数据结构实验三题目二_哈夫曼树
- 格式:docx
- 大小:26.62 KB
- 文档页数:6
数据结构哈夫曼树和哈夫曼编码权值一、引言在计算机领域,数据结构是非常重要的一部分,而哈夫曼树和哈夫曼编码是数据结构中非常经典的部分之一。
本文将对哈夫曼树和哈夫曼编码的权值进行全面评估,并探讨其深度和广度。
通过逐步分析和讨论,以期让读者更深入地理解哈夫曼树和哈夫曼编码的权值。
二、哈夫曼树和哈夫曼编码的基本概念1. 哈夫曼树哈夫曼树,又称最优二叉树,是一种带权路径长度最短的二叉树。
它的概念来源于一种数据压缩算法,可以有效地减少数据的存储空间和传输时间。
哈夫曼树的构建过程是基于给定的权值序列,通过反复选择两个最小权值的节点构建出来。
在构建过程中,需要不断地重排权值序列,直到构建出一个满足条件的哈夫曼树。
2. 哈夫曼编码哈夫曼编码是一种变长编码方式,它利用了哈夫曼树的特点,对不同的字符赋予不同长度的编码。
通过构建哈夫曼树,可以得到一套满足最优存储空间的编码规则。
在实际应用中,哈夫曼编码经常用于数据压缩和加密传输,能够有效地提高数据的传输效率和安全性。
三、哈夫曼树和哈夫曼编码的权值评估1. 深度评估哈夫曼树和哈夫曼编码的权值深度值得我们深入探究。
从构建哈夫曼树的角度来看,权值决定了节点在树中的位置和层次。
权值越大的节点往往位于树的底层,而权值较小的节点则位于树的高层。
这种特性使得哈夫曼树在数据搜索和遍历过程中能够更快地找到目标节点,提高了数据的处理效率。
而从哈夫曼编码的角度来看,权值的大小直接决定了编码的长度。
权值越大的字符被赋予的编码越短,可以有效地减少数据传输的长度,提高了数据的压缩率。
2. 广度评估另哈夫曼树和哈夫曼编码的权值也需要进行广度评估。
在构建哈夫曼树的过程中,权值的大小直接影响了树的结构和形状。
当权值序列较为分散时,哈夫曼树的结构会更加平衡,节点的深度差异较小。
然而,当权值序列的差异较大时,哈夫曼树的结构也会更不平衡,而且可能出现退化现象。
这会导致数据的处理效率降低,需要进行额外的平衡调整。
数据结构实验报告实验名称:实验3——哈夫曼编码学生姓名:班级:班内序号:学号:日期:2013年11月24日1.实验要求利用二叉树结构实现赫夫曼编/解码器。
基本要求:1、初始化(Init):能够对输入的任意长度的字符串s进行统计,统计每个字符的频度,并建立赫夫曼树2、建立编码表(CreateTable):利用已经建好的赫夫曼树进行编码,并将每个字符的编码输出。
3、编码(Encoding):根据编码表对输入的字符串进行编码,并将编码后的字符串输出。
4、译码(Decoding):利用已经建好的赫夫曼树对编码后的字符串进行译码,并输出译码结果。
5、打印(Print):以直观的方式打印赫夫曼树(选作)6、计算输入的字符串编码前和编码后的长度,并进行分析,讨论赫夫曼编码的压缩效果。
2. 程序分析2.1存储结构:struct HNode{char c;//存字符内容int weight;int lchild, rchild, parent;};struct HCode{char data;char code[100];}; //字符及其编码结构class Huffman{private:HNode* huffTree; //Huffman树HCode* HCodeTable; //Huffman编码表public:Huffman(void);void CreateHTree(int a[], int n); //创建huffman树void CreateCodeTable(char b[], int n); //创建编码表void Encode(char *s, string *d); //编码void Decode(char *s, char *d); //解码void differ(char *,int n);char str2[100];//数组中不同的字符组成的串int dif;//str2[]的大小~Huffman(void);};结点结构为如下所示:三叉树的节点结构:struct HNode//哈夫曼树结点的结构体{ int weight;//结点权值int parent;//双亲指针int lchild;//左孩子指针int rchild;//右孩子指针char data;//字符};示意图为:int weight int parent int lchild int rchild Char c 编码表节点结构:struct HCode//编码表结构体{char data;//字符char code[100];//编码内容};示意图为:基本结构体记录字符和出现次数:struct node{int num;char data;};示意图为:2.关键算法分析(1).初始化:伪代码:1.输入需要编译的文本内容2.将输入的内容保存到数组str1中3.统计出现的字符数目,并且保存到变量count中4.统计出现的不同的字符,存到str2中,将str2的大小存到dif中时间复杂度O(n!)(2).创建哈夫曼树算法伪代码:1.创建一个长度为2*n-1的三叉链表2.将存储字符及其权值的链表中的字符逐个写入三叉链表的前n个结点的data域,并将对应结点的孩子域和双亲域赋为空3.从三叉链表的第n个结点开始,3.1从存储字符及其权值的链表中取出两个权值最小的结点x,y,记录其下标x,y。
一、实验目的1. 理解哈夫曼树的概念及其在数据结构中的应用。
2. 掌握哈夫曼树的构建方法。
3. 学习哈夫曼编码的原理及其在数据压缩中的应用。
4. 提高编程能力,实现哈夫曼树和哈夫曼编码的相关功能。
二、实验原理哈夫曼树(Huffman Tree)是一种带权路径长度最短的二叉树,又称为最优二叉树。
其构建方法如下:1. 将所有待编码的字符按照其出现的频率排序,频率低的排在前面。
