第1章—01-半导体基础知识讲解
- 格式:ppt
- 大小:2.72 MB
- 文档页数:32
《半导体》讲义一、什么是半导体在我们生活的这个科技日新月异的时代,半导体已经成为了无处不在的关键元素。
但究竟什么是半导体呢?半导体,从本质上来说,是一种导电性介于导体和绝缘体之间的材料。
它的导电性能既不像铜、铝等金属那样优秀,能够轻易地让电流通过,也不像橡胶、塑料等绝缘体那样几乎完全阻止电流的流动。
常见的半导体材料有硅、锗、砷化镓等。
以硅为例,它在元素周期表中位于金属和非金属的交界位置,这使得它的原子结构具有独特的性质,从而表现出半导体的特性。
半导体的这种特殊导电性,使得我们能够通过对其进行巧妙的处理和控制,实现各种各样神奇的功能。
二、半导体的特性半导体具有一些非常重要的特性,正是这些特性使得它们在现代电子技术中发挥着无可替代的作用。
1、热敏特性半导体的电阻会随着温度的变化而发生显著改变。
温度升高时,其电阻会减小;温度降低时,电阻则会增大。
利用这一特性,我们制造出了热敏电阻,用于温度测量、温度控制等领域。
2、光敏特性半导体在受到光照时,其导电能力会大大增强。
基于这一特点,我们开发出了光电二极管、太阳能电池等器件。
3、掺杂特性通过向纯净的半导体中掺入微量的杂质元素,可以极大地改变其导电性能。
这种掺杂过程就像是给半导体“调味”,不同的“调料”(杂质)和不同的“用量”(掺杂浓度)会让半导体展现出不同的电学特性。
三、半导体的制造工艺了解了半导体的基本概念和特性后,我们来看看半导体是如何被制造出来的。
制造半导体的过程就像是在微观世界里进行一场精细的“雕刻”。
首先是原材料的准备,通常是高纯度的硅晶圆。
然后,通过一系列复杂的工艺步骤,在晶圆上构建出各种微小的结构和器件。
其中,光刻技术是关键的环节之一。
它就像是在晶圆上用“光”来绘制精细的电路图。
通过将特定的光刻胶涂覆在晶圆表面,然后用紫外线等光源透过掩膜版进行照射,使光刻胶发生化学反应,从而在晶圆上形成需要的图案。
接下来是掺杂,将杂质原子引入到特定的区域,以改变其电学性质。
第1章 半导体的基本知识1.1 半导体及PN 结半导体器件是20世纪中期开始发展起来的,具有体积小、重量轻、使用寿命长、可靠性高、输入功率小和功率转换效率高等优点,因而在现代电子技术中得到广泛的应用。
半导体器件是构成电子电路的基础。
半导体器件和电阻、电容、电感等器件连接起来,可以组成各种电子电路。
顾名思义,半导体器件都是由半导体材料制成的,就必须对半导体材料的特点有一定的了解。
1.1.1 半导体的基本特性在自然界中存在着许多不同的物质,根据其导电性能的不同大体可分为导体、绝缘体和半导体三大类。
通常将很容易导电、电阻率小于410-Ω•cm 的物质,称为导体,例如铜、铝、银等金属材料;将很难导电、电阻率大于1010Ω•cm 的物质,称为绝缘体,例如塑料、橡胶、陶瓷等材料;将导电能力介于导体和绝缘体之间、电阻率在410-Ω•cm ~1010Ω•cm 范围内的物质,称为半导体。
常用的半导体材料是硅(Si)和锗(Ge)。
用半导体材料制作电子元器件,不是因为它的导电能力介于导体和绝缘体之间,而是由于其导电能力会随着温度的变化、光照或掺入杂质的多少发生显著的变化,这就是半导体不同于导体的特殊性质。
1、热敏性所谓热敏性就是半导体的导电能力随着温度的升高而迅速增加。
半导体的电阻率对温度的变化十分敏感。
例如纯净的锗从20℃升高到30℃时,它的电阻率几乎减小为原来的1/2。
而一般的金属导体的电阻率则变化较小,比如铜,当温度同样升高10℃时,它的电阻率几乎不变。
2、光敏性半导体的导电能力随光照的变化有显著改变的特性叫做光敏性。
一种硫化铜薄膜在暗处其电阻为几十兆欧姆,受光照后,电阻可以下降到几十千欧姆,只有原来的1%。
自动控制中用的光电二极管和光敏电阻,就是利用光敏特性制成的。
而金属导体在阳光下或在暗处其电阻率一般没有什么变化。
3、杂敏性所谓杂敏性就是半导体的导电能力因掺入适量杂质而发生很大的变化。
在半导体硅中,只要掺入亿分之一的硼,电阻率就会下降到原来的几万分之—。
《半导体》讲义一、什么是半导体在我们的现代生活中,半导体无处不在。
从智能手机到电脑,从汽车到家用电器,半导体都扮演着至关重要的角色。
那么,究竟什么是半导体呢?半导体,简单来说,是一种导电性介于导体和绝缘体之间的材料。
常见的半导体材料有硅、锗、砷化镓等。
导体,比如铜、铝等金属,它们内部有大量自由移动的电子,所以导电性很好。
而绝缘体,像塑料、橡胶等,其内部几乎没有自由移动的电子,导电性极差。
半导体则处于两者之间,它的导电性可以通过一些特殊的方法进行调控。
以硅为例,纯净的硅晶体导电性并不强。
但当我们向其中掺入少量的杂质,比如磷或者硼,硅的导电性就会发生显著的变化。
这种特性使得半导体能够实现对电流的精确控制,从而成为电子设备中各种功能元件的基础。
二、半导体的特性半导体具有一些独特的特性,正是这些特性使得它们在电子领域具有如此广泛的应用。
1、热敏特性半导体的电阻会随着温度的变化而发生明显的改变。
利用这一特性,我们可以制造出热敏电阻,用于温度测量和控制。
2、光敏特性当半导体受到光照时,其导电能力会增强。
