古典概型2
- 格式:ppt
- 大小:68.00 KB
- 文档页数:14
古典概型(2)一、知识点剖析1、古典概型的定义与特点 掌握要点:古典概型的两个特征:(1)一次试验中,可能出现的结果只有有限个,即有限性;(2)试验中每个基本事件发生的可能性是均等的,即等可能性.在古典概型中,P (A )=试验的基本事件数包含的基本事件数事件A易混易错:要套用古典概型的概率计算公式,首先要确定好基本事件总数。
强调在用古典概型计算概率时,必须要验证所构造的基本事件是否满足古典概型的第二个条件(每个结果出现是等可能的),否则计算出的概率将是错误的.另外如果计算中有重复现象,应注意除掉重复部分.在求事件A 包含的基本事件个数时如果情况不同应注意分类讨论. 2、用排列和组合解决古典概型问题 掌握要点:从n 个不同的元素中取出m(m ≤n)个元素的所有排列的个数,叫做从n 个不同的元素中取出m 个元素的排列。
一般地,从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
易混易错:共同点: 都要“从n 个不同元素中任取m 个元素” 不同点: 排列与元素的顺序有关, 而组合则与元素的顺序无关.构造排列分成两步完成,先取后排;而构造组合就是其中一个步骤. 3、有些抽样问题存在放回和不放回的区别 掌握要点: 分类计数原理完成一件事,有n 类办法. 在第1类办法中有m 1种不同的方法,在第2类方法中有m 2种不同的方法,……,在第n 类方法中有m n 种不同的方法,则完成这件事共有n m m m N ++=21分步计数原理完成一件事,需要分成n 个步骤。
做第1步有m 1种不同的方法,做第2步有m 2种不同的方法, ……,做第n 步有m n 种不同的方法,则完成这件事共有n m m m N ∙∙∙= 21 易混易错:有放回抽样与无放回抽样都属等可能事件. 对于具体问题,不知用分步还是分类二、典型题型剖析1、古典概型的定义与特点 方法归纳:在古典概型中,P (A )=试验的基本事件总数包含的基本事件数事件A例题:例1、将骰子先后抛掷2次,计算: (1)一共有多少种不同的结果?(2)其中向上的数之和是5的结果有多少种? (3)向上的数之和是5的概率是多少?主要过程:有些等可能事件的概率问题中,有时在求m 时,不采取分析的方法,而是结合图形采取枚举的方法,即数出事件A 发生的结果数,当n 较小时,这种求事件概率的方法是常用的.将抛掷2次的所有结果数一一列举出来,如下表所示由上表可知,将骰子先后抛掷2次,一共有36种不同的结果,其中向上的数之和是5的结果有(1,4),(2,3),(3,2),(4,1)共4种,由于骰子是均匀的,将它抛掷2次的所有36种结果是等可能出现的,故向上的数之和是5的概率是.例2、甲、乙两个均匀的正方体玩具,各个面上分别刻有1,2,3,4,5,6六个数字,将这两个玩具同时掷一次.(1)若甲上的数字为十位数,乙上的数字为个位数,问可以组成多少个不同的数,其中个位数字与十位数字均相同的数字的概率是多少? (2)两个玩具的数字之和共有多少种不同结果?其中数字之和为12的有多少种情况?数字之和为6的共有多少种情况?分别计算这两种情况的概率. 主要过程:(1)甲有6种不同的结果,乙也有6种不同的结果,故基本事件总数为6×6=36其中十位数字共有6种不同的结果,若十位数字与个位数字相同,十位数字确定后,个位数字也即确定.故共有6×1=6种不同的结果,即概率为61366 .10,11,12共11种不同结果.从中可以看出,出现2的只有一种情况,而出现12的也只有一种情况,它们的概率均为361,因为只有甲、乙均为1或均为6时才有此结果. 出现数字之和为6的共有(1,5),(2,4),(3,3),(4,2),(5,1)五种情况,所以其概率为365. 强调内容:(1)判断一个试验是否是古典概型,要把握两个特征:(1)一次试验中,可能出现的结果只有有限个,即有限性;(2)试验中每个基本事件发生的可能性是均等的,即等可能性.“等可能性”指的是结果,而不是事件. (2)“等可能性”指的是结果,而不是事件.(3)使用计算公式时,关键是准确写出试验的基本事件数. 2、利用排列组合解决古典概型问题 方法归纳:判断排列还是组合:有序用排列,无序用组合 例 题:例2、今有强弱不同的十支球队,若把它们分两组进行比赛,分别计算: (1)两个最强的队被分在不同组内的概率. (2)两个最强的队恰在同一组的概率. 解:将十支球队平均分成两组,因每支球队分到哪一组的可能性完全相同,所以是等可能性事件.所有基本事件个数为5510522C C A . (1)两个最强的队被分在不同组记为事件A ,则A 中含有基本事件数为44284222C C A A ,故两支最强的队被分在不同组内的概率为:.C;故两个最强的队(2)两个最强的队恰在同一组记为事件B,则B中含有基本事件数为38恰在同一组内的概率为:强调内容:(1)什么时候用排列什么时候用组合:事件结果有顺序时用排列,无顺序时用组合(2)公式的运用3、放回与不放回求概率问题方法归纳:求概率时放回的用分步计数原理,不放回的采用排列组合来解决。
