3桩基础设计
- 格式:ppt
- 大小:2.27 MB
- 文档页数:31
桩基础课程设计一、设计资料1、地形拟建建筑场地地势平坦, 局部堆有建筑垃圾。
2.工程地质条件自上而下土层依次如下:(号土层: 素填土, 层厚约1.5m, 稍湿, 松散, 承载力特性值fak=95kPa(号土层: 淤泥质土, 层厚3.3m, 流塑, 承载力特性值fak=65kPa。
(号土层: 粉砂, 层厚6.6m, 稍密, 承载力特性值fak=110kPa。
(号土层:粉质黏土, 层厚4.2m, 湿, 可塑, 承载力特性值fak=165kPa。
(号土层:粉砂层, 钻孔未穿透, 中密-密实, 承载力特性值fak=280kPa。
3.岩土设计技术参数岩土设计参数如表3.1和表3.2所示.表3.1 地基岩土物理力学参数土层编号土的名称孔隙比e含水量W(%液性指数I L标准贯入锤击数N压缩模量Es(MPa)素填土---- 5.0 淤泥质土 1.04 62.4 1.08 - 3.8 ●粉砂0.81 27.6 -14 7.5 ❍粉质黏土0.79 31.2 0.74 -9.2 ⏹粉砂层0.58 --31 16.8表3.2 桩的土的名称桩的侧阻力qsk桩的端阻力qpk土层编号土的名称桩的侧阻力qsk桩的端阻力qpk(1)拟建场区地下水对混凝土结构无腐蚀性。
(2)地下水位深度: 位于地表下3.5m。
5.场地条件建筑物所处场地抗震设防烈度为7度, 场地内无可液化砂土、粉土。
6.上部结构资料拟建建筑物为六层钢筋混凝土结构, 长30m, 宽9.6m。
室外地坪标高同自然地面, 室内外高差450mm。
柱截面尺寸均为400mm×400mm, 横向承重, 柱网布置如图3.1所示。
图3.1 柱网布置图7、上部结构作用上部结构作用在柱底的荷载效应标准组合值如表3.3所示, 该表中弯矩MK 、水平力VK 均为横向方向。
上部结构作用在柱底的荷载效应基本组合值如表3.4所示, 该表中弯短M、水平力V均为横向方向。
表3.3 柱底荷载效应标准组合值题号FK(kN)MK( kN.m)VK(kN)A轴B轴C轴A轴B轴C轴A轴B轴C轴1 1256 1765 1564 172 169 197 123 130 1122 1350 1900 1640 185 192 203 126 135 1143 1650 2050 1810 191 197 208 132 141 1204 1875 2160 2080 205 204 213 139 149 1345 2040 2280 2460 242 223 221 145 158 1486 2310 2690 2970 275 231 238 165 162 1537 2568 3225 3170 293 248 247 174 179 1658 2670 3550 3410 299 264 256 183 190 1709 2920 3860 3720 304 285 281 192 202 19110 3130 3970 3950 323 302 316 211 223 230题号FK (kN)MK( kN.m)VK(kN)9、混凝土强度等级为C25~C30, 钢筋采用HPB235.HRB335级。
三桩承台计算书一、示意图:二、基本资料:1.依据规范:《建筑地基基础设计规范》(GB 50007-2002)《混凝土结构设计规范》(GB 50010-2002)2.几何参数:承台边缘至桩中心距: C = 500 mm桩列间距: A = 1200 mm 桩行间距: B = 1800 mm承台根部高度: H = 550 mm 承台端部高度: h = 550 mm纵筋合力点到底边的距离: a s = 70 mm 平均埋深: h m = 2.50 m矩形柱宽: B c = 500 mm 矩形柱高: H c = 500 mm圆桩直径: D s = 400 mm 换算后桩截面:L s = 320mm 3.