基于这一特性,我们有了光电二极管、太阳能电池等器件。
3、掺杂特性前面提到,向半导体中掺入少量的杂质可以极大地改变其导电性。
这使得我们能够根据不同的需求,制造出具有不同电学性能的半导体器件。
4、单向导电性半导体二极管具有单向导电性,只允许电流在一个方向上通过。
这在电路中用于整流、检波等方面。
三、半导体的制造工艺了解了半导体的基本概念和特性,接下来我们看看半导体是如何制造出来的。
半导体的制造是一个极其复杂且精密的过程,通常包括以下几个主要步骤:1、晶圆制备首先,需要制备出高纯度的硅晶圆。
这通常是通过将石英砂(主要成分是二氧化硅)经过一系列的化学反应和提纯工艺,得到高纯度的硅,然后将其拉制成圆柱形的单晶硅锭,再切割成薄片状的晶圆。
2、光刻这是半导体制造中最为关键的步骤之一。
在晶圆表面涂上一层光刻胶,然后通过光刻机将设计好的电路图案投射到光刻胶上。
1-1半导体的基本知识课 题:半导体基本知识教学目的、要求:1、了解半导体的导电特性; 2、掌握PN 结及其单向导电性。
教学重点、难点:1、PN 结形成的过程;(难点) 2、PN 结的单向导电性。
(重点) 授 课 方 法:多媒体课件讲授,提纲及重点板书。
授 课 提 纲:教 学 内 容: 组织教学准备教学材料,清点学生人数。
(课前2分钟) 引入新课半导体器件是用半导体材料制成的电子器件。
常用的半导体器件有二极管、三极管、场效应晶体管等。
半导体器件是构成各种电子电路最基本的元件。
从本节课开始,我们先从半导体的基本知识开始,介绍常用的半导体器件。
要求大家本征半导体的特点,掌握PN 结的形成及单向导电性。
(2分钟) 进入新课第一章 常用半导体器件§1-1 半导体的基本知识【板书】一、什么是半导体【板书】1、物质按导电能力的分类【标题板书+内容多媒体】(8分钟)自然界中的物质按其导电能力可以分为三大类:导体、绝缘体和半导体。
物质的导电特性取决于原子结构。
⑴导体:一般为低价元素,如铜、铁、铝等金属,其最外层电子受原子核的束缚力很小,因而极易挣脱原子核的束缚成为自由电子。
因此在外电场作用下,这些电子产生定向移动形成电流,呈现出较好的导电特性。
⑵绝缘体:高价元素(如惰性气体)和高分子物质(如橡胶,塑料)最外层电子受原子核的束缚力很强,极不易摆脱原子核的束缚成为自由电子,所以其导电性极差, 可作为绝缘材料。
⑶半导体:半导体材料最外层电子既不像导体那样极易摆脱原子核的束缚,成为自由电子,也不像绝缘体那样被原子核束缚得那么紧,因此,半导体的导电特性介于二者之间。
半导体有硅(Si)、锗(Ge)和砷化镓(GaAs)及金属的氧化物和硫化物。
最常用的是硅和锗。
2、半导体的特点【标题板书+内容多媒体】(5分钟)半导体之所以被用来制造电子元器件,不是在于它的导电能力处于导体与绝缘体之间,而是由于它的导电能力在外界某种因素作用下发生显著的变化,这种特点表现如下:⑴半导体的电导率可以因为加入杂质而发生显著的变化。
第一章半导体基础知识〖本章主要内容〗本章重点讲述半导体器件的结构原理、外特性、主要参数及其物理意义,工作状态或工作区的分析。
首先介绍构成PN结的半导体材料、PN结的形成及其特点。
其后介绍二极管、稳压管的伏安特性、电路模型和主要参数以及应用举例。
然后介绍两种三极管(BJT和FET)的结构原理、伏安特性、主要参数以及工作区的判断分析方法。
〖本章学时分配〗本章分为4讲,每讲2学时。
第一讲常用半导体器件一、主要内容1、半导体及其导电性能根据物体的导电能力的不同,电工材料可分为三类:导体、半导体和绝缘体。
半导体可以定义为导电性能介于导体和绝缘体之间的电工材料,半导体的电阻率为10-3~10-9Ω∙cm。
典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。
半导体的导电能力在不同的条件下有很大的差别:当受外界热和光的作用时,它的导电能力明显变化;往纯净的半导体中掺入某些特定的杂质元素时,会使它的导电能力具有可控性;这些特殊的性质决定了半导体可以制成各种器件。
2、本征半导体的结构及其导电性能本征半导体是纯净的、没有结构缺陷的半导体单晶。
制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”,它在物理结构上为共价键、呈单晶体形态。
在热力学温度零度和没有外界激发时,本征半导体不导电。
3、半导体的本征激发与复合现象当导体处于热力学温度0K时,导体中没有自由电子。
当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚而参与导电,成为自由电子。
这一现象称为本征激发(也称热激发)。
因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。
游离的部分自由电子也可能回到空穴中去,称为复合。
在一定温度下本征激发和复合会达到动态平衡,此时,载流子浓度一定,且自由电子数和空穴数相等。
4、半导体的导电机理自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,因此,在半导体中有自由电子和空穴两种承载电流的粒子(即载流子),这是半导体的特殊性质。