专题2:古典概型与独立事件【知识要点】1.基本事件的特点(1)任何两个基本事件是的;(2)任何事件(除不可能事件)都可以表示成的和.2.古典概型具有以下两个特点的概率模型称为古典概型.(1)试验中所有可能出现的基本事件;(2)每个基本事件出现的可能性.3.古典概型的概率公式:P(A)=A包含的基本事件的个数基本事件的总数.4.相互独立事件(1)对于事件A、B,若事件A的发生与事件B的发生互不影响,则称事件.(2)若A与B相互独立,则P(B|A)=,P(AB)=P(B|A)P(A)=.(3)若A与B相互独立,则A与B,A与B,A与B也都相互独立.(4)若P(AB)=P(A)P(B),则.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.()(3)从市场上出售的标准为500±5 g的袋装食盐中任取一袋,测其重量,属于古典概型.()(4)(教材改编)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为13.()(5)从1,2,3,4,5中任取出两个不同的数,其和为5的概率是0.2.()(6)在古典概型中,如果事件A中基本事件构成集合A,且集合A中的元素个数为n,所有的基本事件构成集合I,且集合I中元素个数为m,则事件A的概率为nm.()【题型讲练】题型一基本事件与古典概型的判断1.下列试验中,是古典概型的个数为()①向上抛一枚质地不均匀的硬币,观察正面向上的概率;②向正方形ABCD内,任意抛掷一点P,点P恰与点C重合;③从1,2,3,4四个数中,任取两个数,求两数之一是2的概率;④在线段[0,5]上任取一点,求此点小于2的概率.A.0 B.1 C.2 D.32.袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?题型二古典概型的求法1.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.12B.13C.14D.162.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A.15B.25C.35D.453.同时掷两个骰子,向上点数不相同的概率为________.4.从1,2,3,4,5,6这6个数字中,任取2个数字相加,其和为偶数的概率是________.5.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为_______.6.连掷两次骰子分别得到点数m、n,则向量(m,n)与向量(-1,1)的夹角θ>90°的概率是_______.6.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的编号之和不大于4的概率;(2)先从袋中随机取一个球,记编号为m,将球放回袋中,然后再从袋中随机取一个球,记编号为n,求n<m+2的概率.题型三古典概型与统计的综合应用1.海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 A B C数量50150100(1)求这6(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.10.某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目.(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,求抽到小学、中学各一所的概率.题型四相互独立事件的概率1.已知A,B是两个相互独立事件,P(A),P(B)分别表示它们发生的概率,则1-P(A)P(B)是下列哪个事件的概率() A.事件A,B同时发生B.事件A,B至少有一个发生C.事件A,B至多有一个发生D.事件A,B都不发生2.如图,用K,A1,A2三类不同的元件连接成一个系统.当K 正常工作且A1,A2至少有一个正常工作时,系统正常工作.已知K,A1,A2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为()A.0.960 B.0.864 C.0.720 D.0.5763.甲、乙两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为________.4.甲射击命中目标的概率是12,乙命中目标的概率是13,丙命中目标的概率是14.现在三人同时射击目标,则目标被击中的概率为________.。
古典概型【典型例题】例1、本班数学兴趣小组有5名男同学,3名女同学。
求下列事件的概率。
(1)8人排成一队,其中甲必须站在排头的概率?(2)8人排成一队,其中甲不能站在排头与排尾的概率?(3)8人排成一队,其中任何两名女同学都不能相邻的概率?分析:此题是关于古典概型中的排列问题。
所有基本事件的总数是8人,全排列,即n=A 88;而某事件包含的基本事件总数也是排列问题,它是三种情形下的各自排法的总数。
(1)题m=77A n=88AP(A)=8877A A =81 (2)题中的m 是在(1)的基础上加深一步,可分两种方法来求。
第一种解法:8人全排列中扣除甲站在排头与排尾的情况,即m=88A -277A 。
第二种解法:甲在中间6个空位中任选一个,其余7人全排列。
即m=16A 77A 。
两种解法所得甲不能站在排头与非尾的概率都是P(B)= 43。
(3)题中m 的求法,应利用插空法分两步来求得。
首先是把5个男生排成—排有55A 种,这时有6个间隙,再把3个女生插入这6个间隙里有36A 种,即m=55A ·36A 。
所以可得任何两名女同学都不能相邻的概率 P(C)=883655·A A A = 145。
例2、甲、乙两人参加普法知识竟赛答题,共有10道不同的题目,其中选择题6道,判断题4道,两人依次各抽一道,试求:(1)甲抽到选择题,乙抽到判断题的概率是多少?(2)甲、乙两人中至少有一人抽到选择题的概率是多少?分析:此题是关于古典概型中的组合问题。
(1)甲从选择题中抽到一题的可能结果是16C 个,乙从判断题中抽到一题的可能结果是14C 个,故甲抽到选择题,乙抽到判断题的结果是16C 14C 个,即m=16C 14C 。
又甲、乙依次抽一题的可能结果有110C 19C 个,即n=110C 19C 。
所以甲抽到选择题,乙抽到判断题的概率是P(A)=191101416C C C C =。
(2)此题有两种解法:解法一:用直接法,甲、乙两人中至少有一人抽到选择题可分为三类情形,甲抽到乙没抽到,乙抽到甲没抽到,或甲、乙都抽到,即m=216C 14C +16C 15C ,而n=110C 19C 。