建筑材料的物理性质
- 格式:ppt
- 大小:4.61 MB
- 文档页数:3
二建建筑的建筑材料性能建筑材料是指用于建造和修复各类建筑物的材料。
在二级建造师考试中,建筑材料的性能是一个重要的考点。
本文将从物理性能、力学性能和耐久性能三个方面介绍二建建筑常用材料的性能特点,帮助考生更好地理解和记忆相关知识。
一、物理性能物理性能是指建筑材料在外界环境下的各种物理特性。
常见的物理性能有密度、热传导性、声传导性、吸水性等。
1. 密度:密度是指单位体积内的质量,通常用千克/立方米表示。
在建筑中,不同材料的密度会对结构和施工产生影响。
例如,密度大的材料可以提供更好的隔音效果,而密度小的材料则更轻便。
2. 热传导性:热传导性是指材料传导热量的能力。
建筑材料的热传导性能对于保温和隔热非常关键。
一般而言,导热系数越小的材料,保温性能越好。
3. 声传导性:声传导性是指材料对声波的传导能力。
在建筑领域,隔音是一个重要的考虑因素。
各种建筑材料的声传导性能各异,如隔音板、隔音玻璃等可以有效隔离噪音。
4. 吸水性:受潮、吸湿是一些建筑材料的固有特性。
吸水性能对建筑物的耐久性和变形非常重要。
合理使用吸水性能较弱的建筑材料,可以减少由于湿度变化引起的开裂、变形等问题。
二、力学性能力学性能是指建筑材料在受力状态下的各种性质。
主要包括强度、刚度、韧性、抗压强度、抗拉强度等。
1. 强度:强度是指材料抵抗破坏的能力。
对于建筑材料来说,强度是一个至关重要的指标。
在结构设计中,需要根据不同材料的强度来合理选择建筑材料,以确保结构的稳定可靠。
2. 刚度:刚度是指材料对应力的反应能力。
刚度越大,表示材料越难变形。
刚度较大的材料适合用于承重结构,如钢材和混凝土。
3. 韧性:韧性是指材料在受力过程中能够吸收和耗散大量的能量而不发生断裂。
在建筑中,一些受冲击力作用较大的部位需要具备韧性较好的材料,以增加结构的抗震性能。
4. 抗压强度和抗拉强度:抗压和抗拉强度是材料承受压力和拉力的能力。
在构建承重结构时,需要考虑材料的抗压和抗拉强度,以保证结构的稳定性。
建筑材料的基本性质整理-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、建筑材料的物理性质①材料的密度、表观密度、堆积密度(1)密度:材料在绝对密度状态下单位体积的重量。
(2)表观密度:材料在自然状态下单位体积德重量。
(3)堆积密度:粉状或散粒材料在堆积状态下单位体积德重量。
②材料的孔隙率空隙率(1)孔隙率:材料体积内空隙体积所占的比例。
(2)空隙率:散装粒状材料在某堆积体积中,颗粒之间的空隙体积所占的比列。
③材料的亲水性和憎水性(1)润湿角的材料为亲水材料,如建材中的混凝土、木材、砖等。
亲水材料表面做憎水处理,可提高其防水性能。
(2)润湿角的材料为亲水材料,如建材中的沥青、石蜡等。
④材料的吸水性和吸湿性(1)吸水性:在水中能吸收水分的性质。
吸水率(2)吸湿性:材料吸收空气中水分的性质。
含水率。
⑤材料的耐水性、抗渗性和抗冻性(1)耐水性:材料长期在饱和水的作用下不破坏,而且强度也不显着降低的性质。
(2)抗渗性:材料抵抗压力水渗透的性质。
一般用渗透系数K或抗渗等级P表示。
混凝土材料的抗渗等级P=10H-1,H-六个试件中三个试件开始渗水时的水压力。
K越小或P越高,表明材料的抗渗性越好。
(3)抗冻性:材料在吸水饱和状态下,能经受多次冻融循环作用而不破坏、强度又不明显降低的性质,常用抗冻等级F表示。