荷载设计值:(作用在承台顶部)竖向荷载: F = 1000.00 kN绕X轴弯矩: M x = 0.00 kN·m 绕Y轴弯矩: M y = 0.00 kN·mX向剪力: V x = 0.00 kN Y向剪力: V y = 0.00 kN 4.材料信息:混凝土强度等级: C20f c = 9.60 N/mm2f t = 1.10 N/mm2钢筋强度等级: HRB335 f y = 300.00 N/mm2三、计算过程:1.作用在承台底部的弯矩绕X轴弯矩: M0x = M x-V y·H = 0.00-0.00×0.55 = 0.00kN·m绕Y轴弯矩: M0y = M y+V x·H = 0.00+0.00×0.55 = 0.00kN·m 2.基桩净反力设计值:计算公式:《建筑地基基础设计规范》(GB 50007-2002)N i = F/n±M0x·y i/∑y j2±M0y·x i/∑x j2(8.5.3-2)N1 = F/n= 1000.00/3 = 333.33 kNN2 = F/n= 1000.00/3 = 333.33 kNN3 = F/n= 1000.00/3 = 333.33 kN3.承台受柱冲切验算:计算公式:《建筑地基基础设计规范》(GB 50007-2002)F l≤2[β0x·(b c+a0y)+β0y·(h c+a0x)]·βhp·f t·h0(8.5.17-1)自柱边到最近桩边的水平距离:a0 = 0.19 m最不利一侧冲切面计算长度:b m = 3.26 m作用于最不利冲切面以外冲切力设计值:F l = 666.67 kN承台有效高度:h0 = H-a s = 0.55-0.07 = 0.48 m冲跨比:λ0 = a0/h0 = 0.19/0.48 = 0.40冲切系数:β0= 0.84/(λ0+0.2) = 0.84/(0.40+0.2) = 1.41β0·b m·βhp·f t·h0= 1.41×3.26×1.00×1100.00×0.48= 2428.02 kN > F l = 666.67 kN, 满足要求。
桩基础设计步骤
桩基础设计步骤可以分为以下几个主要步骤:
1. 确定工程要求:了解工程的性质、荷载要求、土壤条件、基础布置等信息。
2. 土壤勘察:进行土壤勘察,了解土壤的类型、层位、荷载承载力、水位等参数。
3. 桩型选择:根据土壤条件、荷载要求和工程要求,选择合适的桩型,如灌注桩、沉管桩、摩擦桩等。
4. 成桩材料选择:根据桩的类型和设计要求,选择合适的成桩材料,如钢筋混凝土、钢管等。
5. 桩身设计:根据荷载要求和土壤条件,确定桩的直径、长度和间距等参数。
6. 荷载计算:根据工程要求和荷载要求,计算桩的承载力和抗拔力,并进行安全系数的评估。
7. 桩基础布置:根据土壤条件和承载力要求,确定桩的布置方式和间距。
8. 施工方法选择:根据工程要求和桩的类型,选择合适的施工方法,如钻孔、振动、冲击等。
9. 施工监控:对于重要工程,应进行施工监控和质量检查,确保桩基础的施工质量。
10. 桩基础验收:完成施工后,进行桩基础的验收和测试,确保其符合设计要求和工程要求。
第二章桩基础工程说明一、本章定额适用于陆地上桩基工程。
二、本章定额项目名称中的桩长是指桩底(桩尖)至自然地坪的长度;压桩力是指设计桩力。
三、本章定额中已综合各种桩的压实系数和充盈系数。
四、本章定额中未考虑桩基施工遇有旧基础、孤石等需要处理的,施工场地桩机无法直接行走而需加固的,有发生时另行计算。
五、打(压)预制方(管)桩定额1.已包括预制混凝土桩的场内运输;2.未包括钢筋混凝土方(管)桩;3.打(压)桩定额中已包括接桩时所需要的桩机和起重机的台班量。
4.采用机械快速连接打压预制管,相应打压桩定额的人工消耗量乘以系数1.07,接桩材料费另行计算。