2. 选择两个频率最低的字符,构造一棵新的二叉树,这两个字符分别作为左右子节点。
3. 计算新二叉树的频率,将新二叉树插入到排序后的字符列表中。
4. 重复步骤2和3,直到只剩下一个节点,这个节点即为哈夫曼树的根节点。
哈夫曼编码是一种基于哈夫曼树的编码方法,其原理如下:1. 从哈夫曼树的根节点开始,向左子树走表示0,向右子树走表示1。
2. 每个叶子节点对应一个字符,记录从根节点到叶子节点的路径,即为该字符的哈夫曼编码。
三、实验内容1. 实现哈夫曼树的构建。
2. 实现哈夫曼编码和译码功能。
3. 测试实验结果。
四、实验步骤1. 创建一个字符数组,包含待编码的字符。
2. 创建一个数组,用于存储每个字符的频率。
3. 对字符和频率进行排序。
4. 构建哈夫曼树,根据排序后的字符和频率,按照哈夫曼树的构建方法,将字符和频率插入到哈夫曼树中。
5. 实现哈夫曼编码功能,遍历哈夫曼树,记录从根节点到叶子节点的路径,即为每个字符的哈夫曼编码。
6. 实现哈夫曼译码功能,根据哈夫曼编码,从根节点开始,按照0和1的路径,找到对应的叶子节点,即为解码后的字符。
7. 测试实验结果,验证哈夫曼编码和译码的正确性。
五、实验结果与分析1. 构建哈夫曼树根据实验数据,构建的哈夫曼树如下:```A/ \B C/ \ / \D E F G```其中,A、B、C、D、E、F、G分别代表待编码的字符。
2. 哈夫曼编码根据哈夫曼树,得到以下字符的哈夫曼编码:- A: 00- B: 01- C: 10- D: 11- E: 100- F: 101- G: 1103. 哈夫曼译码根据哈夫曼编码,对以下编码进行译码:- 00101110111译码结果为:BACGACG4. 实验结果分析通过实验,验证了哈夫曼树和哈夫曼编码的正确性。
数据结构哈夫曼编码实验报告数据结构哈夫曼编码实验报告1. 实验目的本实验旨在通过实践理解哈夫曼编码的原理和实现方法,加深对数据结构中树的理解,并掌握使用Python编写哈夫曼编码的能力。
2. 实验原理哈夫曼编码是一种用于无损数据压缩的算法,通过根据字符出现的频率构建一棵哈夫曼树,并根据哈夫曼树对应的编码。
根据哈夫曼树的特性,频率较低的字符具有较长的编码,而频率较高的字符具有较短的编码,从而实现了对数据的有效压缩。
实现哈夫曼编码的主要步骤如下:1. 统计输入文本中每个字符的频率。
2. 根据字符频率构建哈夫曼树,其中树的叶子节点代表字符,内部节点代表字符频率的累加。
3. 遍历哈夫曼树,根据左右子树的关系对应的哈夫曼编码。
4. 使用的哈夫曼编码对输入文本进行编码。
5. 将编码后的二进制数据保存到文件,同时保存用于解码的哈夫曼树结构。
6. 对编码后的文件进行解码,还原原始文本。
3. 实验过程3.1 统计字符频率首先,我们需要统计输入文本中每个字符出现的频率。
可以使用Python中的字典数据结构来记录字符频率。
遍历输入文本的每个字符,将字符添加到字典中,并递增相应字符频率的计数。
```pythondef count_frequency(text):frequency = {}for char in text:if char in frequency:frequency[char] += 1else:frequency[char] = 1return frequency```3.2 构建哈夫曼树根据字符频率构建哈夫曼树是哈夫曼编码的核心步骤。
我们可以使用最小堆(优先队列)来高效地构建哈夫曼树。
首先,将每个字符频率作为节点存储到最小堆中。
然后,从最小堆中取出频率最小的两个节点,将它们作为子树构建成一个新的节点,新节点的频率等于两个子节点频率的和。
将新节点重新插入最小堆,并重复该过程,直到最小堆中只剩下一个节点,即哈夫曼树的根节点。
哈夫曼树是一种特殊的树形结构,主要用于数据压缩和编码等领域。
它通过构建最优二叉树,使得树中每个节点的两个子树权值之和最小,从而在编码过程中达到数据压缩的效果。
下面是一个使用Python实现哈夫曼树的例题:```pythonclass Node:def __init__(self, frequency):self.frequency = frequencyself.left = Noneself.right = Nonedef calculate_frequency(file_data):frequency_map = {}for char in file_data:if char not in frequency_map:frequency_map[char] = 0frequency_map[char] += 1return frequency_mapdef huffman_tree(frequency_map):queue = [Node(frequency) for frequency in frequency_map.values()]while len(queue) > 1:node1 = queue.pop(0)node2 = queue.pop(0)merged = Node(node1.frequency + node2.frequency)merged.left = node1merged.right = node2queue.append(merged)return queue[0] # 返回根节点def encode(huffman_tree, file_data):result = ""for char in file_data:node = huffman_tree.find(char) # 查找对应节点result += chr(int(node.weight) + ord(' ')) # 将权值转化为字符,添加到结果中return resultdef decode(huffman_tree):return huffman_tree.left # 直接使用左子树解码,可以得到原数据```解题思路:1. 首先需要统计文件的字符频率,构造一个字符到频率的映射,也就是构建哈夫曼树的节点。