孔隙率小及具有封闭孔的材料有较高的抗渗性和抗冻性;具有细微而连通的空隙对材料的抗渗性和抗冻性不利。
(4)材料的导热性导热性:材料传到热量的性质。
用导热系数表示,通常将的材料称为绝热材料。
孔隙率越大、表观密度越小,导热系数越小。
2、建筑材料的力学性能①强度与比强度强度是材料抵抗外力破坏的能力。
强度分为抗拉强度、抗压强度、抗弯强度和抗剪强度。
孔隙率越大,强度越低。
比强度是按单位重量计算的材料强度,等于材料的强度与其表观密度之比。
②弹性与塑性(1)弹性:材料在外力作用下产生变形,当外力去除后,能完全恢复原来形状的性质。
建筑知识:不同材料的建筑物理性质分析建筑物理性质是指建筑材料在物理方面的特性和表现。
建筑物理性质是建筑设计中至关重要的一部分,它涉及到建筑材料的强度、硬度、密度、导热性能等多个方面,这些性质直接影响到建筑物的使用寿命、稳定性、隔热性和施工难易度等方面。
本文将分析常见的建筑材料的物理性质,并探讨它们的适用范围及优劣势。
1.混凝土混凝土是一种由水泥、沙子、碎石等不同成分材料组成的建筑材料。
混凝土强度高、密封性好、施工方便,广泛应用于建筑中。
在物理性质方面,混凝土的密度较大,适合用于重建筑物或做建筑的冲击和振动承受体,并且由于混凝土具有良好的隔热性能,因此在温室和其他需要保温的结构中很常见。
然而,混凝土的耐久性较弱,耐候性不佳,容易出现裂纹和腐蚀,对于那些需要使用较长期的建筑物来说,它可能并不是一个理想的选择。
2.红砖红砖是一种由粘土制成的建筑材料。
红砖相对较小、重量轻,适合用于建造房屋和其他轻负荷建筑,它具有较好的隔热性和隔音性,可以有效地维护内部温度和保护住户免受噪声的干扰。
然而,红砖的强度低,它通常不适合用于大型和重负荷建筑物的建造,这限制了它的应用范围,此外,红砖的制造成本也比较高,制造和运输过程中产生的碳排放量也是一个问题。
3.钢结构钢结构由钢材构成,具有较高的强度和硬度,适用于建造大型和重负荷建筑物,如高层建筑、桥梁和广场等。
钢结构还具有较好的耐候性和抗腐蚀性,可以在各种气候条件下使用。
然而,钢结构的处理比较麻烦,需要特殊的设备和高技能的工人,同时钢结构具有较差的隔热性能并且易受火灾损坏,这些缺陷限制了钢结构的使用范围。
4.玻璃玻璃是一种透明的建筑材料,用于建造大型的、现代风格的建筑物,如大型写字楼和商场等。
玻璃具有良好的透光性和美观性,并且通常可以起到保温和隔热作用。
但是,玻璃的强度和硬度较低,不适合用于建造高负荷建筑,而且玻璃易碎,对建筑物的安全也会造成威胁。
5.瓦片瓦片是一种轻便且易于安装的建筑材料,它通常用于屋顶和墙面覆盖,可以有效地隔热并且比其他建筑材料更加经济。
项目一建筑材料基本性质(1)真实密度(密度)岩石在规定条件(105土5)℃烘干至恒重,温度20℃)下,单位矿质实体体积(不含孔隙的矿质实体的体积)的质量。
真实密度用ρt表示,按下式计算:式中:ρt——真实密度,g/cm3 或kg/m3;m s——材料的质量,g 或kg;Vs——材料的绝对密实体积,cm3或m3。
因固测定方法:李氏比重瓶法将石料磨细至全部过的筛孔,然后将其装入比重瓶中,利用已知比重的液体置换石料的体积。
(2)毛体积密度岩石在规定条件下,单位毛体积(包括矿质实体和孔隙体积)质量。
毛体积密度用ρd表示,按下式计算:式中:ρd——岩石的毛体积密度, g/cm3或kg/m3;m s——材料的质量,g 或kg;Vi、Vn——岩石开口孔隙和闭口孔隙的体积,cm3或m3。
(3)孔隙率岩石的孔隙率是指岩石内部孔隙的体积占其总体积的百分率。
