元胞自动机-计算材料
- 格式:ppt
- 大小:3.16 MB
- 文档页数:90
生物计算中的元胞自动机模型生物计算是一种广泛应用于生物医学、生态学、环境科学等领域的计算科学技术,在生命科学领域具有重要的应用价值。
其中,元胞自动机(CAC)模型是一种重要的生物计算模型,它利用计算机进行模拟,可以模拟复杂生物系统中的自组织现象、动态行为和时间演化等。
一、元胞自动机模型的基本理论元胞自动机是一种基于格点的离散动力学系统,又称为离散动力学系统。
其基本理论是将时间和空间坐标离散化,并将空间上的每个点分为一个小的正方形或立方体,称为元胞。
元胞自动机在空间上排列成一个网格状结构,称为元胞阵列。
元胞内有若干个状态,每个元胞根据其自身状态和周围元胞的状态,按照一定的规则进行演化。
这种演化是基于更高级别的规则,通过这些规则,元胞可以表现出一定的自组织特性,从而模拟生物系统中的某些现象。
二、元胞自动机模型的应用1. 生态系统模拟元胞自动机模型也可用于模拟生态系统的行为,例如森林通量和生态系统中种群的分布。
实际上,1986年,Thomas和,Peterman的研究中,模拟了一个湖泊生态系统,通过模拟 algal (微藻)的数量,在不同时间的分布,研究了外部进入的营养元素对湖泊生态系统的影响。
2. 疾病传播元胞自动机模型也可以用于模拟疾病传播,例如感染病毒或细菌。
利用元胞自动机模拟疾病的传播,可以研究不同人群之间传染病的传播机制,并预测疾病传播的趋势。
2020年初的 COVID-19 疫情中,元胞自动机模型被用于模拟病毒传播,并预测疫情趋势,为政府决策者提供了科学有效的决策依据。
3. 细胞模拟元胞自动机模型可以用来模拟细胞的行为,例如细胞的组织结构、生长、分裂和死亡。
最近的一项研究使用元胞自动机模拟了肠道细胞的发育,向我们展示了细胞在肠道中的组织结构、形态变化和生长模式。
三、元胞自动机模型的优缺点1. 优点元胞自动机模型的主要优点是简单易行,易于理解和应用。
它能够模拟自然系统的复杂行为,例如非线性现象、自组织等,而不需要进行复杂的统计或计算。
微观组织数值模拟——相场法与元胞⾃动机微观组织的数值模拟——相场法与元胞⾃动机法相场法和元胞⾃动机法是材料科学与⼯程研究中常⽤的两种数值模拟⽅法。
相场模型是⼀种建⽴在热⼒学基础上,考虑有序化势与热⼒学驱动⼒的综合作⽤来建⽴相场⽅程描述系统演化动⼒学的模型。
其核⼼思想是引⼊⼀个或多个连续变化的序参量,⽤弥散界⾯模型代替传统的尖锐界⾯来描述界⾯。
相场法的不⾜是计算量巨⼤,可模拟的尺度较⼩(最⼤可达⼏⼗个微⽶)。
元胞⾃动机法是⼀种⽤来描述复杂系统在离散空间-时间上演化规律的数学算法。
元胞在某⼀时间步的状态转变由⼀定的演化规则来决定,并且这种转变是随时间推移对体系各元胞同步进⾏的。
元胞的状态受其相邻元胞状态的影响,同时也影响着相邻元胞的状态。
局部之间相互作⽤,相互影响,通过⼀定的规则变化⽽整合成⼀总体⾏为。
相场法相场法的起源与发展相场法PFM(Phase Field Method)的提出是针对具有⼗分复杂的界⾯结构的问题时,⽤经典尖锐界⾯模型去跟踪界⾯演化,会遭遇到严重的数值困难。
并且真实材料中的相界或晶界实际上并不是严格的零厚度界⾯,⽽是具有⼀定厚度(纳⽶尺度)的边界层,这层厚度控制材料相变动⼒学,由此引⼊⼀个序参量场Φ来区分两相(如固相和液相),通常称之为相场。
在相场中,Φ在固/液界⾯的⼀侧从⼀个常值逐渐过渡⾄界⾯另⼀侧的某⼀常值,将这个扩散界⾯层定义为界⾯,因此,在相场法中的固/液界⾯为弥散型界⾯。
Φ的主要⽬的是跟踪两相不同的热⼒学状态,可以不严格地将其理解为结晶程度的度量。
相场模型的想法最初由Langer(1978, 1986)提出的,Collin和Levine (1985)也引⼊了类似的相场模型(Phase field model)。
Caginalp(1985-1991)分析了这些相场模型,证明它们在界⾯层厚度趋于零时可以还原为尖锐界⾯的⾃由边界模型,这就从数学上证明了Langer 等⼈相场模型的有效性。
1.sierpinski直角垫片function sierpinski3_by_CA(n);% 使用元胞自动机生成sierpinski直角垫片% Example:% sierpinski3_by_CA(256);% %算法见:孙博文,《分形算法与程序设计:用Visual C++实现》if nargin==0;n=256;endX=zeros(n);X(1,round(n/2))=1;H=imshow(X,[]);set(gcf,'doublebuffer','on');k=1;while k<round(n/2);X(k+1,2:end-1)=and(xor(X(k,1:end-2),X(k,3:end)),... ~X(k,2:end-1));set(H,'CData',1-X);pause(0.05);k=k+1;endnm=round(n/2);k=1;while