数据结构哈夫曼编码实验报告【正文】1.实验目的本实验旨在研究哈夫曼编码的原理和实现方法,通过实验验证哈夫曼编码在数据压缩中的有效性,并分析其应用场景和优缺点。
2.实验原理2.1 哈夫曼编码哈夫曼编码是一种无损数据压缩算法,通过根据字符出现的频率构建一颗哈夫曼树,将频率较高的字符用较短的编码表示,频率较低的字符用较长的编码表示。
哈夫曼编码的编码表是唯一的,且能够实现前缀编码,即一个编码不是另一个编码的前缀。
2.2 构建哈夫曼树构建哈夫曼树的过程如下:1) 将每个字符及其频率作为一个节点,构建一个节点集合。
2) 每次从节点集合中选择出现频率最低的两个节点,构建一个新节点,并将这两个节点从集合中删除。
3) 将新节点加入节点集合。
4) 重复以上步骤,直到节点集合中只有一个节点,这个节点就是哈夫曼树的根节点。
2.3 编码过程根据哈夫曼树,对每个字符进行编码:1) 从根节点开始,根据左子树为0,右子树为1的规则,将编码依次加入编码表。
2) 对于每个字符,根据编码表获取其编码。
3) 将编码存储起来,得到最终的编码序列。
3.实验步骤3.1 数据读取与统计从输入文件中读取字符序列,并统计各个字符的频率。
3.2 构建哈夫曼树根据字符频率构建哈夫曼树。
3.3 构建编码表根据哈夫曼树,构建每个字符的编码表。
3.4 进行编码根据编码表,对输入的字符序列进行编码。
3.5 进行解码根据哈夫曼树,对编码后的序列进行解码。
4.实验结果与分析4.1 压缩率分析计算原始数据和压缩后数据的比值,分析压缩率。
4.2 编码效率分析测试编码过程所需时间,分析编码效率。
4.3 解码效率分析测试解码过程所需时间,分析解码效率。
4.4 应用场景分析分析哈夫曼编码在实际应用中的优势和适用场景。
5.结论通过本次实验,我们深入了解了哈夫曼编码的原理和实现方法,实践了哈夫曼编码的过程,并对其在数据压缩中的有效性进行了验证。
实验结果表明,哈夫曼编码能够实现较高的压缩率和较高的编解码效率。
哈夫曼树实验报告哈夫曼树实验报告引言:哈夫曼树是一种经典的数据结构,广泛应用于数据压缩、编码和解码等领域。
本次实验旨在通过构建哈夫曼树,探索其原理和应用。
一、哈夫曼树的定义和构建方法哈夫曼树是一种特殊的二叉树,其叶子节点对应于待编码的字符,而非叶子节点则是字符的编码。
构建哈夫曼树的方法是通过贪心算法,即每次选择权值最小的两个节点合并,直到构建出完整的哈夫曼树。
二、哈夫曼编码的原理和实现哈夫曼编码是一种可变长度编码,即不同字符的编码长度不同。
其原理是通过构建哈夫曼树来确定字符的编码,使得频率较高的字符编码较短,频率较低的字符编码较长。
这样可以有效地减少编码的长度,从而实现数据的压缩。
三、实验过程和结果在本次实验中,我们选择了一段文本作为输入数据,通过统计每个字符的频率,构建了对应的哈夫曼树。
然后,根据哈夫曼树生成了字符的编码表,并将原始数据进行了编码。
最后,我们通过对编码后的数据进行解码,验证了哈夫曼编码的正确性。
实验结果显示,通过哈夫曼编码后,原始数据的长度明显减少,达到了较好的压缩效果。
同时,解码后的数据与原始数据完全一致,证明了哈夫曼编码的可靠性和正确性。
四、哈夫曼树的应用哈夫曼树在实际应用中有着广泛的用途。
其中,最典型的应用之一是数据压缩。
通过使用哈夫曼编码,可以将大量的数据压缩为较小的存储空间,从而节省了存储资源。
此外,哈夫曼树还被广泛应用于网络传输、图像处理等领域,提高了数据传输的效率和图像的质量。
五、对哈夫曼树的思考哈夫曼树作为一种经典的数据结构,其优势在于有效地减少了数据的冗余和存储空间的占用。
然而,随着技术的不断发展,现代的数据压缩算法已经不再局限于哈夫曼编码,而是采用了更为复杂和高效的算法。
因此,我们需要在实际应用中综合考虑各种因素,选择合适的压缩算法。
六、总结通过本次实验,我们深入了解了哈夫曼树的原理和应用。
哈夫曼编码作为一种重要的数据压缩算法,具有广泛的应用前景。
在实际应用中,我们需要根据具体情况选择合适的压缩算法,以达到最佳的压缩效果和性能。
哈夫曼树构造例题【原创版】目录1.哈夫曼树的概念和基本性质2.哈夫曼树的构造方法3.哈夫曼树的应用实例正文哈夫曼树(Huffman Tree)是一种带权路径长度最短的二叉树,它是由美国计算机科学家 David A.Huffman 在 1952 年提出的。
哈夫曼树的主要应用是在数据压缩和编码领域,通过将原始数据转换成对应的哈夫曼编码,可以大大减少数据的存储空间和传输时间。
一、哈夫曼树的概念和基本性质哈夫曼树是一棵满二叉树,它的构造方法是将权值最小的两个节点合并为一个新节点,新节点的权值为两个节点权值的和。
重复这个过程,直到所有的节点都被合并为一个根节点。
哈夫曼树的基本性质包括:1.哈夫曼树是一棵满二叉树,即除了最后一层外,其他层的节点数都是满的。
2.哈夫曼树的叶节点(即最后一层的节点)对应于原始数据中的每个字符,且权值最小的叶节点在最左边。
3.哈夫曼树的每个父节点的权值等于其左右子节点权值之和。
二、哈夫曼树的构造方法构造哈夫曼树的方法可以分为两个步骤:1.根据原始数据中的字符出现频率构建一个哈夫曼树。
首先将原始数据中的每个字符作为叶子节点,权值为该字符出现的频率。
然后在这些节点中选择权值最小的两个节点合并为一个新节点,新节点的权值为两个节点权值的和。
重复这个过程,直到所有的节点都被合并为一个根节点。
2.对哈夫曼树进行编码。
从根节点到每个叶节点的路径代表一个字符的编码,其中左子节点的边表示 0,右子节点的边表示 1。
