这一特性,可以推断三角形三条边的垂直平分线相交于一点,且该点到三个顶点的距离相等。
5.角的平分线:
(1)定义:将一个角度分成两个相等角度的光线称为该角度的平分线
(2)性质:①在角的平分线上的点到这个角的两边的距离相等.
② 在角的平分线上,与角的两侧等距的点
注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.
6.等腰三角形的性质及判定:
首页上一页123下一页末页共3页。
图形的对称性复习一、题型特点1、涉及主要知识点涉及到的几何变换:轴对称、中心对称。
轴对称基本知识点:1)主要概念(1) 轴对称:两个图形沿着一条直线折叠后能够互相重合,我们就说这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点,对应线段叫做对称线段.(2) 轴对称图形:如果一个图形沿某条直线对折后,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.(3)两者的区别是:轴对称图形是一个具有特殊性质的图形,而轴对称是说两个图形之间的位置关系.2)主要性质轴对称的性质:如果两个图形关于某条直线对称,那以对应线段相等,对应角相等,对应点所连的线段被对称轴垂直平分.3) 简单的轴对称图形:线段、角、等腰三角形、矩形、菱形、正多边形及圆等都是常见的轴对称图形①线段:有两条对称轴:线段所在直线和线段中垂线.②角:有一条对称轴:该角的平分线所在的直线③等腰(非等边)三角形是轴对称图形:有一条对称轴,底边中垂线.等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴.等腰三角形的两个底角相等.④等边三角形是轴对称图形:有三条对称轴:每条边的中垂线中心对称基本知识点1)主要概念(1)中心对称图形定义:在平面内,一个图形绕某个点旋转180○,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.(2)中心对称:把一个图形绕着某一个点旋转 180○,如果它能够与另一个图形完全重合,那么就说这两个图形关于这个点是对称的,这个点叫做对称中心.2)主要性质(1)性质:中心对称图形上的每一对对应点所连成的线段都经过对称中心,并 且被对称中心平分.(2)中心对称与旋转对称的关系:中心对称是旋转角是180o的旋转对称. (3)点),(y x P 关于原点的对称点1P 为 . 3) 简单的中心对称图形:线段、平行四边形、矩形、菱形、正方形、圆等都是常见的中心对称图形 2、主要考点考点1、判断轴对称图形、中心对称很图形 考点2、折叠问题考点3、做轴对称图形、中心对称图形考点4、利用图形的对称性解决简单的实际问题 3、考试说明的要求 ①轴对称中考要求A 、了解图形的轴对称和轴对称图形,理解对应点所连的线段被对称轴垂直平分的性质。
B 、能按要求作出简单平面图形经过一次或两次轴对称后的图形;掌握简单图形 之间的轴对称关系,并能指出对称轴;掌握基本图形(等腰三角形、矩形、菱形、 等腰梯形、正多边形、圆)的轴对称性及其相关性质。
C 、能运用轴对称知识解决简单问题。
②中心对称中考要求A 了解图形的旋转,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;会识别中心对称图形。
B 能按要求作出简单平面图形旋转后的图形,能依据旋转前后的图形,指出旋转中心和旋转角C 能运用旋转的知识解决简单问题。
二、典例分析考点一:判断轴对称图形或中心对称图形例1(2009年内蒙古包头)下列图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个【答案】B【解析】本题考查轴对称图形和中心对称图形的定义,轴对称图形是指将图形沿某条直线折叠,直线两旁部分能够完全重合的图形,而中心对称图形是指将图形沿某个点旋转180°后得到的图形与原图形完全重合的图形.故同时符合上面两个条件的是第1、3和4个图形,正确答案选B.考查方式:这个考点主要以选择题形式出现,试题多以日常生活中的工艺品、商标图案、宣传画、字母、数字为材料,判断是否是轴对称图形或中心对称图形,不会有较大变化,应熟练掌握基本图形的轴对称性,结合实际图形进行辨认.解题思路方法:熟练掌握基本图形的对称性,利用轴对称图形和中心对称图形的定义,结合实际图形进行辨认和判断学生可能出现的问题与落实建议:个别学生如果判断不准,可以采取先利用轴对称图形和中心对称图形的定义判断,再折试卷、将试卷颠倒的方法进一步检验。
练习、1、(2013山东烟台,2,3分)以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()【答案】B分析:将试卷颠倒,和原来图形相同的就是中心对称图形,故选B2、(2013内蒙古呼和浩特,3,3分)观察下列图形,既是轴对称图形又是中心对称图形的有( )A. 1 个B. 2 个C. 3 个D. 4 个【答案】C分析:将图形沿某条直线折叠,直线两旁部分能够完全重合的图形是后三个,沿某个点旋转180°后得到的图形与原图形完全重合的是后三个,将试卷颠倒,和原来图形相同的就是中心对称图形,是后三个,它们也是轴对称图形,故选C注意:以下练习分析同此3、(2013湖北黄冈市,2,3分)随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()【答案】A分析:沿某个点旋转180°后得到的图形与原图形完全重合的只有A4、 (2013甘肃白银,3,3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是( )【答案】C5、(2013山东潍坊,2,3分)下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是( ).A. B. C. D.