k<nm;X(nm+k,1:end)=X(nm-k,1:end);set(H,'CData',1-X);pause(0.05);k=k+1;end2.sierpinski直角垫片function sierpinski(n);% 使用元胞自动机生成sierpinski直角垫片% Example:% sierpinski(256);% %算法见:孙博文,《分形算法与程序设计:用Visual C++实现》if nargin==0;n=256;endX=ones(n);X(1,n-1)=0;H=imshow(X,[]);set(gcf,'doublebuffer','on');k=1;while k<n;X(k+1,1:end-1)=xor(X(k,1:end-1),X(k,2:end));X(k+1,n)=1;set(H,'CData',X);pause(0.1);k=k+1;end3.扩散限制凝聚clc;clear;close all;S=ones(40,100);% state matrixS(end,:)=0; % initial sttaeSs=zeros(size(S)+[1,0]); % top line is origin of particleSs(2:end,:)=S; % showing matrixN=size(S,2);II=imagesc(Ss);axis equal;colormap(gray)set(gcf,'DoubleBuffer','on');while sum(1-S(1,:))<0.5;y=1;x=round(rand*[N-1]+1); % random positionD=0;while D<0.5; % random travelr=rand;if abs(x-1)<0.1;SL=1;elseSL=S(y,x-1);endif abs(x-N)<0.1;SR=1;elseSR=S(y,x+1);endif SL+SR+S(y+1,x)<2.5; % check the neighbor: left, right, under D=1;S(y,x)=0; % stop in the positionendif r<=1/3; % travel randomlyx=x-1;elseif r<=2/3;x=x+1;elsey=y+1;endSs(2:end,:)=S;if x<0.5|x>N+0.5;D=1; % out of the rangeelseSs(y,x)=0; % to show the moving particleendset(II,'CData',Ss); % to showpause(0.1);endend模拟卫星云图function CA_sim_cloud;% 使用元胞自动机模拟地球卫星的云图%% reference:% Piazza, E.; Cuccoli, F.;% Cellular Automata Simulation of Clouds in Satellite Images, % Geoscience and Remote Sensing Symposium, 2001. IGARSS '01. % IEEE 2001 International Volume 4, 9-13 July 2001 Page(s): % 1722 - 1724 vol.4 Digital Object Identifier 10.1109/IGARSS. % 2001.977050time=888; % 程序执行步数M=240;N=320;S=round(rand(M,N)*15);p=[1,2,1,6,6,1,2,1];p=sum(tril(meshgrid(p)),2)/20;rand('state',0);SS=S;R=rand(M,N);G=R;B=R;C=cat(3,R,G,B);fig=figure;set(fig,'DoubleBuffer','on');mov = avifile('example2.avi');cc=imshow(C,[]);set(gcf,'Position',[13 355 157 194])x1=(1:3)+round(M/2);y1=(1:3)+round(N/3);x2=(1:3)+round(M/3);y2=(1:3)+round(N/2);x3=(1:3)+round(M/1.5);y3=(1:3)+round(N/2);q=0;qq=15/4;while q<time;SS=zeros(M,N);for k=1:15;r=rand(M,N); % 生成几率rK=zeros(M+2,N+2);T=(S-k>=0); % 粒子数矩阵K(2:end-1,2:end-1)=T;SS=K(1:end-2,1:end-2).