构建哈夫曼树及输出哈夫曼代码及算法思想
- 格式:docx
- 大小:193.81 KB
- 文档页数:5
数据压缩算法中的哈夫曼编码原理及应用哈夫曼编码是一种常用的数据压缩算法,它的原理是通过对待压缩的数据进行频率统计,将频率较高的字符赋予较短的编码,频率较低的字符赋予较长的编码,从而实现对数据的高效压缩。
哈夫曼编码的应用广泛,包括文件压缩、通信传输、数据存储等方面。
哈夫曼编码的原理可以简单描述为以下几个步骤:1.频率统计:将待压缩的数据进行频率统计,统计每个字符出现的次数,得到字符频率表。
2.构建哈夫曼树:根据字符频率表,构建哈夫曼树。
哈夫曼树是一种特殊的二叉树,其中每个叶子节点对应着一个字符,其路径长度代表该字符的编码长度。
3.生成编码:从哈夫曼树的根节点开始,对每个叶子节点进行编码生成。
从根节点到叶子节点的路径上的边分为0和1,路径上的0表示向左走,1表示向右走,从而得到每个字符的哈夫曼编码。
4.压缩数据:将原始数据按照生成的哈夫曼编码进行压缩,将每个字符替换为对应的哈夫曼编码。
5.解压数据:根据压缩后的数据和哈夫曼树,进行解压还原。
从根节点开始,按照压缩数据的0和1进行路径遍历,当遇到叶子节点时,即可找到对应的字符。
哈夫曼编码的应用非常广泛,下面介绍几个常见的应用领域:1.文件压缩:哈夫曼编码在文件压缩中有着重要的应用。
通过统计文件中每个字符的出现频率,构建哈夫曼树,并生成对应的哈夫曼编码,将字符替换为哈夫曼编码后,可以大大减少文件的存储空间。
当文件中存在一些频率较高的字符时,哈夫曼编码的效果尤为显著。
2.图片压缩:在图片压缩中,哈夫曼编码通常用于无损压缩。
将图像中的像素点表示为字符,通过统计每个字符出现的频率,构建哈夫曼树,并生成对应的哈夫曼编码。
将像素点替换为哈夫曼编码后,图像的存储空间可以大大减小,同时保证了图像的质量不受损失。
3.音频压缩:在音频压缩中,哈夫曼编码常用于有损压缩,例如MP3格式的音频文件。
在有损压缩中,通过对音频数据进行量化和编码,可以减小文件的大小,从而方便传输和存储。
哈夫曼编码的实现及应用哈夫曼编码(Huffman Coding)是一种用于数据压缩的编码技术,它可以将数据中频繁出现的字符或符号用较短的编码表示,从而减小数据的存储或传输开销。
以下是哈夫曼编码的实现和应用:实现哈夫曼编码:1. 构建哈夫曼树:首先,需要收集数据中不同字符或符号的频率信息,然后根据这些频率构建哈夫曼树。
在哈夫曼树中,频率较高的字符位于树的较低部分,频率较低的字符位于树的较高部分。
2. 分配编码:从根节点开始,沿着哈夫曼树的路径向下,为每个字符分配唯一的编码。
左子树通常表示0,右子树表示1。
这确保了编码是前缀编码,即没有一个编码是另一个编码的前缀。
3. 编码数据:使用分配的编码,将原始数据中的字符替换为相应的编码,从而生成压缩的数据。
哈夫曼编码的应用:1. 数据压缩:哈夫曼编码广泛用于数据压缩领域,包括压缩文件、图像、音频和视频数据。
由于频率较高的字符使用较短的编码,哈夫曼编码可以显著减小文件大小。
2. 通信系统:在通信系统中,数据通常需要在网络上传输。
使用哈夫曼编码可以减小数据传输的带宽要求,提高通信效率。
3. 文本编辑器:哈夫曼编码可用于实现字典压缩,减小文本文件的大小,使其更容易存储和传输。
4. 图像压缩:JPEG图片格式使用了哈夫曼编码来压缩图像数据,减小图像文件的大小。
5. 音频压缩:MP3音频格式中的音频数据也使用了哈夫曼编码,以减小音频文件的大小。
6. 存储设备:存储设备,如硬盘和闪存驱动器,通常使用哈夫曼编码来提高存储效率,减小数据的物理存储需求。
哈夫曼编码是一种有效的数据压缩方法,可以在多个领域中应用,以减小数据的大小并提高数据传输和存储的效率。
不同应用领域可能会采用不同的编码方式,但核心原理是一致的。
最优⼆叉树(哈夫曼树)的构建及编码参考:数据结构教程(第五版)李春葆主编⼀,概述1,概念 结点的带权路径长度: 从根节点到该结点之间的路径长度与该结点上权的乘积。
树的带权路径长度: 树中所有叶结点的带权路径长度之和。
2,哈夫曼树(Huffman Tree) 给定 n 个权值作为 n 个叶⼦结点,构造⼀棵⼆叉树,若该树的带权路径长度达到最⼩,则称这样的⼆叉树为最优⼆叉树,也称为哈夫曼树。
哈夫曼树是带权路径长度最短的树,权值较⼤的结点离根较近。
⼆,哈夫曼树的构建1,思考 要实现哈夫曼树⾸先有个问题摆在眼前,那就是哈夫曼树⽤什么数据结构表⽰? ⾸先,我们想到的肯定数组了,因为数组是最简单和⽅便的。
⽤数组表⽰⼆叉树有两种⽅法: 第⼀种适⽤于所有的树。
即利⽤树的每个结点最多只有⼀个⽗节点这种特性,⽤ p[ i ] 表⽰ i 结点的根节点,进⽽表⽰树的⽅法。
但这种⽅法是有缺陷的,权重的值需要另设⼀个数组表⽰;每次找⼦节点都要遍历⼀遍数组,⼗分浪费时间。
第⼆种只适⽤于⼆叉树。
即利⽤⼆叉树每个结点最多只有两个⼦节点的特点。
从下标 0 开始表⽰根节点,编号为 i 结点即为 2 * i + 1 和 2 * i + 2,⽗节点为 ( i - 1) / 2,没有⽤到的空间⽤ -1 表⽰。
但这种⽅法也有问题,即哈夫曼树是从叶结点⾃下往上构建的,⼀开始树叶的位置会因为⽆法确定⾃⾝的深度⽽⽆法确定,从⽽⽆法构造。
既然如此,只能⽤⽐较⿇烦的结构体数组表⽰⼆叉树了。
typedef struct HTNode // 哈夫曼树结点{double w; // 权重int p, lc, rc;}htn;2,算法思想 感觉⽐较偏向于贪⼼,权重最⼩的叶⼦节点要离根节点越远,⼜因为我们是从叶⼦结点开始构造最优树的,所以肯定是从最远的结点开始构造,即权重最⼩的结点开始构造。
所以先选择权重最⼩的两个结点,构造⼀棵⼩⼆叉树。
然后那两个最⼩权值的结点因为已经构造完了,不会在⽤了,就不去考虑它了,将新⽣成的根节点作为新的叶⼦节加⼊剩下的叶⼦节点,⼜因为该根节点要能代表整个以它为根节点的⼆叉树的权重,所以其权值要为其所有⼦节点的权重之和。
c语言哈夫曼树的构造及编码一、哈夫曼树概述哈夫曼树是一种特殊的二叉树,它的构建基于贪心算法。
它的主要应用是在数据压缩和编码中,可以将频率高的字符用较短的编码表示,从而减小数据存储和传输时所需的空间和时间。
二、哈夫曼树的构造1. 哈夫曼树的定义哈夫曼树是一棵带权路径长度最短的二叉树。
带权路径长度是指所有叶子节点到根节点之间路径长度与其权值乘积之和。
2. 构造步骤(1) 将待编码字符按照出现频率从小到大排序。
(2) 取出两个权值最小的节点作为左右子节点,构建一棵新的二叉树。
