停留时间分布
- 格式:ppt
- 大小:2.61 MB
- 文档页数:71
实验五 连续流动搅拌釜式反应器停留时间分布的测定1实验的意义和目的在研究工业生产反应器内进行的液相反应时,不仅要了解浓度、温度等因素对反应速度的影响,还要考虑物料的流动特性和传热与传质对反应速度的影响。
由于种种原因造成的涡流、速度分布等使物料产生不同程度的返混。
返混不仅会改变反应器内的浓度分布从而影响反应率,同时还会给反应的放大、设计带来很大的困难。
反应器的返混程度是很难直接观察和度量的。
返混会产生两个孪生现象:其一是改变了反应器内的浓度分布;其二是造成物料的停留时间分布。
测定物料的停留时间分布是一种比较简单的方法。
因此,通常采用测定停留时间分布的来探求反应器的返混程度。
通过测定反应器的停留时间分布,对过程的物理实质加以概括和简化,可以概括出流动模型。
本实验的目的是:(1) 解反应器中物料返混的现象;(2) 掌握停留时间分布的实验测定方法;(3) 掌握脉冲法测定停留时间分布的数据处理的方法;(4) 排除实验障碍,正确测定实验数据。
2实验原理应用应答技术,利用脉冲加入示踪物的方法,在连续流动搅拌釜式反应器中进行停留时间分布测定。
在系统达到稳定后,瞬间将示踪物注入搅拌釜中,然后分析出口流体中示踪物的浓度变化,并且通过出口流量V 和浓度C p ,示踪物的加入量M 来计算其停留时间分布,即: 分布密度函数:0.()()p p p V C C dF t E t dt M C dt∞===⎰; 分布函数:000()t tpp p C dtV C dt F t M C dt∞==⎰⎰⎰; 平均停留时间:0000()()pp t E t dt tC dt t E t dtC dt ∞∞∞∞⋅==⎰⎰⎰⎰;停留分布的方差:2222000()()()()tt t E t dt t E t dt t E t dtσ∞∞∞-⋅==⋅-⎰⎰⎰ 220p p t C dtt C dt∞∞=-⎰⎰如果用对比时间 t t θ=为自变量表示概率函数,则平均停留时间1t tθ==;在对应的时标处,即θ和t t θ=,停留时间分布函数值相等,()()F F t θ=;停留时间分布密度()()()()(/)dF dF t E t E t d d t t θθθ===⋅;对应的随机变量θ的方差22200(1)()(1)()E d E t td σθθθθθ∞∞=-=-⎰⎰ 2201()()t t E t dt t ∞=-⎰ 有了以上关系,显然,对于全混流,21σ=对于平推流,220t σσ==对于一般实际情况,201σ≤≤ 当流动搅拌反应器在搅拌足够剧烈时,可看成理想全混流反应器。
停留时间分布与反应器的流动模型讲义停留时间分布(RTD)是描述流体在反应器内停留时间的分布情况。
它对于理解反应器的性能和效率至关重要。
通过分析停留时间分布,可以评估反应过程中各种反应物的浓度分布,从而优化反应器设计和操作。
在反应器中,流体进入并通过反应器。
然而,由于流体的动力学特性和反应器的几何形状,不同流体分子停留在反应器中的时间是不一样的。
停留时间分布图描述了流动物质的停留时间的概率分布。
停留时间分布可以通过数学模型来描述。
最常用的数学模型是以连续搅拌反应器(CSTR)为基础的模型。
CSTR是一种理想化的反应器类型,其中反应物在反应器中均匀分布,并以恒定的速率混合。
CSTR模型假设反应物的停留时间服从完美的指数分布。
另一个常用的模型是斑点流动模型(PFR)。
在PFR中,流体在反应器中形成了一系列的“斑点”,每个斑点代表一个流体分子,它们按照一定的速率顺序通过反应器。
PFR模型假设反应物的停留时间服从完美的单谷型分布。
