实验 压力传感器特性的研究
- 格式:pptx
- 大小:842.35 KB
- 文档页数:3
LTCC高温压力传感器温漂特性研究罗涛;谭秋林;熊继军;纪夏夏;王晓龙;薛晨阳;张文栋【摘要】Temperatures drift characteristics of wireless passive pressure sensor based on Dupont951 LTCC ( Low-Temperature Co-fired Ceramics) is investigated. By building high temperature test system,temperature characteristic of the sensor is tested within 0 ~600 ℃. Measurement results show rather large temperature drift of the sensor responses. Comparative study is carried out for a fabricated sensor with no-cavity sensing capacitor and on-chip planar spiral inductor under high temperature. The results indicate that the relative permittivity of DuPont951 LTCC material increases from 7 . 8 at room temperature to 9 . 04 at 600 ℃. The conclusion can be obtained that relative permittivity of LTCC material is the main factor which results in great temperature drift of the sensor.%研究了利用杜邦951 LTCC 材料制备的无线无源压力传感器的温漂特性。
精选全文完整版可编辑修改实验十六 压力传感器特性研究及其应用在物理实验、科学研究和生产过程中,需要测量各种物理量,其中不少是非电量。
由于电学量在测量、传送、记录等方面有很多的优点,所以现代测量技术中对非电量测量亦广泛使用电测法。
将非电量信号转换成电量信号的装置叫做传感器。
传感器是现代检测和控制系统的重要组成部分。
传感器的作用就是把被测量的非电量信号(如力、热、声、磁和光等物理量)转换成与之成比例的电量信号(如电压和电流),然后再经过适当的测量电路处理后,送至指示器指示或记录。
这种非电量至电量的转换是应用不同物体的某些电学性质与被测量之间的特定关系来实现的,例如利用电阻效应、热电效应、磁电效应、光电效应和压电效应等关系。
应用不同物体的独特的物理变化,设计和制造出适用于各种不同用途的传感器。
压力传感器是最基本的传感器之一。
【实验目的】1.了解非电量电测的一般原理和测量方法。
2.掌握压力传感器的构造、原理、测量方法和特性。
3.了解非平衡电桥的原理,用逐差法处理数据的方法。
【实验原理】非电量电测系统一般由传感器、测量电路和显示记录三部分组成,它们的关系如图16-1所示。
现在以应变电阻片做成的压力传感器为例进一步讨论如何实现将“力”的测量转变为“电压”测量的电测系统。
图16-1 非电量电测系统 图16-2 应变电阻片1.压力传感器应变电阻片是用一根很细的康铜电阻丝按图-2所示的形状弯曲后用胶粘贴在衬底(用纸或有机聚合物薄膜制成)上,电阻丝两端有引出线用于外接。
康铜丝的直径在0.012~0.050m m 之间。
电阻丝受外力作用拉长时电阻要增加,压缩时电阻要减小,这种现象称为“应变效应”,这种电阻片取名为“应变电阻片”。
将应变电阻片粘贴在弹性材料上,当材料受外力作用产生形变时,电阻片跟着形变,这时电阻值发生变化,通过测量电阻值的变化就可反映出外力作用的大小。
实验证明,在一定范围内电阻的变化和电阻丝轴向长度的变化成正比。
传感器技术应用于中学物理实验的案例研究物理学是以实验为基础的科学,物理教学中怎样体现这一学科特性是课程标准理念下中学物理改革的重要内容。
数字技术正在改变人们的工作方式、思维方式和教育方式,如何发挥数字技术在课程改革中的作用,也是当前课程改革研究的一个重要问题。
笔者就这两个基本问题及两者联系谈谈看法。
长期以来人们往往把物理实验分成两种基本形式,一种是演示性实验,一种是学生分组实验。
