有效数字运算规则
- 格式:ppt
- 大小:344.00 KB
- 文档页数:14
化验分析中,试样的组分含量,由一系列测得的原始数据经一定计算公式的算求得的。
在数的运算中,一般地说,两数相加或相减,应该使它们有相同的确度;两数相乘或相除,应使它们有相同的准确度,即每一个数都保留同样位的有效数字,计算结果也是如此-
似运算中应注意以下几点。
(l)几个数相加或相减时,它们的和或差的有效数字保留的位数应以小数点位数最少的那个数字为依据。
如:O.0312十23. 34十2.50381,以23. 34为依据,将其他数字按数字修约到小数点后第二位,然后相加(2)在做乘除运算的时候,有效数字的位数取决于相对误【电镀设备厂】差最大的碘/<数字位数最小的那个数。
如:(0. 0234十4. 303 X 71. 07)/127. 5=0. 0561259
计算结果应取O.056 1,即与O.0234(有效数字位数最少的数的位数相同)。
在运算过程中,每步运算的结果可比有效数字位数最少的那个数多保留一位。
例如:O.0234 X 4.303 = O.1006702,这时可取O.1007,继续运算(比多一位有效数字)。
在使用电子计算器时,有人错误地认为取值位数越多据越精确,其实这会人为地制造假象而有害无益。
当然,也不可少取位数而丢了能够获得的准确度。
加减乘除有效数字运算规则有效数字是指测量结果中最可靠的数字,也就是测量结果中所含的数字中,最后一个数字后面的所有数字都是不确定的。
例如,测量结果为1.2345,那么有效数字为1.23或1.234或1.2345,取决于测量时的精度。
二、加减乘除有效数字运算规则1、加减法:在加减法中,结果的小数点位数以参与运算的数中小数点位数最少的数为准,并且结果保留相同的小数位数。
例如:1.2345+2.12=3.3545,保留小数点后两位,结果为3.35。
2、乘法:在乘法中,结果的有效数字个数以参与运算的数中有效数字个数最少的数为准,并且结果保留相同的有效数字个数。
例如:1.2×3.456=4.15,保留有效数字为2个,结果为4.2。
3、除法:在除法中,结果的有效数字个数以被除数中有效数字个数最少的数为准,并且结果保留相同的有效数字个数。
例如:10.5÷2.31=4.55,保留有效数字为3个,结果为4.55。
三、注意事项1、当参与运算的数中包含有“0”时,应特别注意。
如果“0”是有效数字中的一位,则要保留。
如果“0”不是有效数字中的一位,则可以省略。
例如:0.002+0.001=0.003,保留小数点后三位,结果为0.003。
2、当使用科学计数法表示数字时,应先将科学计数法转换成普通形式,再进行运算。
例如:1.23×10^(-4)与0.00345×10^3的乘法运算,应先将两个数转换成普通形式,再进行运算。
3、在实际问题中,应根据精度要求决定结果的保留位数,不要盲目地套用加减乘除有效数字运算规则。
四、总结加减乘除有效数字运算规则是数学中的基本规则之一,掌握这些规则对于正确进行数字运算具有重要的意义。
在运用这些规则时,应特别注意被运算数中的有效数字个数和小数点位数,避免出现错误结果。
有效数字的运算规则 2005-6-11 19:20:59 来源:生命经纬1)加法和减法在计算几个数字相加或相减时,所得和或差的有效数字的位数,应以小数点后位数最少的数为准。
如将3.0113、41.25及0.357相加,见下式(可疑数以“?”标出);可见,小数点后位数最小的数41.25中的5已是可疑,相加后使得44.6183中的1也可疑,所以,再多保留几位已无意义,也不符合有效数字只保留一位可疑数字的原则,这样相加后,结果应是44.62。
以上为了看清加减后应保留的位数,而采用了先运算后取舍的方法,一般情况下可先取舍后运算,即2)乘法与除法在计算几个数相乘或相除时,其积或商的有效数字位数应以有效数字位数最少的为准。
如1.211与12相乘:显然,由于12中的2是可疑的,使得积14.532中的4也可疑,所以保留两位即可,结果就是14。
同加减法一样,也可先取舍后运算,即:3)对数进行对数运算时,对数值的有效数字只由尾数部分的位数决定,首数部分为10的幂数,不是有效数字。
如2345为4位有效数字,其对数lg2345=3.3701,尾数部分仍保留4位,首数“3”不是有效数字。
不能记成lg2345=3.370,这只有3位有效数字,就与原数2345的有效数字位数不一致了。
在化学中对数运算很多,如pH值的计算。
若c(H+)=4.9×10-11mol·L-1,这是两位有效数字,所以pH=-lgc(H+)/cφ=10.31,有效数字仍只有两位。