5.送预制方(管)桩套用相应打(压)桩定额,其人工、机械消耗乘以下周转性材料。
7.静力压桩机打钢筋混凝土预制桩,如因地质原因桩身露出自然地坪造成桩机不能移位,可另计砍除露明桩身费和静压桩机停滞台班费用,静压桩机停滞台班费按一个露明方桩0.094台班、一个露明管桩0.063台班计算。
8.预制管桩设计要求填充的空心部分,混凝土、钢筋按实际计算套用第四章的混凝土柱、钢筋制安定额,其中底部的薄钢筋托板及固定托板用的钢筋按铁件计算。
9.在旧建筑物场地上进行打(压)预制方(管)桩,设计或发包人要求用桩机送桩器进行探桩的,探桩项目套用打(压)桩定额乘以系数0.5。
六、锚杆静压桩压桩定额已包括校正反力架垫铁的摊销量;未包括反力架用的螺栓螺帽,按铁件另计;未包括钢筋混凝土桩材料费。
封桩定额已综合砍、凿桩头费。
七、预制钢筋混凝土桩身的损耗率为0.5%,不分现场预制或外购。
八、设计的电焊接桩接头钢材用量与定额的用量不同时,按设计调整。
九、冲(钻)孔灌注混凝土桩1.冲(钻)孔灌注桩分列成孔、岩层增加费、护筒埋设、泥浆制作、废泥浆外运、土方外运、钢筋笼制作安装、混凝土灌注等项目计算。
2.遇较软岩、较硬岩、坚硬岩类型土质时,应计算岩层增加费。
遇碎石层套用岩石成孔增加费乘以系数0.2。
三桩桩基承台计算项目名称_____________日期_____________设计者_____________校对者_____________一、设计依据《建筑地基基础设计规范》 (GB50007-2011)①《混凝土结构设计规范》 (GB50010-2010)②《建筑桩基技术规范》 (JGJ 94-2008)③二、示意图三、计算信息承台类型: 三桩承台计算类型: 自动计算截面尺寸构件编号: CT-11. 几何参数圆柱直径dc=600mm圆桩直径d=300mm承台根部高度H(自动计算)=1300mmx方向桩中心距A=1500mmy方向桩中心距B=1500mm承台边缘至边桩中心距 C=300mm2. 材料信息柱混凝土强度等级: C30 ft_c=1.43N/mm2, fc_c=14.3N/mm2承台混凝土强度等级: C20 ft_b=1.10N/mm2, fc_b=9.6N/mm2桩混凝土强度等级: C30 ft_p=1.43N/mm2, fc_p=14.3N/mm2承台钢筋级别: HPB300 fy=270N/mm23. 计算信息结构重要性系数: γo=1.0纵筋合力点至近边距离: as=50mm4. 作用在承台顶部荷载标准值Fgk=2035.000kN Fqk=0.000kNMgxk=0.000kN*m Mqxk=0.000kN*mMgyk=-330.000kN*m Mqyk=0.000kN*mVgxk=-55.000kN Vqxk=0.000kNVgyk=0.000kN Vqyk=0.000kN永久荷载分项系数rg=1.00可变荷载分项系数rq=1.00Fk=Fgk+Fqk=2035.000+(0.000)=2035.000kNMxk=Mgxk+Fgk*(A2-A1)/2+Mqxk+Fqk*(A2-A1)/2=0.000+2035.000*(0.000-0.000)/2+(0.000)+0.000*(0.000-0.000)/2=0.000kN*mMyk=Mgyk+Fgk*(B2-B1)/2+Mqyk+Fqk*(B2-B1)/2=-330.000+2035.000*(0.000-0.000)/2+(0.000)+0.000*(0.000-0.000)/2=-330.000kN*mVxk=Vgxk+Vqxk=-55.000+(0.000)=-55.000kNVyk=Vgyk+Vqyk=0.000+(0.000)=0.000kNF1=rg*Fgk+rq*Fqk=1.00*(2035.000)+1.00*(0.000)=2035.000kNMx1=rg*(Mgxk+Fgk*(A2-A1)/