工程测试技术1信号及频谱分析
- 格式:pdf
- 大小:1.45 MB
- 文档页数:60
第一章信号及其描述教学重点:1、周期信号与离散频谱2、瞬变非周期信号与连续频谱§1-1信号的分类与描述一、信号的分类(一)确定性信号与随机信号1、确定性信号:可以用明确的数学关系来描述的信号(可确定任何时刻的信号值)1)周期信号:按一定间隔(周期)重复出现,无始无终的信号,可表示为:x(t)=x(t+nT)n=1,2,3,…T为周期2)非周期信号:可用明确的数学式描述,但变化无周期的信号3)准周期信号:由两种以上的周期信号合成的,但其组成分量的频率不成整数比,故无法找到公共周期,因而无法按一定的时间间隔重复出现。
2、随机信号:不能准确地预测其未来值,也无法用数学关系式来描述的信号,但其值的变动服从某些统计规律,可以用统计方法预测未来值。
如:幅值的均值、分散范围等。
(二)连续信号和离散信号以独立变量(时间变量t)的取值是否连续来划分(三)能量信号和功率信号二、信号的时域描述和频域描述1、信号的时域描述1)以时间为独立变量的信号,直接观测记录到的信号,连续信号。
2)信号的时域描述,包含有信号的全部信息量。
2、信号的频域描述1)以频率为独立变量表示的信号。
2)周期信号可以表示为频率成整数比的简谐信号的叠加。
3)周期方波的时域图形、幅频谱和相频谱三者之间的关系:频谱:将组成信号的各频率成分(简谐分量)找出来,按频率大小的次序排列,称为频谱(幅频图和相频图)频谱分析:将信号的时域描述通过适当的方法,变成信号的频域描述过程。
时域描述与频域描述的联系:两者都包含了信号的全部信息量,都能表示出信号的特点。
§1-2周期信号与离散频谱一、傅里叶级数的三角函数展开式任何一个周期信号x(t),可以用三角级数表示(周期为T0):二、周期信号的指数傅里叶级数利用欧拉公式,将周期信号的三角傅里叶级数变换为指数傅里叶级数复指数形式的频谱为双边谱三角函数形式的频谱为单边谱三.周期信号频谱的特点周期信号的频谱具有三个特点:1)周期信号的频谱是离散的。
工程测试技术信号分析基础掌握信号时域波形分析方法信号分析是工程测试技术中非常重要的一部分,它可以帮助我们详细了解信号的特征和性质,进而为问题的解决提供有力的依据。
信号的时域波形分析方法是信号分析的基础,下面我将为大家介绍几种常用的时域波形分析方法。
首先,最基本的时域波形分析方法是观察和分析信号的波形图。
通过观察信号的波形图,我们可以直观地了解信号的振幅、周期和频率等特征。
比如,正弦信号的波形图是一个周期性的正弦曲线,通过观察波形图我们可以测量信号的振幅和频率。
此外,对于非周期性信号,我们也可以通过观察波形图得到一些重要的信息,比如信号的上升时间、下降时间和持续时间等。
其次,快速傅里叶变换(FFT)是一种用于信号频谱分析的重要方法。
通过对信号进行FFT计算,我们可以将信号从时域转换为频域,在频谱图上观察和分析信号的频谱结构。
频谱图可以清晰地展示信号中不同频率分量的大小和分布情况。
通过对频谱图的分析,我们可以确定信号是否存在特定频率的谐波成分,进而准确地定位和判断信号中的故障。
此外,自相关分析是一种广泛应用于信号分析的方法。
自相关函数描述了信号与其自身在不同时间点上的相似程度,通过计算自相关函数,我们可以得到信号的自相关曲线。
自相关曲线可以帮助我们判断信号中的周期性分量和重复出现的模式。
比如,当自相关曲线具有明显的周期性时,说明信号中存在周期性变化的分量。
最后,平均处理是信号分析中常用的一种方法。
平均处理可以帮助我们消除信号中的噪声,从而提高信号的可靠性和准确性。
平均处理的基本思想是对多次观测到的信号进行平均,以减小随机噪声的影响。
通过对多次观测信号的平均,我们可以得到一个更加平滑和精确的信号波形图。
综上所述,信号分析的时域波形分析方法对于工程测试技术至关重要。
很多问题的解决都需要先对信号进行详细的分析和了解,时域波形分析方法可以帮助我们直观地观察和分析信号的特征,为问题的解决提供有效的依据。
通过掌握这些方法,我们可以更好地理解和利用信号,提高工程测试的准确性和效率。
实验一典型信号频谱分析一、实验目的1、在理论学习的基础上,通过本实验熟悉典型信号的波形和频谱特征,并能够从信号频谱中读取所需的信息。
2、了解信号频谱分析的基本方法及仪器设备。
二、实验原理本实验利用在DRVI上搭建的频谱分析仪来对信号进行频谱分析。
由虚拟信号发生器产生多种典型波形的电压信号,用频谱分析芯片对该信号进行频谱分析,得到信号的频谱特性数据。
分析结果用图形在计算机上显示出来,也可通过打印机打印出来。
三、实验设计原理图图1 典型信号频谱分析实验原理设计图四、实验步骤及内容1. 启动服务器,运行DRVI主程序,开启DRVI数据采集仪电源,然后点击DRVI快捷工具条上的"联机注册"图标,选择其中的"DRVI采集仪主卡检测"进行服务器和数据采集仪之间的注册。
2. 点击"实验脚本文件"的链接,将本实验的脚本文件贴入并运行,实验截屏效果图如图2所示。