反过来,由pH=10.31计算c(H+)时,也只能记作{c(H+)}=4.9×10-11,而不能记成4.898×10-11。
4)首位数大于7的数有效数字的确定对于第一位的数值大于7的数,则有效数字的总位数可多算一位。
例如8.78,虽然只有3位数字,但第一位的数大于7,所以运算时可看作4位。
有效数字的运算法则
有效数字运算规则是:加减法:先按小数点后位数最少的数据,保留其它各数的位数,再进行加减计算,计算结果也使小数点后保留相同的位数。
乘除法:先按有效数字最少的数据保留其它各数,再进行乘除运算,计算结果仍保留相同有效数字。
乘方和开方:对数据进行乘方或开方时,所得结果的有效数字位数保留应与原数据相同。
1、加减法:先按小数点后位数最少的数据,保留其它各数的位数,再进行加减计算,计算结果也使小数点后保留相同的位数。
2、乘除法:先按有效数字最少的数据保留其它各数,再进行乘除运算,计算结果仍保留相同有效数字。
3、乘方和开方:对数据进行乘方或开方时,所得结果的有效数字位数保留应与原数据相同。
4、对数计算:所取对数的小数点后的位数(不包括整数部分)应与原数据的有效数字的位数相等。
5、在计算中常遇到分数、倍数等,可视为多位有效数字。
— 1 —
6、在乘除运算过程中,首位数为"8"或"9"的数据,有效数字位数可多取1位。
7、在混合计算中,有效数字的保留以最后一步计算的规则执行。
8、表示分析方法的精密度和准确度时,大多数取1~2位有效数字。
— 2 —。
§1、4有效数字及其运算规则一、有效数字得一般概念1、有效数字任何一个物理量,其测量结果必然存在误差。
因此,表示一个物理量测量结果得数字取值就是有限得。
我们把测量结果中可靠得几位数字,加上可疑得一位数字,统称为测量结果得有效数字。
例如,2、78得有效数字就是三位,2、7就是可靠数字,尾位“8”就是可疑数字。
这一位数字虽然就是可疑得,但它在一定程度上反映了客观实际,因此它也就是有效得。
2、确定测量结果有效数字得基本方法(1)仪器得正确测读仪器正确测读得原则就是:读出有效数字中可靠数部分就是由被测量得大小与所用仪器得最小分度来决定。
可疑数字由介于两个最小分度之间得数值进行估读,估读取数一位(这一位就是有误差得)。
例如,用分度值为1mm得米尺测量一物体得长度,物体得一端正好与米尺零刻度线对齐,另一端如图1-1。
此时物体长度得测量值应记为L=83.87cm。
其中,83、8就是可靠数,尾数“7”就是可疑数,有效数字为四位。
(2)对于标明误差得仪器,应根据仪器得误差来确定测量值中可疑数所以用该电压表测量时,其电压值只需读到小数点后第一位。
如某测量值为12、3V,若读出:12、32V,则尾数“2”无意义,因为它前面一位“3”本身就就是可疑数字。
(3)测量结果得有效数字由误差确定。
不论就是直接测量还就是间接测量,其结果得误差一般只取一位。
测量结果有效数字得最后一位与误差所在得一位对齐。
如L=(83、87±0、02)cm就是正确得,而L=(83、868±0、02)cm与L=(83、9±0、02)cm都就是错误得。
3、关于“0”得问题有效数字得位数与十进制得单位变换无关。
末位“0”与数字中间得“0”均属于有效数字。
如23、 20cm;10、2V等,其中出现得“0”都就是有效数字。
小数点前面出现得“0”与它之后紧接着得“0”都不就是有效数字。
如0.25cm或0.045kg中得“0”都不就是有效数字,这两个数值都只有两位有效数字。
有效数字及其运算规则一、有效数字的含义及位数为了得到准确的分析结果,不仅要准确地测量,而且还要正确地记录和运算,即记录的数字不仅表示数量的大小,而且要正确的反映测量的精确程度。
如某物重0.5180g 、其中0.518 是准确的,“0 ”位可疑,即其有上下一个单位的误差,也就是说此物重的绝对误差为二.有效数字的运算规则:1 .和或差的有效数字:几个数相加减时,和或差的有效数字的保留,应以小数点后位数最少的数据为根据,即决定于绝对误差最大的那个数据。
例如:0.0121+25.64+1.05782 =26.70992应依25.64 为依据,即:原式=26.71小数点后位数的多少反映了测量绝对误差的大小,如小数后有1 位,它的绝对误差为±0.1 ,而小数点有 2 位时,绝对误差为±0.01 。
可见,小数点具有相同位数的数字,其绝对误差的大小也相同。
而且,绝对误差的大小仅与小数部分有关,而与有效数字位数无关。
所以,在加减运算中,原始数据的绝对误差,决定了计算结果的绝对误差大小,计算结果的绝对误差必然受到绝对误差最大的那个原始数据的制约而与之处在同一水平上。
2 .乘除法几个数相乘、除时,其积或商的有效数字应与参加运算的数字中,有效数字位数最少的那个数字相同。