2)+rq*(Mqxk+Fqk*(A2-A1)/2)=1.00*(0.000+2035.000*(0.000-0.000)/2)+1.00*(0.000+0.000*(0.000-0.000)/2)=0.000kN*mMy1=rg*(Mgyk+Fgk*(B2-B1)/2)+rq*(Mqyk+Fqk*(B2-B1)/2)=1.00*(-330.000+2035.000*(0.000-0.000)/2)+1.00*(0.000+0.000*(0.000-0.000)/2) =-330.000kN*mVx1=rg*Vgxk+rq*Vqxk=1.00*(-55.000)+1.00*(0.000)=-55.000kNVy1=rg*Vgyk+rq*Vqyk=1.00*(0.000)+1.00*(0.000)=0.000kNF2=1.35*Fk=1.35*2035.000=2747.250kNMx2=1.35*Mxk=1.35*(0.000)=0.000kN*mMy2=1.35*Myk=1.35*(-330.000)=-445.500kN*mVx2=1.35*Vxk=1.35*(-55.000)=-74.250kNVy2=1.35*Vyk=1.35*(0.000)=0.000kNF=max(|F1|,|F2|)=max(|2035.000|,|2747.250|)=2747.250kNMx=max(|Mx1|,|Mx2|)=max(|0.000|,|0.000|)=0.000kN*mMy=max(|My1|,|My2|)=max(|-330.000|,|-445.500|)=-445.500kN*mVx=max(|Vx1|,|Vx2|)=max(|-55.000|,|-74.250|)=-74.250kNVy=max(|Vy1|,|Vy2|)=max(|0.000|,|0.000|)=0.000kN四、计算参数1. 承台总长 Bx=C+A+C=0.300+1.500+0.300=2.100m2. 承台总宽 By=C+B+C=0.300+1.500+0.300=2.100m3. 承台根部截面有效高度 ho=H-as=1.300-0.050=1.250m4. 圆桩换算截面宽度 bp=0.8*d=0.8*0.300=0.240m5. 圆柱换算截面宽度 bc=0.8*dc=0.480m, hc=0.8*dc=0.480m五、内力计算1. 各桩编号及定位座标如上图所示:θ1=arccos(0.5*A/B)=1.047θ2=2*arcsin(0.5*A/B)=1.0471号桩 (x1=-A/2=-0.750m, y1=-B*cos(0.5*θ2)/3=-0.433m)2号桩 (x2=A/2=0.750m, y2=-B*cos(0.5*θ2)/3=-0.433m)3号桩 (x3=0, y3=B*cos(0.5*θ2)*2/3=0.866m)2. 各桩净反力设计值, 计算公式:【8.5.3-2】①∑x i=x12*2=1.125m∑y i=y12*2+y32=1.125mN i=F/n-Mx*y i/∑y i2+My*x i/∑x i2+Vx*H*x i/∑x i2-Vy*H*y1/∑y i2N1=2747.250/3-0.000*(-0.433)/1.125+-445.500*(-0.750)/1.125+-74.250*1.300*(-0.750)/1.125-0.000*1.300*(-0.433)/1.125=1277.100kNN2=2747.250/3-0.000*(-0.433)/1.125+-445.500*0.750/1.125+-74.250*1.300*0.750/1.125-0.000*1.300*(-0.433)/1.125=554.400kNN3=2747.250/3-0.000*0.866/1.125+-445.500*0.000/1