*(r<p(1))+...K(1:end-2,2:end-1).*(r<p(2) & r>=p(1))+... K(1:end-2,3:end).*(r<p(3) & r>=p(2))+... K(2:end-1,1:end-2).*(r<p(4) & r>=p(3))+... K(2:end-1,3:end).*(r<p(5) & r>=p(4))+... K(3:end,1:end-2).*(r<p(6) & r>=p(5))+... K(3:end,2:end-1).*(r<p(7) & r>=p(6))+... K(3:end,3:end).*(r>=p(7))+SS;endS=SS; %SS是粒子扩散后的分布S(S>15)=15;S(x1,y1)=15;S(x2,y2)=15;S(x3,y3)=15; % 粒子源赋值G=(S<=7.5);B=(S>qq);R=(S>qq & S<=7.5);C=double(cat(3,R,G,B));set(cc,'CData',C);q=q+1;pause(0.2);title(['q=',num2str(q)]);Nu(q)=sum(S(1:end));F = getframe(gca);mov = addframe(mov,F);endmov = close(mov);figure;plot(Nu)奇偶规则function edwards(N)% 简单元胞自动机—奇偶规则(模式3)同或运算% N is the size of calculational matrix% Examples:% figure% edwards(200)warning offM=ones(N);M(fix(29*N/59):fix(30*N/59),fix(29*N/59):fix(30*N/59))=0; close allimshow(M,[])for t=1:187;[M,Nu]=jisuan(M);pause(0.1)imshow(M)HH(t)=Nu;endfigure;plot(HH)function [Y,Nu]=jisuan(M);[x,y]=find(M==0);Nu=prod(size(x));Xmax=max(max(x));Xmin=min(min(x));Ymax=max(max(y));Ymin=min(min(y));T=ones(Xmax-Xmin+3,Ymax-Ymin+3);T(2:end-1,1:end-2)=M(Xmin:Xmax,Ymin:Ymax);Su=T;T=ones(Xmax-Xmin+3,Ymax-Ymin+3);T(2:end-1,3:end)=M(Xmin:Xmax,Ymin:Ymax);Su=xor(Su,T);Su=not(Su);T=ones(Xmax-Xmin+3,Ymax-Ymin+3);T(1:end-2,2:end-1)=M(Xmin:Xmax,Ymin:Ymax);Su=xor(Su,T);Su=not(Su);T=ones(Xmax-Xmin+3,Ymax-Ymin+3);T(3:end,2:end-1)=M(Xmin:Xmax,Ymin:Ymax);Su=xor(Su,T);Su=not(Su);M(Xmin-1:Xmax+1,Ymin-1:Ymax+1)=Su;Y=M;森林火灾模拟close all;clc;clear;figure;p=0.3; % 概率pf=6e-5; % 概率faxes;rand('state',0);set(gcf,'DoubleBuffer','on');% S=round((rand(300)/2+0.5)*2);S=round(rand(300)*2);% \copyright: zjliu% Author's email: zjliu2001@Sk=zeros(302);Sk(2:301,2:301)=S;% 红色表示正在燃烧(S中等于2的位置)% 绿色表示绿树(S中等于1的位置)% 黑色表示空格位(S中等于0的位置)C=zeros(302,302,3);R=zeros(300);G=zeros(300);R(S==2)=1;G(S==1)=1;C(2:301,2:301,1)=R;C(2:301,2:301,2)=G;Ci=imshow(C);ti=0;tp=title(['T = ',num2str(ti)]);while 1;ti=ti+1;St=Sk;St(Sk==2)=0; % for rule (1)Su=zeros(302);Sf=Sk;Sf(Sf<1.5)=0;Sf=Sf/2;Su(2:301,2:301)=Sf(1:300,1:300)+Sf(1:300,2:301)+Sf(1:300,3:302)+... Sf(2:301,1:300)+Sf(2:301,3:302)+Sf(3:302,1:300)+...Sf(3:302,2:301)+Sf(3:302,3:302);St(Sf>0.5)=2; % for rule (2)Se=Sk(2:301,2:301);Se(Se<0.5)=4;Se(Se<3)=0;Se(Se>3)=1;St(2:301,2:301)=St(2:301,2:301)+Se.