即:所得结果的位数取决于相对误差最大的那个数字。
商应与0.0325 在同一水平上,即取3 位。
又如:3.001×2.1= 6.3有效数字的位数的多少反映了测量相对误差的大小。
如 2 位有效数字1.0 和9.9 它们的都是±0.1 ,相对误差分别为±10% 和±1%, 即:两位有效数字的相对误差总在±1% ~10%叁位有效数字的相对误差总在±0.1 ~1%肆位有效数字的相对误差总在±0.01 ~±0.1% 之间。
可见,相同有效数字位数的数字,其相对误差E r,处在同一水平上:而且E r的大小,仅与有效数字位数有关,而与小数点位数无关。
1.3 有效数字及其运算规则1.3.1 有效数字1. 定义有效数字就是实际能测到的数字。
有效数字的位数和分析过程所用的分析方法、测量方法、测量仪器的准确度有关。
我们可以把有效数字这样表示。
有效数字=所有的可靠的数字+ 一位可疑数字表示含义:如果有一个结果表示有效数字的位数不同,说明用的称量仪器的准确度不同。
例:7.5克用的是粗天平7.52克用的是扭力天平7.5187克用的是分析天平2. “0”的双重意义作为普通数字使用或作为定位的标志。
例:滴定管读数为20.30毫升。
两个0都是测量出的值,算做普通数字,都是有效数字,这个数据有效数字位数是四位。
改用“升”为单位,数据表示为0.02030升,前两个0是起定位作用的,不是有效数字,此数据是四位有效数字。
3. 规定(1).倍数、分数关系无限多位有效数字(2). pH、pM、lgc、lgK等对数值,有效数字由尾数决定。
例: pM=5.00 (二位)[M]=1.0×10-5 ;PH=10.34(二位);pH=0.03(二位)注意:首位数字是8,9时,有效数字可多计一位, 如9.83―四位。
1.3.2 数字修约规则(“四舍六入五成双”规则)规定:当尾数≤4时则舍,尾数≥6时则入;尾数等于5而后面的数都为0时,5前面为偶数则舍,5前面为奇数则入;尾数等于5而后面还有不为0的任何数字,无论5前面是奇或是偶都入。
例:将下列数字修约为4位有效数字。
修约前修约后0.526647--------0.52660.36266112------0.362710.23500--------10.24250.65000-------250.618.085002--------18.093517.46--------3517注意:修约数字时只允许一次修约,不能分次修约。
如:13.4748-13.471.3.3 计算规则1. 加减法先按小数点后位数最少的数据保留其它各数的位数,再进行加减计算,计算结果也使小数点后保留相同的位数。
1.3 有效数字及其运算法则物理实验中要记录数据并进行运算,记录的数据应取几位,运算后应保留几位,这些要由不确定度来决定,也涉及有效数字的问题。
1.3.1 有效数字的概念任何一个物理量,既然其测量结果都包含有误差,该物理量的数值就不应该无限制地写下去。
例如,cm应写成cm。
因为由不确定度0.02cm可知,该数值在百分位上已有误差,在它以后的数字便没有意义了。
因此,测量结果只写到有误差的那一位数,并且在位数以后按“四舍五入”的法则取舍。
最后一位虽然有误差,但在一定程度上也能反映出被测量的客观大小,也是有效的。
所以我们把能反映出被测量实际大小的全部数字,称为有效数字。
或者说,我们把测量结果中可靠的几位数字加上有误差的一位数字,统称为测量结果的有效数字。
有效数字数字的个数叫做有效数字的位数,如上述的1.37cm称为三位有效数字。
有效数字的位数与十进制单位的变换无关,即与小数点的位置无关。
因此,用以表示小数点位置的0不是有效数字。
当0不是用作表示小数点位置时,0和其它数字具有同等地位,都是有效数字。
显然,在有效数字的位数确定时,第一个不为零的数字左面的零不能算有效数字的位数,而第一个不为零的数字右面的零一定要算做有效数字的位数。
如0.0135m是三位有效数字,0.0135m 和1.35cm及13.5mm三者是等效的,只不过是分别采用了米、厘米和毫米作为长度的表示单位;1.030m是四位有效数字。
从有效数字的另一面也可以看出测量用具的最小刻度值,如0.0135m是用最小刻度为毫米的尺子测量的,而1.030m 是用最小刻度为厘米的尺子测量的。
因此,正确掌握有效数字的概念对物理实验来说是十分必要的。
有效数字的位数多少大致反映相对不确定度的大小。
有效数字位数越多,相对不确定度越小,测量结果的精确度越高。
1.3.2 如何确定有效数字当给出(或求出)不确定度时,测量结果的有效数字由不确定度来确定。
由于不确定度本身只是一个估计值,一般情况下,不确定度的有效数字只取一位(若首位为1、2时,不确定度可取二位)。