九年级数学圆的基本性质
- 格式:pdf
- 大小:811.03 KB
- 文档页数:8
九年级下数学圆知识点总结在九年级下学期的数学课程中,圆是一个重要的几何形状。
学习圆的相关知识对于理解几何学和进一步解决问题至关重要。
在本文中,将对九年级下数学课程的圆相关知识点进行总结。
一、圆的定义和基本性质1. 圆的定义:圆是由平面上离定点距离相等的所有点组成的集合。
2. 圆的要素:圆心、半径和直径是圆的基本要素。
- 圆心:圆的中心点,通常用字母O表示。
- 半径:圆心到圆上任意一点的距离,通常用字母r表示。
- 直径:通过圆心的一条线段,它的两个端点在圆上,通常用字母d表示。
3. 圆的性质:- 圆上任意两点的距离等于半径的长度。
- 圆的直径是半径的两倍。
- 圆的周长等于直径乘以π(圆周率),即C = πd。
- 圆的面积等于半径平方乘以π,即A = πr²。
二、圆的位置关系和判定方法1. 圆的位置关系:- 同心圆:具有相同圆心但半径不同的圆。
- 内切圆:两个圆相交,且较小的圆完全位于较大的圆内部,二者只有一个公共点。
- 外切圆:两个圆相交,且较小的圆完全位于较大的圆外部,二者只有一个公共点。
- 相交圆:两个圆有两个不重叠的公共点。
- 相离圆:两个圆没有公共点。
2. 判定圆的方法:- 已知圆心和半径:根据圆的定义,可以通过圆心和半径确定一个圆。
- 已知圆上的三个点:三点确定一个圆,可以根据圆的性质绘制出圆来。
- 已知直径两端的点:通过两点绘制直径,以直径中点为圆心,直径的一半为半径即可确定圆。
三、圆的相关角度1. 弧度制和角度制:- 弧度制:用圆的弧长与半径的比值表示,一周为2π弧度。
- 角度制:以直角为90度,一周为360度。
2. 弧度和角度之间的转换:- 角度制转弧度制公式:弧度= (π/180) × 角度- 弧度制转角度制公式:角度= (180/π) × 弧度3. 圆心角和弧度:- 圆心角:以圆心为顶点的角。
- 弧度的定义:弧度是圆心角所对应的弧长与半径的比值。
四、圆与直线的位置关系1. 相切关系:- 切线:与圆只有一个交点的直线。
九年级圆知识点总结在九年级数学学习中,圆作为一个重要的概念和知识点,被广泛涉及和应用。
本文将对九年级圆的相关知识进行总结和归纳,旨在提供一个全面而清晰的概述。
一、圆的基本性质1. 定义:圆是平面上到定点的距离等于定长的点的集合。
2. 要素:圆心、半径、直径、弧、弦、边界等。
3. 关键概念:- 圆心角:以圆心为顶点的两条射线所夹的角。
- 弧度制:用弧长和半径的比值来度量圆心角的单位制。
- 弧长:沿着圆周的一段弧的长度。
- 弦长:圆周上的两个点之间的弦的长度。
- 弦切线定理:若一条弦与一条切线相交,那么切线所对的弦长等于弧切分的弧长。
二、圆的计算公式1. 圆的周长:C = 2πr,其中r为半径。
2. 圆的面积:A = πr²,其中r为半径。
三、圆与其他图形的关系1. 圆与直线的关系:- 点到圆的位置关系:在圆内、在圆上、在圆外。
- 切线与圆的关系:内切线、外切线、相切。
- 弦与圆的关系:一条弦平分圆,当且仅当它垂直于半径。
- 弧与圆的关系:圆周角、弦心角、相交弧、相等弧、截弧等。
2. 圆与三角形的关系:- 角平分线与圆的关系:三角形内接圆的圆心是角平分线的交点。
- 三角形内切圆的性质:内切圆与三角形的切点构成的线段相等、角度相等等。
- 外接圆与三角形的关系:外接圆的圆心是三角形外角的角平分线的交点。
三、实际问题中的圆1. 圆的应用:在现实生活中,圆的概念和性质常被用于解决与圆相关的问题,如圆的轨迹、钟表等。
2. 圆的建模:圆的模型可以应用于建筑、设计等领域,例如环形结构的承重分析、圆形花坛的设计等。
3. 圆的测量:利用测量工具可以测量圆的直径、半径、弧长等。
结语:通过对九年级圆的知识点总结,我们可以更好地理解圆的基本概念、性质与计算公式,并应用于实际问题中。
深入掌握圆的知识对于进一步学习几何学和解决实际问题都具有重要的意义。
注:文章中的内容不完全围绕九年级圆的知识点展开,因为题目描述没有提供具体的要求,请知悉。
九年级数学圆的基本性质九年级数学:圆的基本性质及其应用圆的性质是九年级数学中的一个重要内容,它在实际生活和后续数学知识中都具有重要的地位。
本文将详细介绍圆的基本性质,并通过实例阐述其应用。
一、圆的基本定义圆是一种几何图形,由一条固定长度的线段(称为半径)围绕一个定点(称为圆心)旋转一周所形成的封闭曲线。
圆具有如下基本元素:1、圆心:定义圆的中心点,用符号“O”表示。
2、半径:连接圆心与圆上任意一点的线段,用符号“r”表示。