.125+-74.250*1.300*0.000/1.125-0.000*1.300*0.866/1.125=915.750kN六、柱对承台的冲切验算【8.5.19-1】①1. ∑Ni=0=0.000kNho1=h-as=1.300-0.050=1.250m2. αox=A/2-bc/2-bp/2=1.500/2-1/2*0.480-1/2*0.240=0.390mαoy12=y2-hc/2-bp/2=0.433-0.480/2-0.240/2=0.073mαoy3=y3-hc/2-bp/2=0.866-0.480/2-0.240/2=0.506m3. λox=αox/ho1=0.390/1.250=0.312λoy12=αoy12/ho1=0.250/1.250=0.200λoy3=αoy3/ho1=0.506/1.250=0.4054. αox=0.84/(λox+0.2)=0.84/(0.312+0.2)=1.641αoy12=0.84/(λoy12+0.2)=0.84/(0.200+0.2)=2.100αoy3=0.84/(λoy3+0.2)=0.84/(0.405+0.2)=1.3896. 计算冲切临界截面周长AD=0.5*A+C/tan(0.5*θ1)=0.5*1.500+0.300/tan(0.5*1.047))=1.270mCD=AD*tan(θ1)=1.270*tan(1.047)=2.199mAE=C/tan(0.5*θ1)=0.300/tan(0.5*1.047)=0.520m6.1 计算Umx1Umx1=bc+αox=0.480+0.390=0.870m6.2 计算Umx2Umx2=2*AD*(CD-C-|y1|-|y3|+0.5*bp)/CD=2*1.270*(2.199-0.300-|-0.433|-|0.866|+0.5*0.240)/2.199=0.831mUmy=hc+αoy12+αoy3=0.480+0.250+0.506=1.236m因 Umy>(C*tan(θ1)/tan(0.5*θ1))-C-0.5*bpUmy=(C*tan(θ1)/tan(0.5*θ1))-C-0.5*bp=(0.300*tan(1.047)/tan(0.5*1.047))-0.300-0.5*0.240=0.480m7. 计算冲切抗力因 H=1.300m 所以βhp=0.958γo*Fl=γo*(F-∑Ni)=1.0*(2747.250-0.000)=2747.25kN[αox*2*Umy+αoy12*Umx1+αoy3*Umx2]*βhp*ft_b*ho=[1.641*2*0.480+2.100*0.870+1.389*0.831]*0.958*1.10*1.250*1000=6004.351kN≥γo*Fl柱对承台的冲切满足规范要求七、角桩对承台的冲切验算【8.5.19-5】①计算公式:【8.5.19-5】①1. Nl=max(N1,N2)=1277.100kNho1=h-as=1.300-0.050=1.250m2. a11=(A-bc-bp)/2=(1.500-0.480-0.240)/2=0.390ma12=(y3-(hc+d)*0.5)*cos(0.5*θ2)=(0.866-(0.480-0.240)*0.5)*cos(0.5*1.047)=0.438m λ11=a11/ho=0.390/1.250=0.312β11=0.56/(λ11+0.2)=0.56/(0.312+0.2))=1.094C1=(C/tan(0.5*θ1))+0.5*bp=(C/tan(0.5*1.047))+0.5*0.240=0.640mλ12=a12/ho=0.438/1.250=0.351β12=0.56/(λ12+0.2)=0.56/(0.351+0.2))=1.017C2=(CD-C-|y1|-y3+0.5d)*cos(0.5*θ2)=(2.199-0.300-|-0.433|-0.866+0.5*1.047)*cos(0.5*0.240)=0. 