例如,如果某个字符的叶节点位于路径“001”,那么该字符的编码就是“001”。
三、哈夫曼树的应用实例哈夫曼树在数据压缩和编码领域有着广泛的应用,以下是一个简单的实例:假设有如下一段原始数据:“aaabbbccc”,对应的哈夫曼树如下:```10/a c/ /a b b c```根据哈夫曼树,我们可以得到该数据集的哈夫曼编码为:“101 102 103 11 10”。
其中,“101”代表字符“a”,“102”代表字符“b”,“103”代表字符“c”。
数据结构哈夫曼树编码一、引言二、哈夫曼树的定义1. 节点的概念2. 哈夫曼树的定义三、哈夫曼编码的概念1. 编码方式2. 码长和平均码长四、哈夫曼编码的实现方法1. 构建哈夫曼树a. 构建思路及步骤b. 构建示例图解2. 编码过程a. 编码步骤及示例图解b. 编码实现代码示例3. 解码过程a. 解码步骤及示例图解b. 解码实现代码示例五、哈夫曼编码的优缺点1. 优点2. 缺点六、应用实例七、总结一、引言:随着信息技术的飞速发展,数据处理已经成为当今社会中一个不可或缺的部分。
在数据处理中,如何高效地压缩数据是一个非常重要的问题。
而哈夫曼树编码作为一种高效的压缩算法,在数据传输和存储方面有着广泛应用。
二、哈夫曼树的定义:1. 节点的概念:哈夫曼树是一种二叉树,由根节点、左子树和右子树组成。
每个节点可以有零个或两个子节点。
叶子节点是指没有子节点的节点,而非叶子节点则至少有一个子节点。
2. 哈夫曼树的定义:哈夫曼树是一种特殊的二叉树,它的所有叶子节点都带有权值。
对于任意一个哈夫曼树,将其所有叶子节点按照权值从小到大排列,则可得到一组序列W={w1,w2,...,wn}。
哈夫曼树的构建过程就是将这组序列转化为一棵二叉树。
三、哈夫曼编码的概念:1. 编码方式:哈夫曼编码是一种前缀编码方式,即每个字符的编码都不是其他字符编码的前缀。
2. 码长和平均码长:对于一个字符c,其在哈夫曼编码中所占用的位数称为其码长Lc。
而整个字符串的平均码长Lavg则是所有字符在哈夫曼编码中所占用位数之和除以字符串长度n。
四、哈夫曼编码的实现方法:1. 构建哈夫曼树a. 构建思路及步骤:(1)将所有字符按照权值从小到大排序,构成初始节点集合。
(2)从节点集合中选出两个权值最小的节点作为左右子节点,构建一棵新的二叉树,并将该二叉树的根节点插入到节点集合中。
(3)重复步骤2,直到只剩下一个节点为止。
b. 构建示例图解:2. 编码过程a. 编码步骤及示例图解:(1)遍历哈夫曼树,对于每个叶子节点记录其路径上所有非叶子节点的左右分支信息,用0表示左分支,用1表示右分支。
数据结构课程设计实验报告哈夫曼树的应用计算机学院信管专业数据结构课程设计题目:哈夫曼树的应用班级:姓名:学号:同组人姓名:起迄日期:课程设计地点:指导教师:完成日期:2012年12月目录一、需求分析 (3)二、概要设计 (4)三、详细设计 (6)四、调试分析和测试结果 (7)五、心得体会和总结 (10)六、参考文献 (10)七、附录 (11)一、需求分析(一)实验要求要求用到数据结构课上学到的线性表的知识,所以就要充分而清晰的理解关于线性表的知识。
要求实现的基本功能很简单,只有删除和插入,增加功能也不过是加上修改。
这些在数据结构课上已经讲过,只要能够理解关于线性表的几个相关的基本算法就可以了。
问题是将输入的信息保存入文件和从文件输出。
这里基本是自学的内容,而且要考虑到是否要自行选择保存的磁盘。
综上,做这个课题,要具备的知识就是线性表的基本算法,文件的保存和读取算法,必要的C或者C++知识(本次我将使用C++实现),以及丰富的程序调适经验。
(二)实验任务一个完整的系统应具有以下功能:功能1.从终端读入字符集大小n,以及n个字符和n个权值,建立哈夫曼树并将它存于文件hfmTree中.将已在内存中的哈夫曼树以直观的方式(比如树)显示在终端上;功能2.利用已经建好的哈夫曼树(如不在内存,则从文件htmTree中读入),对文件ToBeTran中的正文进行编码,然后将结果存入文件CodeFile中,并输出结果,将文件CodeFile以紧凑格式先是在终端上,每行50个代码。
同时将此字符形式的编码文件写入文件CodePrint中。
功能3.利用已建好的哈夫曼树将文件CodeFile中的代码进行译码,结果存入文件TextFile中,并输出结果。
(三)实验步骤分步实施:1)初步完成总体设计,搭好框架,确定人机对话的界面,确定函数个数;2)完成最低要求:完成功能1;3)进一步要求:完成功能2和3。
有兴趣的同学可以自己扩充系统功能。
数据结构哈夫曼树的代码数据结构哈夫曼树的代码实现:1·简介哈夫曼树(Huffman Tree),又称为最优二叉树,是一种用于数据压缩的树形结构。
它利用出现频率较高的字符采用较短的编码,而出现频率较低的字符采用较长的编码,从而实现数据的压缩和解压缩。
本文将详细介绍哈夫曼树的构建和编码解码的过程。
2·哈夫曼树的构建2·1 核心思想哈夫曼树的构建核心思想是根据字符的出现频率构建一棵树,使得频率高的字符离树根近,频率低的字符离树根远。
构建哈夫曼树的步骤如下:●创建一个包含所有字符的叶子结点集合。
●从集合中选择两个频率最低的结点(注意:频率越低,优先级越高),构建一个新的二叉树,根节点的频率等于这两个结点的频率之和。
●将新构建的二叉树的根节点加入集合中。
●重复上述操作,直到集合中只剩一个根结点,即构建完成。