(3) 将新构建的二叉树加入到原来排序后队列中。
(4) 重复上述步骤,直到队列只剩下一个节点,该节点即为哈夫曼树的根节点。
3. C语言代码实现以下代码实现了一个简单版哈夫曼树构造函数:```ctypedef struct TreeNode {int weight; // 权重值struct TreeNode *leftChild; // 左子节点指针struct TreeNode *rightChild; // 右子节点指针} TreeNode;// 构造哈夫曼树函数TreeNode* createHuffmanTree(int* weights, int n) {// 根据权值数组构建节点队列,每个节点都是一棵单独的二叉树TreeNode** nodes = (TreeNode**)malloc(sizeof(TreeNode*) * n);for (int i = 0; i < n; i++) {nodes[i] = (TreeNode*)malloc(sizeof(TreeNode));nodes[i]->weight = weights[i];nodes[i]->leftChild = NULL;nodes[i]->rightChild = NULL;}// 构建哈夫曼树while (n > 1) {int minIndex1 = -1, minIndex2 = -1;for (int i = 0; i < n; i++) {if (nodes[i] != NULL) {if (minIndex1 == -1 || nodes[i]->weight < nodes[minIndex1]->weight) {minIndex2 = minIndex1;minIndex1 = i;} else if (minIndex2 == -1 || nodes[i]->weight < nodes[minIndex2]->weight) {minIndex2 = i;}}}TreeNode* newNode =(TreeNode*)malloc(sizeof(TreeNode));newNode->weight = nodes[minIndex1]->weight + nodes[minIndex2]->weight;newNode->leftChild = nodes[minIndex1];newNode->rightChild = nodes[minIndex2];// 将新构建的二叉树加入到原来排序后队列中nodes[minIndex1] = newNode;nodes[minIndex2] = NULL;n--;}return nodes[minIndex1];}```三、哈夫曼编码1. 哈夫曼编码的定义哈夫曼编码是一种前缀编码方式,它将每个字符的编码表示为二进制串。
课程设计(数据结构)哈夫曼树和哈夫曼编码二○○九年六月二十六日课程设计任务书及成绩评定课题名称表达式求值哈夫曼树和哈夫曼编码Ⅰ、题目的目的和要求:巩固和加深对数据结构的理解,通过上机实验、调试程序,加深对课本知识的理解,最终使学生能够熟练应用数据结构的知识写程序。
(1)通过本课程的学习,能熟练掌握几种基本数据结构的基本操作。
(2)能针对给定题目,选择相应的数据结构,分析并设计算法,进而给出问题的正确求解过程并编写代码实现。
Ⅱ、设计进度及完成情况Ⅲ、主要参考文献及资料[1] 严蔚敏数据结构(C语言版)清华大学出版社 1999[2] 严蔚敏数据结构题集(C语言版)清华大学出版社 1999[3] 谭浩强 C语言程序设计清华大学出版社[4] 与所用编程环境相配套的C语言或C++相关的资料Ⅳ、成绩评定:设计成绩:(教师填写)指导老师:(签字)二○○九年六月二十六日目录第一章概述 (1)第二章系统分析 (2)第三章概要设计 (3)第四章详细设计及实现代码 (8)第五章调试过程中的问题及系统测试情况 (12)第六章结束语 (13)参考文献 (13)第一章概述课程设计是实践性教学中的一个重要环节,它以某一课程为基础,可以涉及和课程相关的各个方面,是一门独立于课程之外的特殊课程。
课程设计是让同学们对所学的课程更全面的学习和应用,理解和掌握课程的相关知识。
《数据结构》是一门重要的专业基础课,是计算机理论和应用的核心基础课程。
数据结构课程设计,要求学生在数据结构的逻辑特性和物理表示、数据结构的选择和应用、算法的设计及其实现等方面,加深对课程基本内容的理解。
同时,在程序设计方法以及上机操作等基本技能和科学作风方面受到比较系统和严格的训练。
在这次的课程设计中我选择的题目是表达式求值和哈夫曼树及哈夫曼编码。
这里我们介绍一种简单直观、广为使用的算法,通常称为“算符优先法”。
哈夫曼树又称最优树,是一类带权路径长度最短的树,有着广泛的应用。
(一) 哈夫曼树的设计思想对于一组具有确定权值的叶子结点可以构造出多个具有不同带权路径长度的二叉树,其中具有最小带权路径长度的二叉树称作哈夫曼树或者最优二叉树。
首先给定n 个权值创造n 个只含根结点的二叉树,得到一个二叉树林;再在这二叉树林里面找根结点的权值最小和次小的两棵树作成新的二叉树,其中新的二叉树的根结点的权值为摆布子根结点权值之和;最后在二叉树林中把组合过的二叉树删除,再重复第二步,直到最后就剩一颗二叉树的时候得到的这棵二叉树就是哈夫曼树。
(二)哈夫曼编码与解码的设计思想在数据通讯中,时常要将传送的文字转换为二进制字符0 和1 组成的二进制串,称这个过程为编码。
与子相对的是解码或者是译码,就是用与编码相同的方式将二进制串转换称编码前的文字的过程称作解码。
在这里是通过哈夫曼树实现编码与解码的,所以称作是哈夫曼编码与解码。
首先输入一个字符串,还有相应的在哈夫曼树里的权值,这样用哈夫曼树把字符串用二进制串代替它,这个过程要注意树和编码问题,其中树的问题在上面已经解决,主要看编码的问题,就是根据我们输入的字符串和权值建立相应的树模型,这一步完成那编码就已经完成为了,最后打印就行了;然后就是解码,完成编码相应的解码就相对简单了,就是先找到在编码的时候建的那个模型树,将编码中的二进制串再根据权值转换为相应的字符串,这样一步步解码就行了。
以上就是通过用哈夫曼树进行哈夫曼编码与解码如何实现的主要设计思想。
(一)哈夫曼树的流程图不 是图 1 哈夫曼树的流程图(二)编码与解码的流程图图 2 编码与解码的流程图图片说明: (左边)编码流程图, (右边)解码流程图。