624m3. 因 h=1.300m 所以βhp=0.958γo*Nl=1.0*1277.100=1277.100kNβ11*(2*C1+a11)*(tan(0.5*θ1))*βhp*ft_b*ho=1.094*(2*639.615+390.000)*(tan(0.5*1.047))*0.958*1.10*1250.000=1388.971kN≥γo*Nl=1277.100kN底部角桩对承台的冲切满足规范要求γo*N3=1.0*915.750=915.750kNβ12*(2*C2+a12)*(tan(0.5*θ2))*βhp*ft_b*ho=1.017*(2*623.538+438.231)*(tan(0.5*1.047))*0.958*1.10*1250.000*1000=1304.072kN≥γo*N3=915.750kN顶部角桩对承台的冲切满足规范要求八、承台斜截面受剪验算【8.5.21-1】①1. 计算承台计算截面处的计算宽度2.计算剪切系数因 0.800ho=1.250m<2.000m,βhs=(0.800/1.250)1/4=0.894ay=|y3|-0.5*hc-0.5*bp=|0.866|-0.5*0.480-0.5*0.240=0.506λy=ay/ho=0.506/1.250=0.405βy=1.75/(λy+1.0)=1.75/(0.405+1.0)=1.2463. 计算承台底部最大剪力【8.5.21-1】①bxo=A*(2/3+hc/2/sqrt(B2-(A/2)2))+2*C=1.500*(2/3+0.480/2/sqrt(1.5002-(1.500/2)2))+2*0.300=1.877mγo*Vy=1.0*1831.500=1831.500kNβhs*βy*ft_b*bxo*ho=0.894*1.246*1.10*1877.128*1250.000=2875.801kN≥γo*Vy=1831.500kN承台斜截面受剪满足规范要求九、承台受弯计算【8.5.21-1】【8.5.21-2】计算公式:【8.5.21-1.2】①1. 确定单桩最大竖向力Nmax=max(N1, N2, N3)=1277.100kN2. 承台底部弯矩最大值【8.5.21-1】【8.5.21-2】①M=Nmax*(A-(sqrt(3)/4)*bc)/3=1277.100*(1.500-(sqrt(3)/4)*0.480)/3=550.070kN*m3. 计算系数C30混凝土α1=1.0αs=M/(α1*fc_b*By*ho*ho)=550.070/(1.0*9.6*2.100*1.250*1.250*1000)=0.0174. 相对界限受压区高度ξb=β1/(1+fy/Es/εcu)=0.576ξ=1-sqrt(1-2αs)=0.018≤ξb=0.5765. 纵向受拉钢筋Asx=Asy=α1*fc_b*By*ho*ξ/fy=1.0*9.6*2100.000*1250.000*0.018/270=1644mm2最小配筋面积:B=|y1|+C=|-433.0|+300=733.0mmAsxmin=Asymin=ρmin*B*H=0.150%*733.0*1300=1429mm2Asx≥Asxmin, 满足要求。