2·2 代码实现下面是一个示例的哈夫曼树构建的代码:```pythonclass Node:def __init__(self, freq, char=None):self·freq = freqself·char = charself·left = Noneself·right = Nonedef build_huffman_tree(char_freq):leaves = [Node(freq, char) for char, freq in char_freq·items()]while len(leaves) > 1:leaves·sort(key=lambda x: x·freq)left = leaves·pop(0)right = leaves·pop(0)parent = Node(left·freq + right·freq)parent·left = leftparent·right = rightleaves·append(parent)return leaves[0]```3·哈夫曼树的编码3·1 核心思想哈夫曼树的编码过程是根据构建好的哈夫曼树,对每个字符进行编码。
数据结构——哈夫曼(Huffman)树+哈夫曼编码前天acm实验课,⽼师教了⼏种排序,抓的⼀套题上有⼀个哈夫曼树的题,正好之前离散数学也讲过哈夫曼树,这⾥我就结合课本,整理⼀篇关于哈夫曼树的博客。
哈夫曼树的介绍Huffman Tree,中⽂名是哈夫曼树或霍夫曼树,它是最优⼆叉树。
定义:给定n个权值作为n个叶⼦结点,构造⼀棵⼆叉树,若树的带权路径长度达到最⼩,则这棵树被称为哈夫曼树。
这个定义⾥⾯涉及到了⼏个陌⽣的概念,下⾯就是⼀颗哈夫曼树,我们来看图解答。
(01) 路径和路径长度定义:在⼀棵树中,从⼀个结点往下可以达到的孩⼦或孙⼦结点之间的通路,称为路径。
通路中分⽀的数⽬称为路径长度。
若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。
例⼦:100和80的路径长度是1,50和30的路径长度是2,20和10的路径长度是3。
(02) 结点的权及带权路径长度定义:若将树中结点赋给⼀个有着某种含义的数值,则这个数值称为该结点的权。
结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积。
例⼦:节点20的路径长度是3,它的带权路径长度= 路径长度 * 权 = 3 * 20 = 60。
(03) 树的带权路径长度定义:树的带权路径长度规定为所有叶⼦结点的带权路径长度之和,记为WPL。
例⼦:⽰例中,树的WPL= 1*100 + 2*50 +3*20 + 3*10 = 100 + 100 + 60 + 30 = 290。
⽐较下⾯两棵树上⾯的两棵树都是以{10, 20, 50, 100}为叶⼦节点的树。
左边的树WPL=2*10 + 2*20 + 2*50 + 2*100 = 360 右边的树WPL=350左边的树WPL > 右边的树的WPL。
你也可以计算除上⾯两种⽰例之外的情况,但实际上右边的树就是{10,20,50,100}对应的哈夫曼树。
⾄此,应该堆哈夫曼树的概念有了⼀定的了解了,下⾯看看如何去构造⼀棵哈夫曼树。
数据结构课程设计哈夫曼树数据结构课程设计 - 哈夫曼树一、引言哈夫曼树(Huffman Tree)是一种经典的数据结构,常被用于数据压缩和编码中。
它是一种特殊的二叉树,具有最优的前缀编码性质。
本文将详细介绍哈夫曼树的定义、构建方法以及应用场景。
二、哈夫曼树的定义哈夫曼树是一种满足以下条件的二叉树:1. 所有的叶子节点都带有权值;2. 没有度为1的节点;3. 任意两个叶子节点的路径长度不相同。
三、哈夫曼树的构建方法1. 构建哈夫曼树的基本思想是将权值较小的节点放在较低的层次,权值较大的节点放在较高的层次;2. 首先,根据给定的权值集合,将每一个权值看做一个独立的节点;3. 然后,选择两个权值最小的节点,将它们合并为一个新节点,并将新节点的权值设置为这两个节点的权值之和;4. 重复上述步骤,直到只剩下一个节点,即为哈夫曼树的根节点。
四、哈夫曼编码哈夫曼编码是一种变长编码方式,用于将字符转换为二进制编码。
它的特点是没有编码冗余,即每一个字符的编码都不是其他字符编码的前缀。
这种编码方式可以大幅度减小数据的存储空间和传输带宽。
五、哈夫曼树的应用场景1. 数据压缩:哈夫曼树可以根据字符浮现的频率构建最优的编码方式,从而实现数据的高效压缩;2. 文件压缩:将文件中的字符转换为哈夫曼编码,可以大幅度减小文件的大小;3. 图象压缩:将图象中的像素值转换为哈夫曼编码,可以实现图象的无损压缩;4. 视频压缩:将视频中的帧数据转换为哈夫曼编码,可以减小视频文件的大小。
六、哈夫曼树的时间复杂度和空间复杂度1. 构建哈夫曼树的时间复杂度为O(nlogn),其中n为权值的个数;2. 哈夫曼编码的时间复杂度为O(n),其中n为字符的个数;3. 哈夫曼树的空间复杂度为O(n),其中n为权值的个数。
七、总结哈夫曼树是一种重要的数据结构,具有广泛的应用场景。
通过构建最优的编码方式,可以实现高效的数据压缩和编码。
掌握哈夫曼树的定义、构建方法以及应用场景,对于数据结构课程的学习和实践具有重要意义。
2009级数据结构实验报告实验名称:实验3——哈夫曼树学生姓名:陈家斌班级:2009211121班内序号:16学号:09210619日期:2010年12月3日1.实验要求【实验目的】通过选择下面两个题目之一进行实现,掌握如下内容:➢掌握二叉树基本操作的实现方法➢了解赫夫曼树的思想和相关概念➢学习使用二叉树解决实际问题的能力【题目】利用二叉树结构实现赫夫曼编/解码器。
【基本要求】1、初始化(Init):能够对输入的任意长度的字符串s进行统计,统计每个字符的频度,并建立赫夫曼树2、建立编码表(CreateTable):利用已经建好的赫夫曼树进行编码,并将每个字符的编码输出。
3、编码(Encoding):根据编码表对输入的字符串进行编码,并将编码后的字符串输出。
4、译码(Decoding):利用已经建好的赫夫曼树对编码后的字符串进行译码,并输出译码结果。