前者定位于培养观察能力,后者着眼于培养操作技能和验证物理原理。
这种基本思想和教学目标决定了实验的性质和基本教学方式。
在演示实验中,教师做、学生看,教师讲、学生听,体现了以教师为中心的传统物理教学模式。
学生分组实验虽然是学生动手,但实验目的、仪器准备、操作步骤、实验报告全部由教师预先设计好,学生仅仅是熟悉仪器,进行连接,然后按步骤进行操作、观察,记录和分析实验数据,得到结果。
在这种实验中,学生是完全按教师设计好的方案进行,与工人在车间中“照图施工”非常相似,缺乏学生自主的独立思考和创造性活动。
因此,学生做完实验印象不深,兴趣也不太大,久而久之对实验也就不太重视。
导致传统物理实验教学这种局面的原因就是多方面的,首先,过去的物理教学大纲没较好的彰显以“实验为基础”的学科特征,只是对非常有限的十几个学生分组实验并作了规定。
那个时代,对物理实验的教育功能缺少根本性的重新认识,只指出科学知识就是显然的,仅仅把实验看做就是一种技能训练,没有能够认识到实验在科学知识、能力、方法、情感态度价值观等综合科学素质教育中的关键促进作用,没有认识到物理实验在培育科学素质方面具备无可替代的独有功能。
另一方面就是考试指挥棒的影响,长期以来笔试占到绝对统治者地位,实验教学在升学考试内容中一直缺少理应的地位,所以评价方式也就是引致人们对实验缺少足够多注重的关键原因。
改革开放后,随着教育改革的逐步深入,人们对物理实验的重要性、教学目的、结构和内容逐渐有了新的认识,逐步突破了传统框架。
压力传感器研究报告1. 引言在现代科技快速发展的时代,传感器技术的应用越来越广泛。
压力传感器作为一种重要的传感器类型,被广泛应用于各个领域,如工业自动化、医疗设备、汽车工业等。
本报告将对压力传感器进行全面、详细、完整的研究与探讨。
2. 压力传感器原理及分类2.1 压力传感器原理压力传感器是通过将压力信号转化为电信号来实现测量的一种传感器。
其工作原理基于压阻、电容、电势差或热敏等不同的物理效应。
2.2 压力传感器分类根据不同的测量原理和应用场景,压力传感器可以被分为以下几类:1.压阻式传感器–电阻式–导线式–薄膜式2.电容式传感器3.热敏式传感器4.振动式传感器3. 压力传感器的应用领域压力传感器的广泛应用使其在各个领域都发挥了重要作用。
以下是一些常见的应用领域:3.1 工业自动化•工业过程监控•液位测量•气体流量测量3.2 汽车工业•发动机控制系统•车辆稳定性控制系统•车辆能源管理系统3.3 医疗设备•血压测量•呼吸机•输液控制4. 压力传感器的性能参数4.1 精确度精确度是评估压力传感器性能的重要指标,表示传感器输出值与真实值之间的偏差程度。
4.2 响应时间响应时间是指压力传感器从受到压力变化到输出结果稳定的时间。
4.3 工作温度范围工作温度范围是指压力传感器可以正常工作的温度范围。
超出该范围可能导致传感器输出不准确甚至损坏。
4.4 防护等级防护等级用于评估压力传感器的防护能力,包括防尘、防水等级。
5. 压力传感器的市场格局当前,世界上主要的压力传感器制造商主要集中在美国、德国、日本等发达国家。
6. 压力传感器的发展趋势随着科技的不断进步和社会的需求不断增加,压力传感器也在不断发展。
以下是压力传感器的一些发展趋势:6.1 运用新材料与新技术•采用新型材料,提高传感器的可靠性和精确度。
•运用纳米技术、微机电系统(MEMS)等新技术,实现更小型化、更高精度的压力传感器。
6.2 可穿戴设备中的应用随着可穿戴设备的兴起,压力传感器作为其中的一个重要组成部分,将在医疗、运动监测等领域发挥关键作用。
压力传感器特性研究实验报告1.研究对象本次实验研究的对象是压力传感器,通过对压力传感器的特性进行研究,可以更好地了解该传感器在压力检测方面的应用情况。
2.实验原理通过外加一定压力使传感器产生应变,可得到传感器的输出电压VOUt。
传感器的灵敏度定义为输出电压VoUt与压力间的比率,即S=AVout/AP。
传感器的非线性度定义为传感器的输出电压与压力之间的非线性程度。
而传感器的回复时间则定义为传感器输出电压从压力停止作用到其回复的时间。
3.实验设备•通用数字万用表•压力传感器•气压泵•CRO示波器4.实验过程4.1实验步骤1.将压力传感器与示波器相连,测试电压信号的大小。
2.关闭气压泵,调整压力传感器的位置。
3.打开气压泵,使气压流入压力传感器,观察示波器的输出曲线变化。
4.记录气压变化的曲线,包括气压变化时间及变化量,并计算出压力传感器的灵敏度以及非线性度。
5.按照4中得到的数据计算出传感器的回复时间,并进行记录。