孔隙率n按下式计算:式中:V——岩石的总体积,cm3或m3;V0——岩石的孔隙体积,cm3或m3;ρd——岩石的毛体积密度,g/cm3或kg/m3ρt——真实密度, g/cm3或kg/m3。
2、吸水性岩石的吸水性是岩石在规定的条件下吸水的能力。
岩石与水作用后,水很快湿润岩石的表面并填充了岩石的孔隙,因此水对岩石的破坏作用的大小,主要取决于岩石造岩矿物性质及其组织结构状态(即孔隙分布情况和孔隙率大小)。
为此,我国现行《公路工程岩石试验规程》规定,采用吸水率和饱水率两项指标来表征岩石的吸水性。
(1)吸水率岩石吸水率是指在室内常温(202℃)和大气压条件下,岩石试件最大的吸水质量占烘干(1055℃干燥至恒重)岩石试件质量的百分率。
吸水率wa的计算公式为:式中:m h——材料吸水至恒重时的质量(g);m g——材料在干燥状态下的质量(g)。
(2)饱和吸水率在强制条件下(沸煮法或真空抽气法),岩石在水中吸收水分的能力。
吸水率wsa 的计算公式为:式中:m b——材料经强制吸水至饱和时的质量(g);m g——材料在干燥状态下的质量(g)。
2.1 建筑材料的基本物理性质建筑材料在建筑物的各个部位的功能不同,均要承受各种不同的作用,因而要求建筑材料必须具有相应的基本性质。
物理性质包括密度、密实性、空隙率、孔隙率(计算材料用量、构件自重、配料计算、确定堆放空间)一、材料的密度、表观密度与堆积密度密度是指物质单位体积的质量。
单位为g/cm3或kg/m3。
由于材料所处的体积状况不同,故有实际密度(密度)、表观密度和堆积密度之分。
(1)实际密度 (True Density)以前称比重、真实密度),简称密度(Density)。
实际密度是指材料在绝对密实状态下,单位体积所具有的质量,按下式计算:式中: ρ-实际密度(g/cm3);m-材料在干燥状态下的质量(g);V-材料在绝对密实状态下的体积(cm3)。
绝对密实状态下的体积是指不包括孔隙在内的体积。
除了钢材、玻璃等少数接近于绝对密实的材料外,绝大多数材料都有一些孔隙,如砖、石材等块状材料。
在测定有孔隙的材料密度时,应把材料磨成细粉以排除其内部孔隙,经干燥至恒重后,用密度瓶(李氏瓶)测定其实际体积,该体积即可视为材料绝对密实状态下的体积。
材料磨得愈细,测定的密度值愈精确。
(2)表观密度 (Apparent Density)以前称容重、有的也称毛体积密度。
表观密度是指材料在自然状态下,单位体积所具有的质量,按下式计算:式中: ρ0-表观密度(g/cm3或kg/m3);m-材料的质量(g或kg);V0-材料在自然状态下的体积,或称表观体积(cm3或m3)。
材料在自然状态下的体积是指材料的实体积与材料内所含全部孔隙体积之和。
对于外形规则的材料,其测定很简便,只要测得材料的重量和体积,即可算得表观密度。
不规则材料的体积要采用排水法求得,但材料表面应预先涂上蜡,以防水分渗人材料内部而影响测定值。
(3)堆积密度 (Bulk Density)散粒材料在自然堆积状态下单位体积的重量称为堆积密度。
可用下式表示:式中: ρ0'-堆积密度(kg/m3);m-材料的质量(kg);V0'-材料的堆积体积(m3)。
2010年1月份学习资料:建筑材料的物理性质建筑材料的物理性质可分为与质量有关的性质、与水有关的性质和与温度有关的性质。
1.与质量有关的性质(1)密度。
材料的密度是指材料在绝对密实状态下单位体积的质量,即材料的质量与材料在绝对密实状态下的体积之比。
(2)表观密度。
材料的表观密度是指材料在自然状态下单位体积的质量,即材料的质量与材料在自然状态下的体积之比。