开始输入字符串判断权值 建立路径有最小和次小 循环建立二叉树根据树对路径分左 0右 1写出对应结点的编码结束开始初始化哈夫曼链表二叉树林找最小和次小 的二叉树组合成新的二叉树 删除用过的二叉树是不是最后一 个二叉树是结束开始找到树的根结点 输入二进制串扫描根据树的路径打印对应字符继续扫描 是否结束是输出字符串结束否下面给出的是用中缀转后缀算法实现的程序的源代码:#include "stdio.h"#include "string.h"#define MAX 100struct HaffNode{int weight;int parent;char ch;int lchild;int rchild;}*myHaffTree;struct Coding{char bit[MAX];char ch;int weight;}*myHaffCode;void Haffman(int n){int i,j,x1,x2,s1,s2;for (i=n+1;i<=2*n-1;i++) {s1=s2=10000;x1=x2=0;for (j=1;j<=i-1;j++)/*定义常量*//*权值*//*双亲结点下标*//*构造哈夫曼树*//*定义数组*//*字符的权值*//*定义结构体*//*定义哈夫曼函数*//*树的初始化*//*构造哈夫曼树的非叶子结点*/{if(myHaffTree[j].parent==0&&myHaffTree[j].weight<s1){s2=s1;x2=x1;s1=myHaffTree[j].weight;x1=j;/*分配摆布结点*/}else if(myHaffTree[j].parent==0&&myHaffTree[j].weight<s2){s2=myHaffTree[j].weight;x2=j;}}myHaffTree[x1].parent=i;myHaffTree[x2].parent=i;myHaffTree[i].weight=s1+s2;myHaffTree[i].lchild=x1;myHaffTree[i].rchild=x2;/*摆布子组合为新树*/}}void HaffmanCode(int n){int start,c,f,i,j,k;char *cd;/*构造n 个结点哈夫曼编码*/cd=(char *)malloc(n*sizeof(char));myHaffCode=(struct Coding *)malloc((n+1)*sizeof(struct Coding));cd[n-1]='\0';for(i=1;i<=n;++i) /*n 个叶子结点的哈夫曼编码*/ {start=n-1;for(c=i,f=myHaffTree[i].parent;f!=0;c=f,f=myHaffTree[f].parent)if(myHaffTree[f].lchild==c) cd[--start]='0';else cd[--start]='1';for(j=start,k=0;j<n;j++){myHaffCode[i].bit[k]=cd[j];k++;}myHaffCode[i].ch=myHaffTree[i].ch; myHaffCode[i].weight=myHaffTree[i].weight; }free(cd);}Init(){int i,n,m;printf("please input the number of words:"); scanf("%d",&n); /*取编码对应的权值*//*定义有返回值的函数*/m=2*n-1;myHaffTree=(struct HaffNode *)malloc(sizeof(struct HaffNode)*(m+1)); for(i=1;i<=n;i++){printf("please input the word and the equal:");scanf("%s%d",&myHaffTree[i].ch,&myHaffTree[i].weight); myHaffTree[i].parent=0;myHaffTree[i].lchild=0;myHaffTree[i].rchild=0;}for(i=n+1;i<=m;i++){myHaffTree[i].ch ='#';myHaffTree[i].lchild=0;myHaffTree[i].parent=0;myHaffTree[i].rchild=0;myHaffTree[i].weight=0;}Haffman(n);HaffmanCode(n);for(i=1;i<=n;i++){printf("%c %d",myHaffCode[i].ch,myHaffCode[i].weight); printf("\n");}printf("init success!\n");return n;}void Caozuo_C(int m){int n,i,j;char string[50],*p;printf("please input the words :"); scanf("%s",string);n=strlen(string);for(i=1,p=string;i<=n;i++,p++){for(j=1;j<=m;j++)if(myHaffCode[j].ch==*p)printf("%s\n",myHaffCode[j].bit); }}void Caozuo_D(int n){int i,c;char code[1000],*p;printf("please input the coding:"); scanf("%s",code);for(p=code,c=2*n-1;*p!='\0';p++) {if(*p=='0'){c=myHaffTree[c].lchild;if(myHaffTree[c].lchild==0){printf("%c",myHaffTree[c].ch);c=2*n-1;continue;/* 编码函数*//*计算字符串长度*/ /*进行编码*//*解码函数*//*输入二进制编码*//*进行解码*//*结束条件*//*赋值*//* 扫描*//*结束*/}}else if(*p=='1'){c=myHaffTree[c].rchild;if(myHaffTree[c].lchild==0){printf("%c",myHaffTree[c].ch);c=2*n-1; /*赋值*/continue;}}}printf("\n");}void main(){int n;char char1;n=Init();printf("A.coding B.codeprintingwhile(1){scanf("%c",&char1);if(char1=='c')break;switch(char1){case'A':Caozuo_C(n);break;case'B':Caozuo_D(n);break;case'C':;break;}}}/*主函数*//*定义字符*//*函数的调用*/C.exit\nplease input the process:\n");/*判断字符*//*执行编码操作*//*执行解码操作*/哈夫曼编码与解码的实现(一)中缀转后缀算法的运行结果:这部份我主要遇到了如下三个问题,其内容与解决方法如下所列:问题1:刚开始不知道如何建一个好树,因为我开始试着建了几个二叉树,不知道什么原因运行的时候那编码总是不对,跟在草稿纸上自己画的那个二叉树总是不相符,就找原因。