5、打印(Print):以直观的方式打印赫夫曼树(选作)6、计算输入的字符串编码前和编码后的长度,并进行分析,讨论赫夫曼编码的压缩效果。
【测试数据】I love data Structure, I love Computer。
I will try my best to study data Structure.提示:1、用户界面可以设计为“菜单”方式:能够进行交互。
2、根据输入的字符串中每个字符出现的次数统计频度,对没有出现的字符一律不用编码。
【代码要求】1、必须要有异常处理,比如删除空链表时需要抛出异常;2、保持良好的编程的风格:➢代码段与段之间要有空行和缩近➢标识符名称应该与其代表的意义一致➢函数名之前应该添加注释说明该函数的功能➢关键代码应说明其功能3、递归程序注意调用的过程,防止栈溢出2. 程序分析【算法实现】程序第一遍统计原数据中各字符出现的频率,利用得到的频率值创建哈夫曼树,并把树的信息保存起来,以便解压时创建同样的哈夫曼树进行解压;第二遍,根据第一遍扫描得到的哈夫曼树进行编码,并把编码后的码字存储。
数据结构实验报告:哈夫曼树及哈夫曼编码一、实验目的1. 理解哈夫曼树及哈夫曼编码的概念和原理;2. 掌握C语言中哈夫曼树及哈夫曼编码的实现方法;3. 分析和讨论哈夫曼编码在实际应用中的优势和不足。
二、实验内容和步骤1. 哈夫曼树的构建1.1 通过C语言实现哈夫曼树的构建算法;1.2 输入一组权值,按哈夫曼树构建规则生成哈夫曼树;1.3 输出生成的哈夫曼树结构,并进行可视化展示。
2. 哈夫曼编码的实现2.1 设计哈夫曼编码的实现算法;2.2 对指定字符集进行编码,生成哈夫曼编码表;2.3 对给定字符串进行哈夫曼编码,并输出编码结果。
三、实验过程及结果1. 哈夫曼树的构建在C语言中,通过定义结构体和递归算法实现了哈夫曼树的构建。
根据输入的权值,依次选择权值最小的两个节点构建新的父节点,直至构建完成整棵哈夫曼树。
通过调试和可视化展示,确认了程序正确实现了哈夫曼树的构建。
2. 哈夫曼编码的实现经过分析和设计,利用哈夫曼树的特点实现了哈夫曼编码的算法。
根据生成的哈夫曼树,递归地生成字符对应的哈夫曼编码,并输出编码结果。
对指定的字符串进行了编码测试,验证了哈夫曼编码的正确性和有效性。
四、实验结果分析1. 哈夫曼编码在数据传输和存储中具有较高的压缩效率和可靠性,能够有效减少数据传输量和存储空间;2. 哈夫曼树及哈夫曼编码在通信领域、数据压缩和加密等方面有着广泛的应用和重要意义;3. 在实际应用中,哈夫曼编码的构建和解码算法需要较大的时间和空间复杂度,对于大规模数据的处理存在一定的局限性。
五、实验总结通过本次实验,深入理解了哈夫曼树及哈夫曼编码的理论知识,并掌握了C语言中实现哈夫曼树及哈夫曼编码的方法。
对哈夫曼编码在实际应用中的优势和局限性有了更深入的认识,这对今后的学习和工作有着积极的意义。
六、参考文献1. 《数据结构(C语言版)》,严蔚敏赵现军著,清华大学出版社,2012年;2. 《算法导论》,Thomas H. Cormen 等著,机械工业出版社,2006年。
数据结构哈夫曼树实验报告一、实验目的本次实验的主要目的是深入理解和掌握哈夫曼树的数据结构及其相关算法,并通过实际编程实现来提高对数据结构的应用能力和编程技能。
二、实验环境本次实验使用的编程环境为具体编程语言名称,操作系统为具体操作系统名称。
三、实验原理哈夫曼树,又称最优二叉树,是一种带权路径长度最短的二叉树。
其基本原理是通过构建一棵二叉树,使得权值较大的节点距离根节点较近,权值较小的节点距离根节点较远,从而达到带权路径长度最小的目的。
在构建哈夫曼树的过程中,首先需要将所有的节点按照权值从小到大进行排序。
然后,选取权值最小的两个节点作为左右子树,构建一个新的父节点,该父节点的权值为左右子节点权值之和。
重复这个过程,直到所有的节点都被构建到哈夫曼树中。
哈夫曼编码是基于哈夫曼树的一种编码方式。
对于每个叶子节点,从根节点到该叶子节点的路径上,向左的分支编码为 0,向右的分支编码为 1,这样就可以得到每个叶子节点的哈夫曼编码。
四、实验步骤1、定义节点结构体```ctypedef struct HuffmanNode {char data;int weight;struct HuffmanNode left;struct HuffmanNode right;} HuffmanNode;```2、实现节点排序函数```cvoid sortNodes(HuffmanNode nodes, int n) {for (int i = 0; i < n 1; i++){for (int j = 0; j < n i 1; j++){if (nodesj>weight > nodesj + 1>weight) {HuffmanNode temp = nodesj;nodesj = nodesj + 1;nodesj + 1 = temp;}}}}```3、构建哈夫曼树```cHuffmanNode buildHuffmanTree(HuffmanNode nodes, int n) {while (n > 1) {sortNodes(nodes, n);HuffmanNode left = nodes0;HuffmanNode right = nodes1;HuffmanNode parent =(HuffmanNode )malloc(sizeof(HuffmanNode));parent>data ='\0';parent>weight = left>weight + right>weight;parent>left = left;parent>right = right;nodes0 = parent;nodes1 = nodesn 1;n;}return