(3)密实度。
材料的密实度是指材料在绝对密实状态下的体积与在自然状态下的体积之比。
(4)孔隙率。
材料的孔隙率是指材料内部孔隙的体积占材料在自然状态下的体积的比例。
2.与水有关的性质(1)吸水性。
可用材料的吸水率来反映。
材料的吸水率与其孔隙率正相关。
(2)吸湿性。
材料的吸湿性是指材料在潮湿的空气中吸收水蒸气的性质,可用材料的含水率来反映。
(3)耐水性。
材料的耐水性是指材料在饱和水作用下强度不显著降低的性质。
(4)抗渗性。
材料的抗渗性是指材料的不透水性,或材料抵抗压力水渗透的性质。
(5)抗冻性。
材料的抗冻性是指材料在多次冻融循环作用下不破坏,强度也不显著降低的性质。
3.与温度有关的性质(1)导热性。
材料的导热性是指热量由材料的一面传至另一面的性质。
(2)热容量。
材料的热容量是指材料受热时吸收热量,冷却时释放热量的性质。
(二)建筑材料的力学性质建筑材料的力学性质是指建筑材料在各种外力作用下抵抗破坏或变形的性质,包括强度、弹性、塑性、脆性、韧性、硬度和耐磨性。
1. 强度。
2.弹性与塑性。
材料的弹性是指材料在外力作用下产生变形,外力去掉后变形能完全消失的性质。
材料的这种可恢复的变形,称为弹性变形。
材料的这种不可恢复的残留变形,称为塑性变形。
3.脆性与韧性。
材料的脆性是指材料在外力作用下未发生显著变形就突然破坏的性质。
脆性材料的抗压强度远大于其抗拉强度,所以脆性材料只适用于受压构件。
建筑材料中大部分无机非金属材料为脆性材料。
材料的韧性是指材料在冲击或振动荷载作用下产生较大变形尚不致破坏的性质。
建筑材料的基本物理性质建筑材料的基本物理性质二、建筑材料的基本物理性质(一)材料的密度、表观密度和堆积密度1.密度(ρ)密度是材料在绝对密实状态下,单位体积的重量。
按下式计算:ρ=m/V式中ρ一一密度, g/cm3;m一一材料的重量, g;V一一材料在绝对密实状态下的体积, cm3。
这里指的"重量"与物理学中的"质量"是同一含义,在建筑材料学中,习惯上称之为“重量”。
对于固体材料而言, rn是指干燥至恒重状态下的重量。
所谓绝对密实状态下的体积是指不含有任何孔隙的体积。
建筑材料中除了钢材、玻璃等少数材料外,绝大多数材料都含有一定的孔隙、如砖、石材等块状材料。
对于这些有孔隙的材料,测定其密度时,应先把材料磨成细粉,经干燥至恒重后,用比重瓶(李氏瓶)测定其体积,然后按上式计算得到密度值。
材料磨得越细,测得的数值就越准确。
2.表观密度(ρo)表现密度是指材料在自然状态下,单位体积的重量。
按下式计算:Ρo=m/V0ρo一一表观密度, g/cm3或kg/m3;m一一材料的重量, g或kg;Vo一一材料的自然状态下的体积, cm3或m3材料在自然状态下的体积包含了材料内部孔隙的体积。
当材料含有水分时,它的重量积都会发生变化。
一般测定表观密度时,以干燥状态为准,如果在含水状态下测定表度,须注明含水情况。
在试验室中测定的通常为烘干至恒重状态下的表观密度。
质地坚硬的散粒状材料,如砂、石,要磨成细粉测定密度需耗费很大的能量,一般测定其密度,在应用过程中(如混凝土配合比计算过程)近似代替其密度。
3.堆积密度(ρ'0)堆积密度是指粉状或散粒状材料在堆积状态下,单位体积的重量。
按下式计算:ρ'0=m/V'0(10-1-3 )其中ρ'0一一堆积密度, kg/m3;M一一材料的重量, kg;V'0一一材料的堆积体积, m3。
这里,材料的重量是指自然堆积在一定容器内材料的重量;其堆积体积是指所用容器的容积。