设计题目:3#桥墩桩基础设计”或“4#桥墩桩基础设计院系:土木工程系专业:年级:姓名:学号:指导教师:郑清西南交通大学峨眉校区2014年6月20 日一、基本资料 (1)1、设计的任务及建筑物的性质和用途 (1)2、由学号确定的数据资料 (1)二、高承台桩基地基和基础的设计与计算 (2)1、桩基设计 (2)(一)、承台尺寸的决定 (2)(二)、作用在承台底面重心处的荷载计算 (3)(三)、桩的设计 (5)2、桩的内力及位移计算 (6)(一)、桩的内力和变位计算 (6)(二)、验算单桩轴向受压容许承载力 (8)(三)、计算桩身弯矩 (9)(四)、群桩承载力的检算 (10)3、承台验算 (11)(一)、承台受剪验算 (11)(二)、冲剪验算 (12)(三)、承台抗弯验算 (12)一、基本资料1、设计的任务及建筑物的性质和用途设计任务:根据已有建筑物的图样,所受上部结构的荷载、地质和水文地质情况,遵照“中华人民共和国铁路桥涵地基和基础设计规范TB10002.5—2005”(公路桥涵设计通用规范JTG D60——2004)设计某铁路(公路)干线上跨越某河流的桥梁之1#号桥墩的地基和基础。
建筑物的性质和用途:该桥梁为等跨度32M,梁全长32.6m,梁端缝0.1m,梁高3.0m,梁宽铁路按单线布置,公路按双线布置m,梁及上部体系自重按870KN计,简支箱梁支座中心距梁端距离0.75m,同一桥墩相邻梁支座间距1.6m。
轨底至梁底高度为3.7m,采用盆式橡胶支座,支座高0.173m,梁底至支座铰中心0.09m。
桥面系为无渣桥面(公路不管有砟无砟),并设双侧人行道人行道宽1m,荷载定为3KN/m2,桥墩为混凝土实体桥墩,该桥位于直线平坡段上,与河流正交,该地区无流冰及地震,该河道不通航。
该桥除了为铁路(公路)客货运服务外,亦为附近居民来往的通道。
设计依“中华人民共和国铁路桥涵地基和基础设计规范TB10002.5—2005”(“公路桥涵设计通用规范JTG D60——2004”)进行设计,活载按铁路标准活载,即“中—活载”或(公路标准荷载)。
随着经济发展,城市中各类高层建筑拔地而起,作为高层的基础部分往往在整个建筑物投资中占据了很大的比例。
而高层基础往往采用桩基础,因此,如何选择合理的桩基础形式,对于保证安全,节约投资、降低造价起着举足轻重的作用。
这就要求我们设计人员对每个建筑物的勘察报告进行仔细分析,选择一个最优化的基础方案。
笔者就以下几方面对桩基础设计中值得注意的问题进行探讨。
一.桩基设计中静载荷试验的重要性:目前的桩基础设计过程,往往受到时间的约束首先根据地质报告提供的参数确定单桩承载力设计值,根据这个估算的单桩承载力直接进行桩基础设计并施工,等工程桩施工结束后再挑选试桩进行静载荷试验。
这个过程具有相当的不科学性,结果符合估算要求,则皆大欢喜,否则因工程已施工完毕补桩也会很困难,且有时因地质报告有出入会给施工中带来相当的不便。
这里主要有两个问题,下面举例来说明。
一是根据地质报告提供的桩周土摩擦力标准值及桩端土承载力标准值由规范JGJ94-94计算的场区单桩承载力标准值,这是一个经验数值,不宜直接采用。
近几年来笔者通过各类桩基础中试桩及工程桩的检测,发现绝大多数桩的实际承载力均大于计算值,有些相差幅度较大,因此按试桩获得的实际承载力将会比按勘察报告估算的承载力来布置基础将产生巨大的经济效益。
例如,笔者曾设计过苏州工业园区南都·玲珑湾花园住宅,主体为地下一层、地面十八层的高层住宅,根据地质勘察报告拟采用 D500的预应力管桩,桩长20m,按JGJ94-94公式5.2.8估算单桩承载力设计值约为1400kN,而我要求进行的3根破坏性试桩显示实际单桩承载力可达1850kN,整整比估算值提高了30%左右,实际工程桩设计就采用试验值进行,为甲方大大节省了投资。
其二是当场地不均匀或地质报告数值有偏差的情况下,不进行试桩而直接按地质报告进行工程桩施工将给施工带来巨大的困难且造成不必要的浪费。
例如唯亭某五层商住楼,根据地质报告采用10m 长的预制方桩,桩径400x400,单桩承载力极限标准值约为1350kN,采用静力压桩,实际施工中几乎每根桩都压至2000kN而未达到预定深度,而此时已达到预制桩的桩身强度,故施工过程中每根桩都采用了劈桩,在时间金钱上都造成了巨大的浪费。