哈夫曼编码原理及方法哈夫曼编码(Huffman Coding)是一种变长编码(Variable Length Code)的压缩算法。
它的原理是将频率较高的字符用较短的编码,频率较低的字符用较长的编码,以此降低数据的传输成本。
下面将详细介绍哈夫曼编码的原理及方法。
一、哈夫曼编码的原理哈夫曼编码的原理基于贪心算法(Greedy Algorithm),即对每个要编码的字符进行评估,按照字符在文本中出现的频率多少,将频率高的字符赋予较短的编码,频率低的字符赋予较长的编码。
这样在实际使用中,字符出现频率越高的编码长度越短,从而达到压缩数据的目的。
二、哈夫曼编码的方法1. 构建哈夫曼树(Huffman Tree)构建哈夫曼树的过程首先要确定每个字符在文本中出现的频率,然后将每个字符看作一个节点,并按照其频率大小建立一个小根堆(Min Heap)。
接下来,选取频率最小的两个节点,将它们合并到一起作为一个新的节点,并更新频率值,然后继续重复以上步骤,直到堆中只剩下一个节点,即为哈夫曼树的根节点。
2. 生成哈夫曼编码生成哈夫曼编码可以采用递归的方式,从根节点开始向左遍历时,将标记为 0,向右遍历时,将标记为 1,直到叶节点为止,然后向上回溯,将遍历的结果保存下来,得到该叶节点的哈夫曼编码。
遍历完所有的叶子节点后,即可得到所有字符的哈夫曼编码。
3. 压缩数据在使用哈夫曼编码进行数据压缩时,将字符替换为其对应的哈夫曼编码,这样可以将原始数据压缩为更小的数据量,达到压缩数据的目的。
在解压数据时,需要根据已生成的哈夫曼树,将压缩后的数据转换为原始数据,即将哈夫曼编码转换为对应的字符。
三、哈夫曼编码的优缺点哈夫曼编码的优点是具有压缩比高、压缩速度快、压缩后的数据无损还原等特点,可以广泛用于图像、音频、视频等多种数据类型的压缩。
同时,由于哈夫曼编码采用变长编码方式,所以可以使用相对较短的编码表示经常出现的字符,从而达到更好的压缩效果。
哈夫曼编码算法思想总结
1构建哈夫曼树。
(利⽤队列的数据结构,不断获取最⼩的两个,退出队列并使之成为新节点的左右⼦树。
然后将新节点插⼊队列。
如此循环……)根据⽤户输⼊的字符串,统计每个字符出现次数。
设置权重。
建⽴队列。
队列中的节点是⼆叉树的节点(有左指针,和右指针)。
建新的结点,左右指针指向队列的最后两个(那两个退出队列)。
然后插⼊队列。
如此循环,就可以建⽴哈夫曼树。
2为每个字符编码。
节点的左为0,右为1。
code(*node)
{
//叶节点
如果(node->left==null && node->right==null)
{
将编码填⼊table编码列表
}
如果(node->left!= null)
{
node->left的编码 = node的编码+'0';
将左⼦树填⼊table编码列表
}
如果(node->right!= null)
{
node->right的编码 = node的编码+'1';
//递归右⼦树
code(node->right);
}
}
3有了编码列表就可以将⽤户输⼊的字符串转化为编码。
或者将编码转化为字符串。
功能简单,不赘述。
哈夫曼编码算法的原理及应用随着信息技术的快速发展和数字化时代的到来,数据量的增加、存储和传输的要求也愈加严格。
如何用最少的存储空间传输最多的信息,成为了数字化时代数据处理的重要问题。
哈夫曼编码算法由于它对数据的高效压缩和快速解压,已经成为信息技术领域中常用的压缩算法之一。
一、哈夫曼编码算法的原理哈夫曼编码算法是由美国数学家哈夫曼在1952年发明的一种高效的数据压缩算法,它是一种前缀编码方式,利用不同字符出现的频率不同,将频率小的字符用较短的编码表达,频率大的字符则用较长的编码表示。
在编码表中,任何一个字符的编码都不会是另一个的编码的前缀,这就是哈夫曼编码的前缀编码优势。
采用哈夫曼编码算法最终压缩得到的数据是无损的,因为压缩后的数据是通过编码表进行翻译的,不会出现错误的情况。
哈夫曼编码算法的实现包括两个主要步骤:创建哈夫曼树和生成哈夫曼编码。
创建哈夫曼树:哈夫曼树是由哈夫曼算法创建的,其基本思想是将每个字符看作一棵树,以该字符出现的频率为权值,进行递归合并,直到所有的树合并为一棵哈夫曼树。
哈夫曼树的结构可以用一棵二叉树来表示,每个节点代表一个字符或者一个由多个字符组成的字符串。
生成哈夫曼编码:通过哈夫曼树可以生成哈夫曼编码表,哈夫曼编码表可以用一个映射关系来表示,将每个字符与对应的编码对应起来。
在哈夫曼树的遍历过程中,当向左走时,添加0到编码中,向右走时,添加1到编码中,直到到达叶子节点时,记录下该字符的哈夫曼编码。
二、哈夫曼编码算法的应用哈夫曼编码算法的应用非常广泛,除了在数据压缩中广泛应用外,它在通信、数据存储等领域也有很多应用。
下面我们介绍几个典型的应用场景。
1. 压缩和解压缩作为一种高效的数据压缩算法,哈夫曼编码算法被广泛应用于文件和图像等数据的压缩和解压缩中。
哈夫曼编码通过对数据进行更高效的压缩,可以节约存储空间和传输带宽。
在压缩文件的过程中,压缩后的文件大小通常能缩小到原来的50%以下。
哈夫曼编码算法思想总结哈夫曼编码算法是一种基于字符出现频率的编码方式,其主要思想是通过建立一颗哈夫曼树来实现最优的编码方案。
哈夫曼编码算法在数据压缩领域广泛应用,在传输和存储数据时可以减小数据的体积,提高数据的传输效率。
哈夫曼编码算法的核心思想是根据字符出现的频率,对字符进行编码,使得出现频率较高的字符获得较短的编码,出现频率较低的字符获得较长的编码。
这样可以有效地减小编码后的数据长度,并且在解码的时候不会存在二义性。
哈夫曼编码算法的实现过程主要分为三个步骤:建立字符频率统计表、构造哈夫曼树、生成编码表。
首先,需要统计字符出现的频率。