【答案】A6、(2013江苏泰州,4,3分)下列标志图中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】B.7、(2013贵州省六盘水,4,3分)下列图形中,是轴对称图形的是()【答案】A8、(2013浙江台州,4,4分)下列四个艺术字中,不是轴对称的是( ) A.金 B.木 C.水 D.火9、(2013山东德州,2,3分)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是( )A B C D 【答案】C10、(3分)(2013•宁波)下列电视台的台标,是中心对称图形的是( ) A .B .C . D.【答案】D11. (2013广东省,9,3分)下列图形中,不是..轴对称图形的是( )【答案】 C .12、(2013哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是( ).【答案】D13、(2013北京,6,4分)下列图形中,是中心对称图形但不是轴对称图形的是( )【答案】A.14. (2013浙江义乌,7,3分)下列图形中,既是轴对称图形又是中心对称图形的有( ).A .4个B .3个C .2个D .1个【答案】 C .15. (2013河南,2,3)下列图形中,既是轴对称图形又是中心对称图形的是( )【答案】D16.(2013四川凉山州,6,4分)下列图案中,既是轴对称图形又是中心对称图形的是( )【答案】B17(2013四川绵阳,2,3分)下列“数字”图形中,有且仅有一条对称轴的是( )【答案】 A考点二、折叠中的轴对称例1、如图,半圆A 和半圆B 均与y 轴相切于点O ,其直径CD ,EF 均与x 轴垂直,以O•为顶点,仅开口方向相反的两条抛物线分别经过点两半圆的C ,E 和D ,F ,则图中阴影部分的面积是_______. 答案 :2分析 :由题可知,半圆A 与半圆B 关于y 轴对称,两条抛物线关于x 轴对称,∴S 1=S 3,S 2=S 4,∴图中阴影部分的面积实际为半圆A 的面积.考查方式:这个考点主要以选择题、填空题形式出现,应熟练掌握基本图形的轴对称性,A .B. C.D.A .B .C .D .掌握关于折痕对称的图形是全等的.对应线段相等,对应角相等,全等形的面积也相等. 解题思路方法:由轴对称性得到全等图形,经翻折将不规则的阴影转化为规则的、特 殊的、可求面积的图形,从而达到求阴影面积的目的。
学生可能出现的问题与落实建议:利用图形变换求图形的阴影面积最好做为一个专题来复 习,让学生掌握这类题多数是利用平移、旋转、轴对称将阴影面积转化为规则的、特 殊的、可求面积的图形,从而达到求阴影面积的目的。
例2 (2011广东广州市)如图1所示,将矩形纸片先沿虚线AB 按箭头方向向右..对折,接 着将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,则打开后 的展开图是( )A .B .C .D .考查方式:这个考点主要以选择题形式出现,应熟练掌握基本图形的轴对称性,掌握关于折痕对称的图形是全等的.解题思路方法:此题对折后应两条折痕互相垂直,所以展开图应沿横竖两条轴成轴对称,且剪出来的小锐角应远离矩形纸片的中心,所以答案为D.例3、如图,已知折叠矩形的一边AD ,使得点D 落在BC 边上的点F 处,且AB=8cm ,BC=10cm ,求EC 的长. 答案:3cm解析:由折叠性质知, AF=AD=10cm ,EF=DE . 设EC=xcm ,则DE=(8-x )cm . 在Rt △ABF 中,BF=22108 =6, ∴FC=BC-BF=10-6=4cm . 在Rt△CEF 中,EF 2=EC 2+FC 2, ∴(8-x )2=x 2+42, ∴x=3.即EC 的长为3cm .思路分析:因为折叠是轴对称变换,属于全等变换,所以本题的思路主要是将线段转化代换,CDB (A )ABABCD图1这种转化的思想是解决数学问题的重要思想方法.此题△ADE 与△AFE 应沿折痕成轴对称,所以利用这两个三角形全等进行等量代换,设EC=x ,将Rt △CEF 中的各边分别表示出来,利用勾股定理求解.得EC 的长为3cm考查方式:这个考点主要以选择题、填空题形式出现,应熟练掌握基本图形的轴对称性,掌握关于折痕对称的三角形是全等的.对应线段相等,对应角相等.解题思路方法:熟练掌握基本图形的对称性,利用折痕成轴对称的三角形是全等的.对应线段相等,对应角相等,即:折叠问题中注意它的对称性:对应边(角)的相等性;求这类问题中的未知线段长,常设所求线段长为x ,把其他线段用含x 的代数式表示,选择一个直角三角形.根据勾股定理列方程,用方程思想求解.学生可能出现的问题与落实建议:让学生知道这类题的基本思路就是:设所求线段长为x ,把其他线段用含x 的代数式表示,选择一个直角三角形.根据勾股定理列方程,用方程思想求解.形成一个基本模式。
练习、1. (2011山西)将一个矩形纸片依次按图(1)、图的方式对折,然后沿图(3)中的虚线裁剪,最后头将图(4)的纸再展开铺平,所得到的图案是( )【答案】A分析:此题对折后应两条折痕互相垂直,所以展开图应沿横竖两条轴成轴对称,且剪掉的图形在矩形纸片的中间,所以答案为A.2. (2011重庆市潼南)如图,在△ABC 中,∠C=90, 点D 在AC 上,,将△BCD 沿着直线BD 翻折,使点C 落在斜边AB 上的点E 处,DC=5cm ,则点D 到斜边AB 的距离是 cm ..【答案】5分析:翻折之后,△BCD 与△BED 应沿BD 对称,是全等三角形,所以∠C=∠BED=90,并14题图ABCDE(向上对折)图(3)(向右对折)图(4)DCBA(第1题)且CD=DE ,点D 到斜边AB 的距离正是DE ,所以CD=DE=53.(2011山东济宁)如图,△ABC 的周长为30cm ,把△AB C 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边于点E ,连接AD ,若AE =4cm ,则△ABD 的周长是A .22cmB .20 cmC .18cmD .15cm【答案】A分析:把△ABC 的边AC 对折,得到△CDE 与△ADE 全等,所以得到AE =CE=4cm ,AD=DC 。