3、直径:通过圆心的线段,其长度为半径的两倍,用符号“d”表示。
4、周长:圆的所有边界点组成的封闭曲线长度,用符号“C”表示。
5、面积:圆所占平面的大小,用符号“S”表示。
二、圆的基本性质1、圆的确定:到一个定点距离等于定长的所有点组成的图形是一个圆。
2、圆心与半径的关系:在同圆或等圆中,半径等于直径的一半。
3、圆的基本性质:圆是轴对称图形,其对称轴有无数条,任何一条直径所在的直线都是其对称轴。
4、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
5、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
6、圆周角定理:在同圆或等圆中,相等的圆周角所对的弧相等,所对的弦也相等。
7、弦切角定理:在圆中,与圆相交的直线被圆截得的线段相等。
三、圆的性质的应用1、日食和月食:当月球绕地球运动时,太阳、地球和月球在同一直线上,太阳照射在月球的背面,地球上的观察者会看到月偏食或月全食。
这是由于太阳照射在月球的背面,使得月球背面的影子投射在地球上,形成了月食。
2、汽车轮胎:汽车轮胎的设计考虑了圆的性质。
因为车轮是由一个圆柱体和两个半圆形组成的,所以当车轮转动时,可以平稳地行驶。
3、计算圆的周长和面积:圆的周长和面积是圆的两个基本量,可以用于计算圆的周长和面积,也可以用于计算球体、圆柱、圆锥等几何形体的体积和表面积。
4、工程设计:在工程设计中,经常需要用到圆的性质。
例如,在设计桥梁时,需要考虑桥墩之间的距离以及桥墩的形状;在设计房屋时,需要考虑窗户和门的形状和大小。
一、基础知识(一)圆的有关概念:圆:在同一平面内,到定点的距离等于定长的点的集合。
其中,定点为圆心,定长为半径。
弦:连接圆上任意两点的线段。
经过圆心的弦是直径。
弧:圆上任意两点间的部分叫弧。
圆上任一条直径的两个端点把圆分成的两条弧,每一条弧都叫做半圆。
大于半圆的弧角做优弧,小于半圆的弧叫劣弧。
(二)圆的性质:1.同圆或等圆中:半径、直径都相等。
2.圆有无数条弦,其中最长的弦为直径。
3.圆是轴对称图形,对称轴为直径所在的直线,有无数条。
圆是中心对称图形,并且无论绕圆心旋转多少度,都可以和原图形重合。
二、重难点分析本课教学重点:弦和弧的概念、弧的表示方法和点与圆的位置关系.本课教学难点:点和圆的位置关系及判定。
通过日常生活在生产中的实例引导学生对学习圆的兴趣。
三、典例精析:例1:(2014•长春二模)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°∴∠DAO=∠AOC=70°例2.如图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线交于点C,且有DC=OE,若∠C=20°,则∠EOB的度数是。
四、感悟中考1、(2013•温州)在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作BAC ,如图所示.若AB =4,AC =2,S 1-S 2=4π,则S 3-S 4的值是( )A.429π B.423π C.411π D.45π2、如图,已知同心圆O ,大圆的半径AO 、BO 分别交小圆于C 、D ,试判断四边形ABDC 的形状.并说明理由.∠A五、专项训练。
(一)基础练习1、已知:如图,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD.求证:△OAC≌△OBD.2、如图,AB、CD为⊙O中两条直径,点E、F在直径CD上,且CE=DF.求证:AF=BE.【点评】本题考查圆的基本性质、全等三角形判定。
圆的基本性质知识点圆的定义几何定义:线段OA,绕O点旋转一周得到的图形,叫做圆。
其中,O为圆心,OA为半径。
集合定义:到定点等于定长的所有点的集合。
其中,定点为圆心,定长为半径。
圆的书写格式:圆的对称性(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
与圆有关的线段半径:圆上一点与圆心的连线段。
确定一个圆的要素是圆心和半径。
弦:连结圆上任意两点的线段叫做弦。
直径:经过圆心的弦叫做直径。
弦心距:圆心到弦的垂线段的长。
弧:圆上任意两点间的部分叫做圆弧,简称弧。
劣弧:小于半圆周的圆弧叫做劣弧。
表示方法:优弧:大于半圆周的圆弧叫做优弧。
表示方法:在同圆或等圆中,能够互相重合的弧叫做等弧。
注意:同弧或等弧对应的弦相等。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