扫描待编码的文本,记录每个字符出现的次数。
可以使用哈希表或者数组来实现字符与频率之间的映射关系。
其次,根据字符频率构造哈夫曼树。
通过扫描字符频率统计表,将每个字符及其频率作为叶子节点构建一颗树。
每个节点的权值为其子树中所有叶子节点的权值之和。
不断地选择权值最小的两个节点,将它们合并为一个新的节点,并更新权值。
重复这个过程,直到只剩下一个节点,即为哈夫曼树的根节点。
最后,生成编码表。
从哈夫曼树的根节点开始,向下遍历每个节点,标记左分支为0,右分支为1。
这样可以得到每个字符对应的二进制编码。
将字符及其对应的编码存储在编码表中,供解码时使用。
利用生成的编码表,可以将待编码的文本转化为哈夫曼编码。
每个字符根据编码表中的对应编码进行替换,得到编码后的二进制数据。
由于频率高的字符对应的编码较短,所以编码后的数据长度相比原始数据大大减小。
在解码时,根据哈夫曼树的结构和编码表的内容,可以还原出原始的文本数据。
从根节点开始,根据编码依次遍历哈夫曼树,根据0或者1选择左分支或者右分支。
当到达叶子节点时,找到对应的字符,并将其输出到解码后的文本中。
哈夫曼编码算法的优点是编码后的数据长度相对较短,可以实现高效的数据压缩。
在数据传输和存储过程中,可以减少带宽的占用,提高传输效率。
同时,哈夫曼编码算法的解码过程也相对简单,可以快速还原出原始的文本数据。
哈夫曼算法的理解及原理分析算法实现构造哈夫曼树的算法哈夫曼算法(Huffman Algorithm)是一种贪心算法,用于构建最优二叉树(也称为哈夫曼树或者最优前缀编码树),主要用于数据压缩和编码。
它通过统计字符出现的频率来构建一个编码表,将较频繁出现的字符用较短的编码表示,从而减少存储空间和传输带宽。
原理分析:1.统计字符出现的频率:遍历待编码的字符串,统计每个字符出现的次数。
2.构建哈夫曼树:根据字符频率构建二叉树,频率越高的字符位置越靠近根节点,频率越低的字符位置越远离根节点。
构建哈夫曼树的通常做法是使用最小堆来存储频率,并反复合并堆中最小的两个节点,直到堆中只剩一个节点,即根节点。
3.生成编码表:从根节点开始,沿着左子树为0,右子树为1的路径将所有叶子节点的编码存储在一个编码表中。
算法实现:下面是一个简单的Python实现示例:```pythonclass Node:def __init__(self, char, freq):self.char = charself.freq = freqself.left = Noneself.right = Nonedef build_huffman_tree(text):#统计字符频率freq_dict = {}for char in text:if char in freq_dict:freq_dict[char] += 1else:freq_dict[char] = 1#构建最小堆heap = []for char, freq in freq_dict.items(: node = Node(char, freq)heap.append(node)heap.sort(key=lambda x: x.freq)#构建哈夫曼树while len(heap) > 1:left = heap.pop(0)right = heap.pop(0)parent = Node(None, left.freq + right.freq) parent.left = leftparent.right = rightheap.append(parent)heap.sort(key=lambda x: x.freq)root = heap[0]#生成编码表code_table = {}generate_code(root, "", code_table)return code_tabledef generate_code(node, code, code_table):if node.char:code_table[node.char] = codereturngenerate_code(node.left, code + "0", code_table) generate_code(node.right, code + "1", code_table) ```构造哈夫曼树的算法:上述的 `build_huffman_tree` 函数通过统计频率构建了最小堆`heap`,然后不断地合并最小的两个节点,直到堆中只剩下一个节点,即哈夫曼树的根节点。
哈夫曼树及哈夫曼编码的算法实现1. 哈夫曼树的概念和原理哈夫曼树是一种带权路径长度最短的树,也称最优二叉树。
它是由美国数学家大卫・哈夫曼发明的,用于数据压缩编码中。
哈夫曼树的构建原理是通过贪心算法,将权重较小的节点不断合并,直到所有节点都合并成为一个根节点,形成一棵树。
这样构建的哈夫曼树能够实现数据的高效压缩和解压缩。
2. 哈夫曼编码的概念和作用哈夫曼编码是一种可变长度编码,它根据字符在文本中出现的频率来进行编码,频率越高的字符编码越短,频率越低的字符编码越长。
这种编码方式能够实现数据的高效压缩,减小数据的存储空间,提高数据传输的效率。
3. 哈夫曼树和编码的算法实现在实现哈夫曼树和编码的算法过程中,首先需要统计文本中每个字符出现的频率,并根据频率构建哈夫曼树。
根据哈夫曼树的结构,确定每个字符的哈夫曼编码。
利用哈夫曼编码对文本进行压缩和解压缩。
4. 个人观点和理解哈夫曼树及哈夫曼编码算法是一种非常有效的数据压缩和编码方式,能够在保证数据完整性的前提下,减小数据的存储和传输成本。
在实际应用中,哈夫曼编码被广泛应用于通信领域、数据存储领域以及图像压缩等领域。
通过深入理解和掌握哈夫曼树及哈夫曼编码的算法实现,可以为我们在实际工作中处理大量数据时提供便利和效率。
5. 总结与回顾通过本篇文章的详细讲解,我深入了解了哈夫曼树及哈夫曼编码的算法原理和实现方式,对其在数据处理中的重要性有了更深刻的认识。
掌握了哈夫曼树及哈夫曼编码的算法实现,将为我未来的工作和学习提供更多的帮助和启发。
根据您提供的主题,本篇文章按照从简到繁、由浅入深的方式探讨了哈夫曼树及哈夫曼编码的算法实现。
文章共计超过3000字,深入剖析了哈夫曼树和编码的原理、实现方式以及应用场景,并结合个人观点进行了阐述。
希望本篇文章能够满足您的需求,如有任何修改意见或其他要求,欢迎随时告知。
哈夫曼树和哈夫曼编码是一种十分重要的数据压缩和编码方式,它们在实际的数据处理和传输中发挥着非常重要的作用。