PFR模型更适用于流体通过小直径管道或多孔介质的情况。
反应器的流动模型是利用数学模型描述反应物在反应器内的运动和行为,从而揭示反应过程中的动力学特性。
通过结合停留时间分布和流动模型,可以研究反应器中的物质传递、反应速率、混合程度等重要参数。
总结一下,停留时间分布和反应器的流动模型对于理解反应器的性能和优化设计非常重要。
它们可以帮助我们预测和改进反应过程中的各种流体动力学参数,从而提高反应器的效率和产量。
停留时间分布(RTD)与反应器的流动模型在化学工程领域具有广泛的应用。
通过分析停留时间分布和建立合适的流动模型,可以有效地揭示反应器内复杂流动与反应过程之间的关系,优化反应器设计和流程操作。
首先,停留时间分布是评估反应器性能的一个重要指标。
它反映了反应物在反应器内停留的时间分布情况。
对于快速反应,需要较短的停留时间,而对于缓慢反应,则需要较长的停留时间。
停留时间分布可以通过实验测量或数值模拟来获得。
第三章非理想流动一、主要基本理论、基本概念1.停留时间:物料质点从进入反应器开始,到离开为止,在反应器中总共停留的时间。
2.平均停留时间:整个物料在反应器内平均停留的时间。
3.停留时间分布密度函数E(t)同时进入反应器的N 个流体质点中,停留时间介于t 与t+dt 之间的质点所占的分率dN/N 为E(t)dt 。
1)(0=⎰∞dt t E4.停留时间分布函数F(t)流过反应器的物料中停留时间小于t 的质点(或停留时间介于0~t 之间的质点)分率。
⎰=tdt t E t F 0)()(5.停留时间分布的数字特征 ① 数 学期 望 t =⎰⎰∞∞0)()(dtt E dt t tE② 方 差2t σ=⎰⎰∞∞-02)()()(dtt E dtt E t t③ 无因次方差22//t tt t θσσθ==6.停留时间分布的实验方法及对应曲线 ① 脉冲示踪 E(t) 曲线 ② 阶跃示踪 F(t) 曲线 ③ 无因次化 /()()()()t tE tE tF F t θθθ===7.理想流动模型的停留时间分布① 平推流 001()()1t t E t E t t θθθ≠≠⎧⎧==⎨⎨∞=∞=⎩⎩ 001()()111t t F t F t tθθθ〈〈⎧⎧==⎨⎨≥≥⎩⎩2210t t θτθσσ====② 全混流 ()1/exp(/)()E t t t t E e θθ-=-=()1exp(/)()1F t t t F e θθ-=--=-2/1t t tθτθσ===8.非理想流动模型的停留时间分布①扩散模型:是在平推流模型的基础上再迭加一个轴向扩散的校正,模型参数是轴向扩散系数Dl (或P e 数),停留时间分布可表示为Dl 的函数。
适用于返混不大的系统。
Pe >100时: θ=1 22/2/t t Pe θσσ==闭 式: θ=1222/2/(1)Pe Pe Pe e θσ-=--②多级串联全混流模型:是用m 个等体积的全混流模型串联来模拟实际反应器。
停留时间分布的测定方法
停留时间分布的测定方法指的是通过实验或模拟等手段,获取某一系统中粒子(分子、离子等)停留时间的概率分布。
常用的测定方法包括:单粒子追踪技术、分子束法、瞬态反应技术等。
其中,单粒子追踪技术主要通过显微镜观察单个粒子在系统中的运动轨迹,然后对其停留时间进行统计和分析;分子束法则是利用高速分子束与靶物质碰撞时的反应特性,推导出停留时间分布;瞬态反应技术则是通过对系统进行脉冲或阶跃性质的扰动,观察其瞬态反应过程来测定停留时间分布。
这些方法在化学、物理、生物等领域中得到广泛应用,对于研究物质在不同条件下的运动规律和反应机制具有重要意义。
- 1 -。