第十四页,共46页。
从 52 张扑克牌(除大王、小王)中任取 5 张,计算: (1)有 4 张数值相同,另外 1 张不同,有多少种取法? (2)有 3 张数值相同,另外 2 张数值也相同,有多少种取 法? (3)5 张数值顺序连续,花色可以不同,有多少种取法?
第十五页,共46页。
【解】 (1)扑克牌中共有 13 种数值(1~13),有 4 张数 值相同,则有 13 种可能,第 5 张则在余下的 48 张中选取.
所以符合条件的方法有 13·C418=624 种. (2)3 张数值相同,有 C113·C34种;另外 2 张数值也相同,则 有 C112·C42种,所以共有 C113·C34·C112·C24=3 744 种.
第十六页,共46页。
(3)5 张数值连续,只有下述 9 种可能: 1,2,3,4,5; 2,3,4,5,6; 3,4,5,6,7; … 9,10,11,12,13. 任何一种数值都有 4 种花色供选择,所以 5 种数值的花 色选配方法有 4×4×4×4×4=45 种. 所以符合条件的取法共有 9×45=9 216 种.
第二页,共46页。
2.在解决排列与组合应用题时,如何看待题设中的元素 与位置?
【提示】 在排列、组合问题中,元素与位置没有严格 的界定标准,哪些事物看成元素或位置,随着解题者思维方 式的变化而变化,要视具体情况而定,有时元素选位置,问 题解决起来简捷,有时位置选元素效果会更好.
第三页,共46页。
在解答排列组合综合问题时,要注意准确地应用两个基 本原理,要注意准确区分是排列问题还是 组合(z问ǔh题é),要注 意在利用直接法解题的同时,也要根据问题的实际恰当地利 用 间接(jiàn ji解ē)法题.
第二十页,共46页。