哈夫曼实验报告(附代码)以下是为大家整理的哈夫曼实验报告(附代码)的相关范文,本文关键词为哈夫曼,实验,报告,代码,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在综合文库中查看更多范文。
哈弗曼编码/译码器一、程序的功能分析1.构造哈夫曼树及哈夫曼编码:从终端读入字符集大小n、n 个字符以及n个对应的权值,建立哈夫曼树;利用已经建好的哈夫曼树求每个叶结点的哈夫曼编码,并保存。
2.编码:利用已构造的哈夫曼编码对“明文”文件中的正文进行编码,然后将结果存入“密文”文件中。
3.译码:将“密文”文件中的0、1代码序列进行译码。
(读文件) 4.打印“密文”文件:将文件以紧凑格式显示在终端上,每行30个代码;同时,将此字符形式的编码文件保存。
5.打印哈夫曼树及哈夫曼编码:将已在内存中的哈夫曼树以凹入表形式显示在终端上,同时将每个字符的哈夫曼编码显示出来;并保存到文件。
二、基本要求分析1、输入输出的要求按提示内容从键盘输入命令,系统根据用户输入的需求在保证界面友好的前提下输出用户所需信息,并按要求保存文件,以便保存备份信息。
2、测试数据(1).令叶子结点个数n为4,权值集合为{1,3,5,7},字符集合为{A,b,c,D},且字符集与权值集合一一对应。
(2).令叶子结点个数n为7,权值集合为{12,6,8,18,3,20,2},字符集合为{A,b,c,D,e,F,g},且字符集与权值集合一一对应。
(3).请自行选定一段英文文本,统计给出的字符集,实际统计字符的频度,建立哈夫曼树,构造哈夫曼编码,并实现其编码和译码。
三、概要设计1.主模块的流程及各子模块的主要功能主函数负责提供选项功能,循环调控整个系统。
创建模块实现接收字符、权值、构建哈夫曼树,并保存文件,此功能是后续功能的基础。
编码模块实现利用已编好的哈夫曼树对每个字符进行哈夫曼编码,即对每个字符译出其密文代码,并保存文件。
数据结构——哈夫曼(Huffman)树+哈夫曼编码前天acm实验课,⽼师教了⼏种排序,抓的⼀套题上有⼀个哈夫曼树的题,正好之前离散数学也讲过哈夫曼树,这⾥我就结合课本,整理⼀篇关于哈夫曼树的博客。
哈夫曼树的介绍Huffman Tree,中⽂名是哈夫曼树或霍夫曼树,它是最优⼆叉树。
定义:给定n个权值作为n个叶⼦结点,构造⼀棵⼆叉树,若树的带权路径长度达到最⼩,则这棵树被称为哈夫曼树。
这个定义⾥⾯涉及到了⼏个陌⽣的概念,下⾯就是⼀颗哈夫曼树,我们来看图解答。
(01) 路径和路径长度定义:在⼀棵树中,从⼀个结点往下可以达到的孩⼦或孙⼦结点之间的通路,称为路径。
通路中分⽀的数⽬称为路径长度。
若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。
例⼦:100和80的路径长度是1,50和30的路径长度是2,20和10的路径长度是3。
(02) 结点的权及带权路径长度定义:若将树中结点赋给⼀个有着某种含义的数值,则这个数值称为该结点的权。
结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积。
例⼦:节点20的路径长度是3,它的带权路径长度= 路径长度 * 权 = 3 * 20 = 60。
(03) 树的带权路径长度定义:树的带权路径长度规定为所有叶⼦结点的带权路径长度之和,记为WPL。
例⼦:⽰例中,树的WPL= 1*100 + 2*50 +3*20 + 3*10 = 100 + 100 + 60 + 30 = 290。
⽐较下⾯两棵树上⾯的两棵树都是以{10, 20, 50, 100}为叶⼦节点的树。
左边的树WPL=2*10 + 2*20 + 2*50 + 2*100 = 360 右边的树WPL=350左边的树WPL > 右边的树的WPL。
你也可以计算除上⾯两种⽰例之外的情况,但实际上右边的树就是{10,20,50,100}对应的哈夫曼树。
⾄此,应该堆哈夫曼树的概念有了⼀定的了解了,下⾯看看如何去构造⼀棵哈夫曼树。
哈夫曼树和哈夫曼编码的原理和应用领域哈夫曼树(Huffman Tree)和哈夫曼编码(Huffman Coding)是数据压缩领域中常用的算法。
哈夫曼编码通过对出现频率较高的字符使用较短的编码,对出现频率较低的字符使用较长的编码,从而实现对数据进行高效压缩。
本文将介绍哈夫曼树和哈夫曼编码的原理以及它们在通信和存储领域的应用。
一、哈夫曼树的原理哈夫曼树是一种特殊的二叉树,它的构建基于贪心算法。
首先,根据字符出现的频率构建一组叶子节点,每个叶子节点代表一个字符,并且带有该字符出现的频率。
接着,从这组叶子节点中选择出现频率最低的两个节点,将它们合并成一个新的节点,并将这个新节点的频率设置为两个节点频率之和。
新节点成为新的叶子节点,参与下一次的合并。
重复这个过程,直到最终只剩下一个节点,即为哈夫曼树的根节点。
二、哈夫曼编码的原理在哈夫曼树构建完成后,我们根据哈夫曼树的结构来为每个字符生成对应的编码。
对于每个字符,从根节点出发,向左子树走表示添加编码的0,向右子树走表示添加编码的1,直到到达叶子节点。
将每个字符的编码保存起来,就得到了哈夫曼编码。
由于哈夫曼树的构建过程保证了频率较高的字符拥有较短的编码,而频率较低的字符拥有较长的编码,所以哈夫曼编码具有前缀码的特性。
即任何一个字符的编码都不是其他字符编码的前缀,这样在进行解码的时候就不会出现歧义。
三、哈夫曼编码的应用领域1. 数据压缩:哈夫曼编码常被用于数据的无损压缩,通过将频率较高的字符用较短的编码表示,可以大大减小数据的存储空间。
2. 文件传输:在文件传输过程中,为了减小文件的大小,常常会使用哈夫曼编码对文件进行压缩,减少网络传输的时间和带宽占用。
3. 图像压缩:哈夫曼编码在图像压缩中也有广泛的应用。
通过对图像像素点进行编码,可以显著减小图像文件的体积,提高图像在传输和存储中的效率。
4. 视频压缩:在视频压缩中,哈夫曼编码被用于对视频帧中的运动矢量、亮度和色度信息进行编码,从而减小视频文件的大小。
哈夫曼编码是一种常用的数据压缩算法,它能够根据不同字符出现的频率来构建不等长的编码,以实现数据的高效压缩。
在这篇文章中,我们将深入探讨哈夫曼编码方法,并求出编码和平均码长。
1. 了解哈夫曼编码哈夫曼编码是由大卫·哈夫曼于1952年提出的一种编码算法,它利用频率较高的字符用较短的编码,而频率较低的字符用较长的编码,从而实现数据的高效压缩。
哈夫曼编码的核心思想是通过构建一棵最优二叉树来实现编码,使得出现频率较高的字符距离根节点较近,而出现频率较低的字符距离根节点较远。