4.2实验结果实验得到的结果如下:灵敏度将压力传感器放入箱子中,依次加入IOkg、20kg>30kg>40kg>50kg的质量,记录相应的气压和输出电压,计算出灵敏度。
结果如下:质量0.097201.12072.16300.146301.62062.67400.195401.42057.95500.244501.22050.82非线性度将压力传感器放入箱子中,依次加入IOkg、20kg、30kg、40kg、50kg的质量,在每个质量级别下分别测量得到的输出电压与理论值的误差,计算得到非线性度。
结果如下:质量(kg)理论值(mV)实际值(mV)误差(mV)误差百分数(%)102222.222198.1424.08 1.08204444.444373.9170.53 1.58306666.676587.9778.70 1.18408888.898763.31125.58 1.415011111.1110995.87115.24 1.04回复时间通过开关气泵,使压力传感器的压力输出突然变化,记录下传感器从压力变化到输出电压变化的时间,该时间被定义为传感器的回复时间,测试结果如下:从50MPa下降至U45MPa,回复时间为0.5秒;从30MPa下降至U25MPa,回复时间为06秒。
压力传感器特性研究及其应用•相关推荐压力传感器特性研究及其应用压力传感器通常由压力敏感元件和信号处理单元组成。
按不同的测试压力类型,压力传感器可分为表压传感器、差压传感器和绝压传感器。
下面是小编整理的压力传感器特性研究及其应用,欢迎大家分享。
压力传感器压力传感器是一种能够感知压力信号,并根据一定的规律将压力信号转换成可用的输出电信号的装置。
在压力测量中,有表压、负压、绝对压力、真空度之分。
工业上使用的压力示值大多是表压,所以绝对压力是表压和大气压之和。
如果测得的压力低于大气压,则称为负压或真空度。
测量压力的传感器在工作原理上分为压阻式压力传感器、压电式压力传感器、电容式压力传感器、压磁式压力传感器、霍尔式压力计等。
压阻式压力传感器半导体应变片式传感器在实际应用中被称为压阻式压力传感器,压阻式压力传感器在早期利用半导体应变片粘贴在弹性体上制成。
工业上使用的压力指示大多是表压,所以绝对压力是表压和大气压之和。
如果测得的压力低于大气压,则称为负压或真空度。
压阻式压力传感器的主要特点是体积小、重量轻、易于集成、灵敏度和分辨率高,适合于微压力检测。
但由于它是由半导体硅材料制成的,所以对温度很敏感。
没有温度补偿,温度误差会很大。
压阻式压力传感器应用由于压阻式压力传感器具备一系列优点,在航天、航海、医疗设备、石油化工中都得到了广泛应用。
在如今的社会形势下,全球市场对呼吸机、制氧机、血压计等医疗设备的'需求呈爆炸式增长,其中压阻式压力传感器是呼吸机的关键部件。
在家用呼吸机、医用呼吸机和高精度血压计的应用中,压阻式压力传感器供不应求。
压阻式压力传感器产品压阻式压力传感器工艺复杂,制造工艺要求高。
下面列出了两种典型的压阻式压力传感器的技术参数,以便进行客观的比较和说明。
图来自工控论坛压力范围0~10kPa压力范围属于相对较小的压力测量范围。
在实际应用中,选择的范围应略大于所用范围。
工作温度一般工业应用与集成电路系统的要求在-40℃~80℃之间,两款产品达到了-40℃~125℃的工作温度范围,能够满足大多数应用。
压力传感器特性的研究压力传感器是一种用于测量物体或环境中的压力的仪器。
它们可以在不同的应用中发挥作用,例如测量车辆轮胎的气压、测量管道中的液体或气体的压力以及用于医疗设备和工业流程控制中的压力测量。
在进行精确测量时,必须了解压力传感器的特性以确保数据的准确性和可靠性。
首先,对于压力传感器来说,它应该是具有高精度的特性。
传感器应能精确测量压力,并输出准确的数值,以提供准确的反馈。
在某些应用中,准确度尤其重要,例如在测量医疗设备中血压时。
传感器的测量准确度受到许多因素的影响,例如传感器所用的材料、尺寸、工作温度和压力范围。
从这个意义上说,压力传感器的优劣之分在于它的准确度和误差水平。
其次,压力传感器应该具有线性特性,即传感器输出与测量的压力可以精确地对应。
这意味着随着压力的增加,传感器的输出应该成比例增加,以保持线性响应。
这对于工业流程控制和精确的测量应用尤其重要。
如果传感器具有非线性特性,那么输出数据将无法准确地反映所测量的压力,因此我们需要采用一些技术手段来保证其线性特性。
第三,压力传感器应该具有高稳定性的特性,即传感器输出应该随着时间的推移而保持稳定。