注意:定理中的“垂直于弦的直径”可以是直径,也可以是半径,深圳可以是过圆心的直线或线段;该定理也可以理解为:若一条直线具有两条性质:①过圆心;②垂直于一条弦,则此直线具有另外三条性质:①平分此弦;②平分此弦所对的优弧;③平分此弦所对的劣弧.推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
在下列五个条件中:①CD是直径;②CD⊥AB;③AM=BM;④AC=BC;⑤AD=BD.只要具备其中两个条件,就可推出其余三个结论.注意:(1)在圆中,与已知弦(非直径)相等的弦共有条;共端点且相等的弦共有条。
(2)在圆中,与已知弦(非直径)平行的弦共有条;平行且相等的弦共有条。
例1.如图:OA、OB为⊙O的半径,C、D分别为OA、OB的中点,求证:AD=BC.例2.如图,已知AB是⊙O的直径,弦CD⊥AB,垂足是E,如果AB=10cm,CD=8cm,求AE的长。
九年级数学《圆的基本性质复习课》评课稿
池老师展示的是《圆的基本性质复习课》,课上,池老师以“转”和“折”两个角度引出圆的旋转不变性和轴对称性。
并以圆的旋转性为出发点将弦与圆周角的问题抛出,让学生思考多种求解方法,从而简单的复习圆心角、弧、弦心距、圆周角、弦等知识点的联系以及垂径定理的运用。
在老师的引导下,进一步加深了对圆的基本性质的了解和认识。
本节课,池老师设计的综合型较强的圆与动点问题,是本节课的亮点所在,在给定的条件下,老师先让学生尝试性的出题,然后学生自己解决,课堂效果较好,学生乐学其中。
最后老师出手,将难题抛出,学生独立思考并分析解决。
整堂课,思路清晰,内容循序渐进,符合学生的认知水平。
另外,池老师的将圆的知识结构化,问题设计又充分体现着综合性,结合富有新意的板书,使人印象深刻。
九年级数学知识点整理初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角的外心就是斜边的中点。
)8、直线与圆的位置关系。
d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。
数学知识点九年级圆的必考知识点(1)圆在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。
圆有无数条对称轴。
九年级数学《圆的基本性质》知识点复习一、圆1、圆的定义在一个个平面内,线段oA绕它固定的一个端点o旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点o叫做圆心,线段oA叫做半径。
2、圆的几何表示以点o为圆心的圆记作“⊙o”,读作“圆o”二、圆形的旋转1.图形的旋转定义:在平面内,将一个圆形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,转动的角称为旋转角。
生活中的旋转现象大致有两大类:一类是物体的旋转运动,如时钟的时针、分针、秒针的转动,风车的转动等;另一类则是由某一基本图形通过旋转而形成的图案,如香港特别行政区区旗上的紫荆花图案。
图形的旋转不改变图形的大小和形状,旋转是由旋转中心和旋转角所决定,旋转中心可以在图形上也可以在图形外。
会找对应点,对应线段和对应角。
三、垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:平分弦的直径垂直于弦,并且平分弦所对的两条弧。
弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
四、圆心角把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.圆心角的度数和它们对的弧的度数相等.五、圆周角有关计算公式①L=n/180Xπr;②S=n/360Xπr²③扇形圆心角n=/。
④k=2Rsink=弦长;n=弦所对的圆心角,以度计。
六、圆内接四边形四边形的四个顶点均在同一个圆上的四边形叫做圆内接四边形。
性质1、圆内接四边形的对角互补。
2、圆内接四边形的任意一个外角等于它的内对角。
3、圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。
七、正多边形重点:讲清正多边形和圆中心正多边形半径、中心角、弦心距、•边长之间的关系.难点:使学生理解四者:正多边形半径、中心角、•弦心距、边长之间的关系.[:学,科,网]正多边形的中心:所有对称轴的交点;正多边形的半径:正多边形外接圆的半径。