基础工程桩基础设计专业年级姓名学号指导教师二〇二〇年一月中国基础工程课程设计目录一、场地条件及地质资料 (1)二、基础设计资料 (2)三、持力层、桩型、桩长的确定 (2)3.1桩端持力层选择 (2)3.2桩型选择 (3)3.3桩长确定 (3)四、单桩竖向承载力标准值和设计值的计算 (3)五、确定桩数和桩平面布置图; (3)5.1初步估算桩数 (3)5.2初选承台尺寸 (4)六、群桩中基桩受力验算; (4)6.1考虑承台效应确定基桩承载力 (4)6.2单桩承载力验算 (5)七、群桩沉降计算 (5)八、桩身设计及强度验算 (7)8.1桩身设计 (7)8.2桩身强度验算 (8)九、承台设计及强度验算 (9)9.1承台设计 (9)9.2承台正截面抗弯设计 (9)9.3承台受柱冲切计算 (9)9.4角桩向上冲切验算 (10)9.5承台斜截面抗剪计算 (10)9.6承台局部受压计算 (11)十、设计说明 (11)十一、施工说明 (12)11.1静压沉桩施工方案 (12)11.2承台施工 (14)11.3质量保证措施 (17)11.4安全保证措施 (18)11.5环境、水土保护措施 (19)十二、参考文献 (20)一、场地条件及地质资料建筑场地土层按其成因、土的特征和力学性质的不同自上而下划分为 6 层(见图1),物理力学指标见表1,勘查期间测得地下水水位深度为2.0 m,本场地下水无腐蚀性。
建筑安全等级为II 级,已知上部框架结构由柱子传来的荷载,柱截面尺寸为0.5 m×0.5 m。
承台底面埋深D=1.8 m。
设地面高程为0,地下水位高程为-2.0 m。
图- 1场地的地质剖面示意图表1地质资料表二、基础设计资料1、建筑安全等级为二级;2、已知上部框架结构由柱子传来的荷载:轴力,剪力,弯矩,其中H、M沿承台X方向作用。
3、柱子截面尺寸为0.5m×0.5m;4、承台地面埋深D =1.8m;5、地面高程为0,地下水位高程为-2.0m。
一、引言基础是建筑物和地基之间的连接体。
基础把建筑物竖向体系传来的荷载传给地基。
从平面上可见,竖向结构体系将荷载集中于点,或分布成线形,但作为最终支承机构的地基,提供的是一种分布的承载能力。
如果地基的承载能力足够,则基础的分布方式可与竖向结构的分布方式相同。
但有时由于土或荷载的条件,需要采用满铺的伐形基础。
伐形基础有扩大地基接触面的优点,但与独立基础相比,它的造价通常要高的多,因此只在必要时才使用。
不论哪一种情况,基础的概念都是把集中荷载分散到地基上,使荷载不超过地基的长期承载力。
因此,分散的程度与地基的承载能力成反比。
有时,柱子可以直接支承在下面的方形基础上,墙则支承在沿墙长度方向布置的条形基础上。
当建筑物只有几层高时,只需要把墙下的条形基础和柱下的方形基础结合使用,就常常足以把荷载传给地基。
这些单独基础可用基础梁连接起来,以加强基础抵抗地震的能力。
只是在地基非常软弱,或者建筑物比较高的情况下,才需要采用伐形基础。
多数建筑物的竖向结构,墙、柱都可以用各自的基础分别支承在地基上。
中等地基条件可以要求增设拱式或预应力梁式的基础连接构件,这样可以比独立基础更均匀地分布荷载。
如果地基承载力不足,就可以判定为软弱地基,就必须采取措施对软弱地基进行处理。
软弱地基系指主要由淤泥、淤泥质土、冲填土、杂填土或其他高压缩性土层构成的地基。
在建筑地基的局部范围内有高压缩性土层时,应按局部软弱土层考虑。
勘察时,应查明软弱土层的均匀性、组成、分布范围和土质情况,根据拟采用的地基处理方法提供相应参数。
冲填土尚应了解排水固结条件。
杂填土应查明堆积历史,明确自重下稳定性、湿陷性等基本因素。
在初步计算时,最好先计算房屋结构的大致重量,并假设它均匀的分布在全部面积上,从而等到平均的荷载值,可以和地基本身的承载力相比较。
如果地基的容许承载力大于4倍的平均荷载值,则用单独基础可能比伐形基础更经济;如果地基的容许承载力小于2倍的平均荷载值,那么建造满铺在全部面积上的伐形基础可能更经济。