图2 典型信号频谱分析实验3. 点击DRVI"典型信号频谱分析"实验中的"白噪声"按钮,产生白噪声信号,分析和观察白噪声信号波形和幅值谱特性。
特点分析:所有频率具有相同能量的随机噪声称为白噪声。
白噪声信号的波形没有任何的规律可言,它的分布是杂乱的、随机的、无序的;幅值谱特性:白噪声的幅值基本为零,因而将白噪声加到其他任意信号上不影响其他信号的幅频特性。
4. 点击DRVI"典型信号频谱分析"实验中的"正弦波"按钮,产生正弦波信号,分析和观察正弦波信号波形和幅值谱特性。
特点分析:正弦波是周期信号,在频谱图上可以看做是垂直于横坐标的一跳直线。
正弦信号只在固有频率出存在一个不规则的尖脉冲,其余各频率处对应幅值为0。
5. 点击DRVI"典型信号频谱分析"实验中的"方波"按钮,产生方波信号,分析和观察方波信号波形和幅值谱特性。
Harbin Institute of Technology课程大作业说明书课程名称:机械工程测试技术基础设计题目:信号的分析与系统特性院系:机电学院班级:0908107设计者:学号:10908107XX指导教师:王慧峰设计时间:2012/XXXX哈尔滨工业大学题目一信号的分析与系统特性题目:写出下列信号中的一种信号的数学表达通式,求取其信号的幅频谱图(单边谱和双边谱)和相频谱图,若将此信号输入给特性为传递函数为)H的系统,试讨论信号(s参数的取值,使得输出信号的失真小。
作业要求(1)要求学生利用第1章所学知识,求解信号的幅频谱和相频谱,并画图表示出来。
T及幅值A,每个学生的(2)分析其频率成分分布情况。
教师可以设定信号周期取值不同,避免重复。
(3)利用第2章所学内容,画出表中所给出的系统)H的伯德图,教师设定时间(sω的取值,每个同学取值不同,避免重复。
常数τ或阻尼比ζ和固有频率n(4)对比2、3图分析将2所分析的信号作为输入)x,输入给3所分析的系统)(tH,(s求解其输出)(t y 的表达式,并且讨论信号的失真情况(幅值失真与相位失真)若想减小失真,应如何调整系统)(s H 的参数。
解题矩形波的0=2T τ ,不妨设T 0=2s ,A=1。
2.幅频谱和相频谱将其分解为三角函数表示形式的傅里叶级数,002200-200211=(t)=+-=0TT T T T a w dt Adt Adt T T ⎛⎫ ⎪⎝⎭⎰⎰⎰00220000-200222()cos()cos()-cos()0TTT T T n a w t nw t dt A nw t dt A nw t dt T T ⎛⎫==+= ⎪⎝⎭⎰⎰⎰00220000-20020000000022()sin()sin()-sin()2 =cos()-cos()2024 =0 n TT T T T n b w t nw t dt A nw t dt A nw t dt T T T T A A nw t nw t T T nw nw An nπ⎛⎫==+ ⎪⎝⎭⎛⎫ ⎪⎪ ⎪⎝⎭⎧⎪⎨⎪⎩⎰⎰⎰为奇数为偶数式中002=w T π。
⼯程测试技术答案(第三版)孔德仁主编第1章测量的基础知识书本:1-1.欲使测量结果具有普遍科学意义的条件是什么答:①⽤来做⽐较的标准必须是精确已知的,得到公认的;②进⾏⽐较的测量系统必须是⼯作稳定的,经得起检验的。
1-2.⾮电量电测法的基本思想是什么答:基本思想:⾸先要将输⼊物理量转换为电量,然后再进⾏必要的调节、转换、运算,最后以适当的形式输出。
1-3.什么是国际单位制其基本量及其单位是什么答:国际单位制是国际计量会议为了统⼀各国的计量单位⽽建⽴的统⼀国际单位制,简称SI,SI制由SI单位和SI单位的倍数单位组成。
基本量为长度、质量、时间、电流强度、热⼒学温度、发光强度,其单位分别为⽶、千克、秒、安培、开尔⽂、坎德拉、摩尔。
1-4.⼀般测量系统的组成分⼏个环节分别说明其作⽤答:⼀般测量系统的组成分为传感器、信号调理和测量电路、指⽰仪器、记录仪器、数据处理仪器及打印机等外部设备。
传感器是整个测试系统实现测试与⾃动控制的⾸要关键环节,作⽤是将被测⾮电量转换成便于放⼤、记录的电量;中间变换(信号调理)与测量电路依测量任务的不同⽽有很⼤的伸缩性,在简单的测量中可完全省略,将传感器的输出直接进⾏显⽰或记录;信号的转换(放⼤、滤波、调制和解调);显⽰和记录仪器的作⽤是将中间变换与测量电路出来的电压或电流信号不失真地显⽰和记录出来;数据处理仪器、打印机、绘图仪是上述测试系统的延伸部分,它们能对测试系统输出的信号作进⼀步处理,以便使所需的信号更为明确。
1-5.举例说明直接测量和间接测量的主要区别是什么答:⽆需经过函数关系的计算,直接通过测量仪器得到被测量值的测量为直接测量,可分为直接⽐较和间接⽐较两种。
直接将被测量和标准量进⾏⽐较的测量⽅法称为直接⽐较;利⽤仪器仪表把原始形态的待测物理量的变化变换成与之保持已知函数关系的另⼀种物理量的变化,并以⼈的感官所能接收的形式,在测量系统的输出端显⽰出来,弹簧测⼒。
间接测量是在直接测量的基础上,根据已知的函数关系,计算出所要测量的物理量的⼤⼩。