这意味着传感器应该能够防止漂移和故障,这通常是通过选择合适的材料和设计来实现的。
例如,为了保证稳定性和可靠性,有些传感器会使用具有高稳定性的材料,例如无铅玻璃或陶瓷等。
另外,压力传感器还应该具有高灵敏度的特性,可以检测到细微的压力变化。
这对于需要进行非常准确的测量的应用尤其重要,例如在高精度测量中。
通常情况下,高灵敏度的特性可以通过增加传感器的灵敏度来实现,尤其是采用微电子机械系统(MEMS)技术制造的压力传感器,通常可以实现基本上没有保护改善措施的高度精确测量。
最后,压力传感器还应该具有高可靠性的特性,具备足够的耐久性和可靠性以保证其在各种环境和应用中工作正常。
例如,在高温或湿度环境下使用的传感器需要具备防水、耐腐蚀和高温性能,以保证其可靠性。
光纤位移压力传感特性的研究实验报告一、实验目的通过对光纤位移压力传感器的实验研究,掌握其基本工作原理、测量范围及精度等参数,并探究其在实际应用中的优越性。
二、实验原理光纤位移压力传感器的工作原理是利用光纤的受力柔顺性,将光纤上的光束引到探头中,并通过探头感应光纤的受力变化,从而获得被测物体的位移及压力等动态信息。
光纤位移压力传感器主要包括探头、光源和检测器等部分,其中光源产生光波,光束在光纤中传输,光纤上部分受力变形,产生较大的力致光纤光路长度的微小变化,这一微小变化将会对传输的光波偏移一定的角度,经过探头捕获到的信号经过能量变换后传递到检测器,从而实现对光纤位移压力的测量。
三、实验器材光纤位移压力传感器、电源、光源、光电检测器、滑块导轨等。
四、实验流程1.按照实验器材使用说明书将光纤位移压力传感器安装在滑块导轨上;2.将电源连接至光源和光电检测器;3.调整光源和光电检测器的位置,使得光束能够形成一个封闭的光路;4.测量光纤位移压力传感器的初始状态;5.将较大的物体作用在光纤位移压力传感器上,测量其变形后的状态;6.根据读数计算出物体的位移及压力等数据,并进行分析。
五、实验结果本次实验的光纤位移压力传感器的测量范围为0至1000牛,精度可达0.1%。
实验结果表明,在受到外来压力影响时,光纤位移压力传感器能够产生一定的光路长度变化,通过对这种变化的测量,能够较为准确地对外来压力进行测量。
此外,在位移测量方面,本次实验中的光纤位移压力传感器也表现出了较为优越的性能,能够实现对微小变形的高精度测量。
本次光纤位移压力传感器的实验研究表明,该传感器具有较高灵敏度,能够实现高精度的位移、压力测量,适用于需要实时监控、远距离测量等多种应用场景。
通过对其功耗、精度等方面的分析,进一步优化传感器的性能,可以提升其在实际应用中的可靠性和适用性。
第1篇一、实验目的本次实验旨在研究压力传感器的动态特性,包括响应时间、频率响应、相位响应等,以评估其在不同动态压力变化下的性能。
通过实验,我们可以了解压力传感器在实际应用中的动态表现,为后续的设计和优化提供依据。
二、实验原理压力传感器的动态特性主要取决于其内部结构和传感原理。
本实验采用压电式压力传感器,其工作原理基于压电效应,即在压力作用下产生电荷,通过电荷的积累和转换,实现压力信号的输出。
三、实验设备1. 压电式压力传感器2. 数字信号采集器3. 动态压力发生器4. 计算机及数据采集软件5. 标准压力计四、实验步骤1. 连接设备:将压力传感器、数字信号采集器、动态压力发生器等设备连接好,确保连接牢固,无误接。
2. 设置参数:根据实验要求,设置动态压力发生器的压力变化范围、频率和持续时间等参数。
3. 数据采集:启动动态压力发生器,同时启动数字信号采集器,记录压力传感器输出的电压信号。
4. 数据分析:将采集到的数据导入计算机,利用数据采集软件进行分析,包括计算响应时间、频率响应、相位响应等参数。
5. 结果对比:将实验结果与标准压力计的读数进行对比,评估压力传感器的准确性和稳定性。
五、实验结果与分析1. 响应时间:通过实验,压力传感器的响应时间为0.5ms,表明其响应速度快,能够满足动态压力测量的需求。
2. 频率响应:实验结果显示,压力传感器的频率响应范围为10Hz~100kHz,满足一般动态压力测量的要求。
3. 相位响应:实验表明,压力传感器的相位响应在-90°~0°范围内,符合预期。
六、实验结论通过本次实验,我们得出以下结论:1. 压电式压力传感器具有响应速度快、频率响应范围宽、相位响应稳定等优点,能够满足动态压力测量的需求。
2. 在实际应用中,应根据具体测量需求选择合适的压力传感器,并注意其动态特性的影响。
七、实验注意事项1. 实验过程中,确保设备连接牢固,防止因接触不良导致数据采集错误。