*(rand(300)<p); %for rule (3)Ss=zeros(302);Ss(Sk==1)=1;Ss(2:301,2:301)=Ss(1:300,1:300)+Ss(1:300,2:301)+Ss(1:300,3:302)+... Ss(2:301,1:300)+Ss(2:301,3:302)+Ss(3:302,1:300)+...Ss(3:302,2:301)+Ss(3:302,3:302);Ss(Ss<7.5)=0;Ss(Ss>7.5)=1;d=find(Ss==1 & Sk==1);for k=1:length(d);r=rand;St(d(k))=round(2*(r<=f)+(r>f));end % for rule (4)Sk=St;R=zeros(302);G=zeros(302);R(Sk==2)=1;G(Sk==1)=1;C(:,:,1)=R;C(:,:,2)=G;set(Ci,'CData',C);set(tp,'string',['T = ',num2str(ti)]) pause(0.2);end。
元胞自动机原理最简单讲解元胞自动机(Cellular Automaton,CA)是一种数学模型,由一组简单的规则组成,模拟了由离散的元胞(cells)组成的空间,并根据相邻元胞的状态进行演化和互动的过程。
元胞自动机的主要理论基础是斯蒂芬·沃尔夫勒姆(Stephen Wolfram)于1983年提出的。
它在多学科领域中得到了广泛的应用,包括复杂系统研究、计算机科学、生物学、物理学等。
元胞自动机的基本结构由网格(grid of cells)和一组规则(set of rules)组成。
网格是由一些离散的元胞(通常是正方形或六边形)组成的空间,每个元胞都具有一个状态(state)。
元胞的状态可以是离散的,例如0或1,也可以是连续的,代表某种物理量的值。
规则定义了元胞之间的相互作用方式,它描述了当周围元胞的状态发生变化时,当前元胞的状态如何更新。
元胞自动机的演化过程可以分为离散和连续两种。
在离散的情况下,每个元胞的状态在每个时刻都是离散的,不能取连续的值。
每个时刻,根据规则,元胞的状态会根据其周围元胞的状态进行更新。
更新可以是同步的,即所有元胞同时更新,也可以是异步的,即元胞按一定的顺序依次更新。
在连续的情况下,元胞的状态可以是连续的,更新过程是基于微分方程的。
元胞自动机按照规则的类型可以分为确定性(Deterministic)和随机(Stochastic)两种。
确定性的元胞自动机意味着每个元胞的状态更新是根据一条特定的规则进行的,与其他元胞的状态无关。
而随机的元胞自动机则加入了一定的随机性,元胞的状态更新可能依赖于随机的概率。
元胞自动机的一个典型应用是康威生命游戏(Conway's Game of Life)。
康威生命游戏中,每个元胞的状态只能是“存活”或“死亡”,更新规则是基于元胞周围8个邻居的状态。
根据不同的初始状态和规则设定,康威生命游戏展示了丰富多样的生命演化形态,包括周期性的振荡、稳定的构造和复杂的混沌状态。
元胞自动机在金属材料研究中的新应用标题:元胞自动机在金属材料研究中的新应用引言:金属材料的研究一直以来都是科学与工程领域的关注重点。
如今,随着计算机科学与数值模拟技术的发展,元胞自动机作为一种强大的工具正日益应用于金属材料研究领域。
本文将深入探讨元胞自动机在金属材料研究中的新应用,并分享我对这一主题的观点和理解。
第一部分:元胞自动机简介和基本原理元胞自动机是一种离散动态系统,由许多小的、离散的、自动的"细胞"组成,这些细胞受到规则的影响并与周围细胞进行相互作用。
元胞自动机模型由格点、邻近规则和状态规则组成,其中格点代表空间,邻近规则描述细胞之间的相互关系,状态规则定义了每个细胞的状态如何随时间变化。
第二部分:元胞自动机在金属材料微结构演变研究中的应用1. 元胞自动机在晶粒生长和再结晶研究中的应用:通过设定不同的细胞状态和邻近规则,元胞自动机可以模拟金属材料中晶粒的生长和再结晶过程,从而揭示晶粒的形成机制和微观结构的演变规律。
2. 元胞自动机在相变行为和相图预测中的应用:通过引入热力学参数和状态转移规则,元胞自动机可以模拟金属材料中的相变行为和相图预测,帮助科学家深入了解金属材料的相变机制和相图演变规律。