2. 构建哈夫曼树为了求解哈夫曼编码,首先需要构建哈夫曼树。
哈夫曼树的构建过程是一个逐步合并的过程,首先将所有的字符按照出现频率进行排序,然后依次选取频率最小的两个字符合并成一个新的节点,其频率为两个字符的频率之和。
重复这一步骤,直到所有字符都合并成了一个根节点,这棵树就是哈夫曼树。
3. 求解哈夫曼编码在构建好哈夫曼树之后,就可以开始求解每个字符的哈夫曼编码。
从根节点出发,遍历哈夫曼树的左子树走向0,右子树走向1,直到达到叶子节点,记录下路径上的编码即为该字符的哈夫曼编码。
这样,所有字符的哈夫曼编码就求解出来了。
4. 计算平均码长计算平均码长是评价哈夫曼编码效率的重要指标。
平均码长的计算公式为:平均码长=Σ(字符频率*编码长度)。
通过对所有字符的频率乘以对应的编码长度求和,可以得到平均码长。
哈夫曼编码的优势在于,由于频率高的字符编码长度较短,而频率低的字符编码长度较长,因此平均码长相对较短,实现了对数据的高效压缩。
总结:通过本文对哈夫曼编码方法的全面介绍和讨论,我们深入理解了哈夫曼编码的原理和实现过程,以及如何求解编码和平均码长。
哈夫曼编码作为一种高效的数据压缩算法,在实际应用中有着广泛的应用前景。
通过对哈夫曼编码的深入理解,我们可以更好地应用于实际场景中,实现数据的高效压缩和传输。
个人观点:哈夫曼编码作为一种经典的数据压缩算法,具有较高的实用价值和理论研究意义。
数据结构实验报告:哈夫曼树及哈夫曼编码一、实验目的1. 理解哈夫曼树及哈夫曼编码的概念和原理;2. 掌握C语言中哈夫曼树及哈夫曼编码的实现方法;3. 分析和讨论哈夫曼编码在实际应用中的优势和不足。
二、实验内容和步骤1. 哈夫曼树的构建1.1 通过C语言实现哈夫曼树的构建算法;1.2 输入一组权值,按哈夫曼树构建规则生成哈夫曼树;1.3 输出生成的哈夫曼树结构,并进行可视化展示。
2. 哈夫曼编码的实现2.1 设计哈夫曼编码的实现算法;2.2 对指定字符集进行编码,生成哈夫曼编码表;2.3 对给定字符串进行哈夫曼编码,并输出编码结果。
三、实验过程及结果1. 哈夫曼树的构建在C语言中,通过定义结构体和递归算法实现了哈夫曼树的构建。
根据输入的权值,依次选择权值最小的两个节点构建新的父节点,直至构建完成整棵哈夫曼树。
通过调试和可视化展示,确认了程序正确实现了哈夫曼树的构建。
2. 哈夫曼编码的实现经过分析和设计,利用哈夫曼树的特点实现了哈夫曼编码的算法。
根据生成的哈夫曼树,递归地生成字符对应的哈夫曼编码,并输出编码结果。
对指定的字符串进行了编码测试,验证了哈夫曼编码的正确性和有效性。
四、实验结果分析1. 哈夫曼编码在数据传输和存储中具有较高的压缩效率和可靠性,能够有效减少数据传输量和存储空间;2. 哈夫曼树及哈夫曼编码在通信领域、数据压缩和加密等方面有着广泛的应用和重要意义;3. 在实际应用中,哈夫曼编码的构建和解码算法需要较大的时间和空间复杂度,对于大规模数据的处理存在一定的局限性。
五、实验总结通过本次实验,深入理解了哈夫曼树及哈夫曼编码的理论知识,并掌握了C语言中实现哈夫曼树及哈夫曼编码的方法。
对哈夫曼编码在实际应用中的优势和局限性有了更深入的认识,这对今后的学习和工作有着积极的意义。
六、参考文献1. 《数据结构(C语言版)》,严蔚敏赵现军著,清华大学出版社,2012年;2. 《算法导论》,Thomas H. Cormen 等著,机械工业出版社,2006年。
利用哈夫曼树构造哈夫曼编码摘要:1.哈夫曼树的概念及构建方法2.哈夫曼编码的概念及编码步骤3.哈夫曼编码的应用实例正文:一、哈夫曼树的概念及构建方法哈夫曼树(Huffman Tree)是一种用于数据压缩的树形结构,它可以将原始数据转换为对应的编码,从而实现压缩。
哈夫曼树的构建方法如下:1.根据输入数据(字符)的出现概率,将所有字符按照出现概率从大到小的顺序进行排序。
2.取出概率最小的两个字符,将它们作为一棵新树的左右子节点,且概率较小的字符在左侧,概率较大的字符在右侧。
3.递归地重复步骤2,直到只剩下一个字符,这个字符将成为哈夫曼树的根节点。
4.从根节点到每个叶子节点的路径代表一个字符的编码,其中左子节点的边表示0,右子节点的边表示1。
二、哈夫曼编码的概念及编码步骤哈夫曼编码(Huffman Coding)是一种基于哈夫曼树的数据编码方法。
哈夫曼编码的特点是每个字符的编码长度与该字符出现的概率成反比,即出现概率较高的字符对应较短的编码,出现概率较低的字符对应较长的编码。
哈夫曼编码的编码步骤如下:1.根据输入数据(字符)的出现概率,构建一棵哈夫曼树。
2.从哈夫曼树的根节点到每个叶子节点的路径代表一个字符的编码,其中左子节点的边表示0,右子节点的边表示1。
3.将每个字符的编码转换为对应的二进制代码,从而实现数据压缩。
三、哈夫曼编码的应用实例哈夫曼编码广泛应用于数据压缩和传输领域,例如:1.在计算机文件压缩中,利用哈夫曼编码可以将原始数据转换为较短的编码,从而减少存储空间和传输时间。
2.在图像和视频压缩中,哈夫曼编码可以有效地去除冗余信息,降低数据量,从而实现更高的压缩率和更快的传输速度。
哈夫曼树与哈夫曼树编码实验原理哈夫曼树(Huffman Tree)是一种用于数据压缩的树形数据结构。
它的主要原理是通过构建一个最优的二叉树来实现编码和解码的过程。
以下是哈夫曼树和哈夫曼编码的实验原理:1. 构建哈夫曼树:- 给定一组需要进行编码的字符及其出现频率。
通常,这个频率信息可以通过统计字符在原始数据中的出现次数来得到。
- 创建一个叶节点集合,每个叶节点包含一个字符及其对应的频率。
- 从叶节点集合中选择两个频率最低的节点作为左右子节点,创建一个新的父节点。
父节点的频率等于左右子节点频率的和。
- 将新创建的父节点插入到叶节点集合中,并将原来的两个子节点从集合中删除。
- 重复上述步骤,直到叶节点集合中只剩下一个节点,即根节点,这个节点就是哈夫曼树的根节点。
2. 构建哈夫曼编码:- 从哈夫曼树的根节点开始,沿着左子树走一步就表示编码的0,沿着右子树走一步表示编码的1。
- 遍历哈夫曼树的每个叶节点,记录从根节点到叶节点的路径,得到每个字符对应的编码。
由于哈夫曼树的构建过程中,频率较高的字符在树中路径较短,频率较低的字符在树中路径较长,因此哈夫曼编码是一种前缀编码,即没有任何一个字符的编码是其他字符编码的前缀。
3. 进行数据压缩:- 将原始数据中的每个字符替换为其对应的哈夫曼编码。
- 将替换后的编码串连接起来,形成压缩后的数据。
4. 进行数据解压缩:- 使用相同的哈夫曼树,从根节点开始,按照压缩数据中的每个0或1进行遍历。