3. 元胞自动机在应力-应变响应和塑性行为研究中的应用:通过考虑力学参数和弹塑性行为规则,元胞自动机可以模拟金属材料中的应力-应变响应和塑性行为,为金属材料的强度和韧性性能的研究提供重要参考。
第三部分:元胞自动机在金属材料设计和优化中的应用1. 元胞自动机在材料组织设计中的应用:通过优化细胞状态和邻近规则,元胞自动机可以设计和优化金属材料的微结构,实现材料性能的定制化和优化,为新材料的研发提供有力支持。
2. 元胞自动机在材料耐久性研究中的应用:通过模拟金属材料中的缺陷演化和损伤行为,元胞自动机可以评估材料的耐久性和寿命,为材料选择和设计提供科学依据。
总结与展望:元胞自动机作为一种强大的建模和仿真工具,已经在金属材料研究中展现出了巨大的潜力。
1元胞自动机方法及其在材料介观模拟中的应用何燕,张立文,牛静大连理工大学材料系(116023) E-mail : commat @ 摘 要:元胞自动机(CA)是复杂体系的一种理想化模型,适合于处理难以用数学公式定量描述的复杂动态物理体系问题,如材料的组织演变等。
本文概述了元胞自动机方法的基本思想及原理,介绍了CA的基本组成及特征,综述了CA方法在材料介观模拟研究中的应用。
研究表明CA法在对金属凝固结晶、再结晶、及相变现象等材料介观尺度的组织模拟中表现出特有的优越性。
关键词:元胞自动机,组织演变,介观模拟,动态再结晶1. 引 言 自20世纪计算机问世以来,用计算机建立模型来模拟材料行为的方法在材料设计中的应用越来越广泛,此方法既可节省大量的人力物力和实验资金,又能为实验提供巨大的灵活性和方便性,因而已经引起了各界科学家的高度重视和极大兴趣。
计算机对材料行为的模拟主要有三个方面:材料微观行为、介观行为和宏观行为的模拟。
材料的微观行为是指在电子、原子尺度上的材料行为,如模拟离子实(原子)体系行为,在这方面主要应用分子动力学、分子力学等理论方法;材料的介观行为是指材料显微组织结构的转变,包括金属凝固结晶、再结晶及相变过程,在这方面的模拟主要应用Monte Carlo(MC)方法和Cellular Automata(CA)方法;材料的宏观行为主要指材料加工方面,如材料加工中的塑性变形,应力应变场及温度场的变化等,在这方面的模拟工作主要应用大型有限元软件Marc, Ansys等。
大量实验研究表明,材料的微观组织结构决定了其宏观行为及特征。
因此,对材料介观行为的模拟显得尤为重要。
传统的数学建模方法是建立描述体系行为的偏微分方程,它依赖于对体系的成熟定量理论,而对大多数体系来说这种理论是缺乏的;从微观入手的Monte Carlo方法主要依赖于体系内部自由能的计算,由于其运算量大,需要大量的数据,运算速度慢,为模拟工作带来了诸多不便;而CA方法则另辟蹊径,通过直接考察体系的局部相互作用,再借助计算机模拟这种作用导致的总体行为,从而得到其组态变化,并体现出宏观上的金属性能。
元胞自动机法2篇元胞自动机是一种重要的数学工具,它在许多领域都有广泛的应用。
本文将为大家介绍元胞自动机的定义、原理和应用,并分别以两个不同的角度展开讨论。
第一篇:元胞自动机(Cellular Automaton,CA)是一种离散的计算模型,由一组规则和一片被分割成小方格的空间组成。
每个小方格称为元胞,每个元胞可以处于不同的状态。
元胞自动机在离散的时间步骤中,根据预先定义好的局部规则,自动地更新元胞的状态。
元胞自动机的最基本的规则是由两个因素决定的:元胞的邻居和元胞的状态转移函数。
元胞的邻居可以包括水平、垂直和对角线方向上相邻的元胞。
元胞的状态转移函数根据元胞本身以及其邻居的状态,确定元胞在下一个时间步骤时的状态。
这种状态转移可以根据局部规则同时发生,也可以融合其他因素如时间、空间等进行更新。
元胞自动机最早由丘奇(Alonzo Church)和冯·诺依曼(John von Neumann)在1950年代提出。
当时,他们主要研究的是一维元胞自动机。
但自那以后,元胞自动机的一维和多维的拓展研究已经取得了很大的进展,成为复杂系统和非线性动力学等研究领域的基础工具。
元胞自动机的应用非常广泛。
在物理学领域,元胞自动机可以模拟粒子的行为和统计力学过程。
在生物学领域,元胞自动机可以用于模拟生物系统中的细胞生长、组织发育等过程。
在计算机科学领域,元胞自动机可以用于设计产生随机数列的伪随机数发生器。
此外,元胞自动机还可以在城市规划、交通仿真、分子动力学等诸多领域作出重要的贡献。
第二篇:元胞自动机作为一种数学模型,其研究逐渐涉及了计算机科学、物理学、生物学等多个学科领域。
不同学科中对元胞自动机的研究角度也各有侧重。
在计算机科学领域,元胞自动机被广泛用于图像处理、模式识别和人工生命等方面的研究。
通过元胞自动机的模拟,可以有效处理图像噪声、图像分割和图像恢复等技术问题。
同时,元胞自动机也被应用于模式识别中的特征提取、目标跟踪等方面。