- 当遇到叶节点时,就找到了一个字符,将其输出,并从根节点重新开始遍历。
- 继续按照压缩数据的编码进行遍历,直到所有的编码都解压为字符。
通过构建最优的哈夫曼树和对应的编码表,可以实现高效的数据压缩和解压缩。
频率较高的字符使用较短的编码,从而达到减小数据大小的目的。
而频率较低的字符使用较长的编码,由于其出现频率较低,整体数据大小的增加也相对较小。
哈夫曼树描述文档
一、思路
通过一个argv[]数组存储从test文件中读取字母,然后利用ascal 码循环计算每个字母的权值,利用weight[]是否为零,确定叶子节点,节点个数为count,传入到构建哈夫曼树的子程序中,然后利用cd[]数组存储每一个叶子节点的哈夫曼代码.输出代码时,通过与argv[]数组的比对,扫描ht数组,进而读出所有的数据。
二、截图
三、代码
#include<stdio.h>
#include <iostream>
#include <fstream>
typedef struct
{
char data;
int weight;
int parent;
int lchild;
int rchild;
}HTNode;
typedef struct
{
char cd[50];
int start;
}HCode;
using namespace std;
int enter(char argv[])//进行读入操作
{
fstream in;
ofstream out;
char c;
int number=0;//字母个数置为0
in.open("test.txt",ios::in); //打开文件test.txt
out.open ("code.txt",ios::trunc); //打开文件code.txt,如果不存在就新建一个,如果存在就清空
if(!in.eof()) in>>c; //从test.txt中读取一个字符存入c
printf("原文本是:\n");
while(! in.eof()){ //文件不为空,循环读取一个字符
cout<<c; //将文件中的内容输出到屏幕上
argv[number]=c;//存储c的值到数组
number++;
out<<c; // 将c中的字符存入文件code.txt中
in>>c; //从test.txt中读取一个字符存入c
}
argv[number]='\0';
printf("\n");
in.close; out.close; //使用完关闭文件
return(number);//返回叶子节点数目
}
void CreateHT(HTNode ht[],int n)
{
int i,j,k,lnode,rnode;
double min1,min2;
for(i=0;i<2*n-1;i++)
ht[i].parent=ht[i].lchild=ht[i].rchild=-1;//置初值
for(i=n;i<2*n-1;i++)
{
min1=min2=32167;
lnode=rnode=-1;
for(k=0;k<=i-1;k++)
if(ht[k].parent==-1)
{
if(ht[k].weight<min1)
{
min2=min1;
rnode=lnode;
min1=ht[k].weight;
lnode=k;
}
else if(ht[k].weight<min2)
{
min2=ht[k].weight;rnode=k;
}
}
ht[i].weight=ht[lnode].weight+ht[rnode].weight;
ht[i].lchild=lnode;ht[i].rchild=rnode;//双亲
ht[lnode].parent=i;ht[rnode].parent=i;
}
}
void CreateHcode(HTNode ht[],HCode hcd[],int n)
{
int i,f,c;
HCode hc;
for(i=0;i<n;i++)
{
hc.start=n;c=i;
f=ht[i].parent;
while(f!=-1)
{
if(ht[f].lchild==c)
hc.cd[hc.start--]='0';
else
hc.cd[hc.start--]='1';
c=f;f=ht[f].parent;
}
hc.start++;
hcd[i]=hc;
}
}
int main()
{
int enter(char argv[]);
void CreateHT(HTNode ht[],int n);//创建哈夫曼树
void CreateHcode(HTNode ht[],HCode hcd[],int n);//哈夫曼编码char argv[500];
int n,i,j,k;
char zimu='A';
n=enter(argv);
HTNode ht[100];//创建结点
HCode hcd[200];
int weicount[58];//频度计数
int count;
for(i=0;i<58;i++)//对58个字母求频度
{
count=0;
for(j=0;j<n;j++)
{
if(zimu==argv[j])
count++;
}
zimu++;//跳到第二个字母
weicount[i]=count;
}
zimu='A';
for(i=0;i<58;i++)
{
printf("The %c 's weight is: %d\n",zimu,weicount[i]);
zimu++;
}
zimu='A';
count=0;//计算叶子个数
for(i=0;i<56;i++)
{
if(weicount[i]!=0)
{
ht[count].data=zimu;
ht[count].weight=weicount[i];
count++;
}
zimu++;
}
CreateHT(ht,count);
CreateHcode(ht,hcd,count);
printf("\n");
printf("哈夫曼编码是:\n");
for(i=0;i<n;i++)
for(j=0;j<count;j++)
{
if(argv[i]==ht[j].data)
{
printf("%c :",ht[j].data);
for (k=hcd[j].start;k<=count;k++)
printf("%c",hcd[j].cd[k]);
printf("\n");
}
}
i=getchar();
return 0;
}。