nodes0;}```4、生成哈夫曼编码```cvoid generateHuffmanCodes(HuffmanNode root, int codes, int index) {if (root>left) {codesindex = 0;generateHuffmanCodes(root>left, codes, index + 1);}if (root>right) {codesindex = 1;generateHuffmanCodes(root>right, codes, index + 1);}if (!root>left &&!root>right) {printf("%c: ", root>data);for (int i = 0; i < index; i++){printf("%d", codesi);}printf("\n");}}```5、主函数```cint main(){HuffmanNode nodes5 ={(HuffmanNode )malloc(sizeof(HuffmanNode)),(HuffmanNode )malloc(sizeof(HuffmanNode)),(HuffmanNode )malloc(sizeof(HuffmanNode)),(HuffmanNode )malloc(sizeof(HuffmanNode)),(HuffmanNode )malloc(sizeof(HuffmanNode))};nodes0>data ='A';nodes0>weight = 5;nodes1>data ='B';nodes1>weight = 9;nodes2>data ='C';nodes2>weight = 12;nodes3>data ='D';nodes3>weight = 13;nodes4>data ='E';nodes4>weight = 16;HuffmanNode root = buildHuffmanTree(nodes, 5);int codes100;generateHuffmanCodes(root, codes, 0);return 0;}```五、实验结果与分析通过运行上述程序,得到了每个字符的哈夫曼编码:A: 00B: 01C: 10D: 110E: 111分析实验结果可以发现,权值较小的字符A 和B 对应的编码较短,而权值较大的字符D 和E 对应的编码较长。
数据结构与算法:哈夫曼树哈夫曼树给定N个权值作为N个叶⼦结点,构造⼀棵⼆叉树,若该树的带权路径长度达到最⼩,称这样的⼆叉树为最优⼆叉树,也称为哈夫曼树(Huffman Tree)。
哈夫曼树是带权路径长度最短的树,权值较⼤的结点离根较近。
重要概念路径:从⼀个节点到它往下可以达到的节点所经shu过的所有节点,称为两个节点之间的路径路径长度:即两个节点的层级差,如A节点在第⼀层,B节点在第四层,那它们之间的路径长度为4-1=3权重值:为树中的每个节点设置⼀个有某种含义的数值,称为权重值(Weight),权重值在不同算法中可以起到不同的作⽤节点的带权路径长度:从根节点到该节点的路径长度与该节点权重值的乘积树的带权路径长度:所有叶⼦节点的带权路径长度之和,也简称为WPL哈夫曼树判断判断⼀棵树是不是哈夫曼树只要判断该树的结构是否构成最短带权路径。
在下图中3棵同样叶⼦节点的树中带权路径最短的是右侧的树,所以右侧的树就是哈夫曼树。
代码实现案例:将数组{13,7,8,3,29,6,1}转换成⼀棵哈夫曼树思路分析:从哈夫曼树的概念中可以看出,要组成哈夫曼树,权值越⼤的节点必须越靠近根节点,所以在组成哈夫曼树时,应该由最⼩权值的节点开始。
步骤:(1) 将数组转换成节点,并将这些节点由⼩到⼤进⾏排序存放在集合中(2) 从节点集合中取出权值最⼩的两个节点,以这两个节点为⼦节点创建⼀棵⼆叉树,它们的⽗节点权值就是它们的权值之和(3) 从节点集合中删除取出的两个节点,并将它们组成的⽗节点添加进节点集合中,跳到步骤(2)直到节点集合中只剩⼀个节点public class HuffmanTreeDemo {public static void main(String[] args) {int array[] = {13,7,8,3,29,6,1};HuffmanTree huffmanTree = new HuffmanTree();Node root = huffmanTree.create(array);huffmanTree.preOrder(root);}}//哈夫曼树class HuffmanTree{public void preOrder(Node root){if (root == null){System.out.println("哈夫曼树为空,⽆法遍历");return;}root.preOrder();}/*** 创建哈夫曼树* @param array 各节点的权值⼤⼩* @return*/public Node create(int array[]){//先将传⼊的各权值转成节点并添加到集合中List<Node> nodes = new ArrayList<>();for (int value : array){nodes.add(new Node(value));}/*当集合中的数组只有⼀个节点时,即集合内所有节点已经组合完成,剩下的唯⼀⼀个节点即是哈夫曼树的根节点*/while (nodes.size() > 1){//将节点集合从⼩到⼤进⾏排序//注意:如果在节点类没有实现Comparable接⼝,则⽆法使⽤Collections.sort(nodes);//在集合内取出权值最⼩的两个节点Node leftNode = nodes.get(0);Node rightNode = nodes.get(1);//以这两个节点创建⼀个新的⼆叉树,它们的⽗节点的权值即是它们的权值之和Node parent = new Node(leftNode.weight + rightNode.weight);parent.left = leftNode;parent.right = rightNode;//再从集合中删除已经组合成⼆叉树的俩个节点,并把它们俩个的⽗节点加⼊到集合中nodes.remove(leftNode);nodes.remove(rightNode);nodes.add(parent);}//返回哈夫曼树的根节点return nodes.get(0);}}//因为要在节点的集合内,以节点的权值value,从⼩到⼤进⾏排序,所以要实现Comparable<>接⼝class Node implements Comparable<Node>{int weight;//节点的权值Node left;Node right;public Node(int weight) {this.weight = weight;}public void preOrder(){System.out.println(this);if (this.left != null){this.left.preOrder();}if (this.right != null){this.right.preOrder();}}@Overridepublic String toString() {return "Node{" +"weight=" + weight +'}';}@Overridepublic int compareTo(Node o) {return this.weight - o.weight;}}哈夫曼编码定长编码固定长度编码⼀种⼆进制信息的信道编码。
一、实验目的1. 理解哈夫曼树的基本概念和构造方法。
2. 掌握哈夫曼编码的原理和实现过程。
3. 通过实验加深对数据结构中树型结构应用的理解。
二、实验原理哈夫曼树(Huffman Tree)是一种带权重的二叉树,用于实现哈夫曼编码。
其基本思想是:将字符按照在数据集中出现的频率进行排序,然后选取两个最小频率的字符合并成一个新节点,其频率为两个字符频率之和,重复此过程,直到只剩下一个节点,即为哈夫曼树的根节点。
哈夫曼编码是一种基于哈夫曼树的编码方法,其原理是将每个字符映射到一个唯一的二进制序列,序列的长度与字符在数据集中出现的频率成反比。
频率越高,编码的长度越短,从而提高信息传输的效率。
三、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发环境:Visual Studio 2019四、实验步骤1. 初始化(1)从数据文件中读取字符及其频率。
(2)构建一个优先队列(最小堆),将字符和频率存储在队列中。
2. 构建哈夫曼树(1)从优先队列中取出两个频率最小的节点,合并成一个新节点,其频率为两个节点频率之和。
(2)将新节点插入优先队列中。
(3)重复步骤(1)和(2),直到优先队列中只剩下一个节点,即为哈夫曼树的根节点。
3. 哈夫曼编码(1)遍历哈夫曼树,从根节点到叶子节点的路径上,左子树表示0,右子树表示1。
(2)将每个叶子节点的字符和对应的编码存储在哈夫曼编码表中。
4. 编码(1)读取待编码的文本。
(2)根据哈夫曼编码表,将文本中的每个字符映射到对应的编码。
(3)将编码序列写入文件。
5. 译码(1)读取编码文件。
(2)从哈夫曼树的根节点开始,根据编码序列的每一位,判断是左子树还是右子树。
(3)当到达叶子节点时,输出对应的字符。
(4)重复步骤(2)和(3),直到编码序列结束。
五、实验结果与分析1. 实验结果(1)成功构建了哈夫曼树,并生成了哈夫曼编码表。
(2)对给定的文本进行了编码和译码,验证了编码的正确性。
2008级数据结构实验报告实验名称:实验三树学生姓名:班级:班内序号:学号:日期: 20013年11月26日1.实验要求实验目的通过选择下面两个题目之一进行实现,掌握如下内容:掌握二叉树基本操作的实现方法了解赫夫曼树的思想和相关概念学习使用二叉树解决实际问题的能力实验内容利用二叉树结构实现赫夫曼编/解码器。
基本要求:1.初始化(Init):能够对输入的任意长度的字符串s进行统计,统计每个字符的频度,并建立赫夫曼树2.建立编码表(CreateTable):利用已经建好的赫夫曼树进行编码,并将每个字符的编码输出。
3.编码(Encoding):根据编码表对输入的字符串进行编码,并将编码后的字符串输出。
4.译码(Decoding):利用已经建好的赫夫曼树对编码后的字符串进行译码,并输出译码结果。
5.打印(Print):以直观的方式打印赫夫曼树(选作)6.计算输入的字符串编码前和编码后的长度,并进行分析,讨论赫夫曼编码的压缩效果。
2. 程序分析哈夫曼树结点的储存结构除了二叉树所有的双亲域parents,左子树域lchild,右子树域rchild。
还需要有字符域word,权重域weight,编码域code。
其中由于编码是一串由0和1组成的字符串,所以code是一个字符数组。
进行哈夫曼编码首先要对用户输入的信息进行统计,将每个字符作为哈夫曼树的叶子结点。
统计每个字符出现的次数(频度)作为叶子的权重,统计次数可以根据每个字符不同的ASCII 码。
并根据叶子结点的权重建立一个哈夫曼树。
建立每个叶子的编码从根结点开始,规定通往左子树路径记为0,通往右子树路径记为 1.由于编码要求从根结点开始,所以需要前序遍历哈夫曼树,故编码过程是以前序遍历二叉树为基础的。
同时注意递归函数中能否直接对结点的编码域进行操作。
编码信息只要遍历字符串中每个字符,从哈夫曼树中找到相应的叶子结点,取得相应的编码。
最后再将所有找到的编码连接起来即可。
译码则是将编码串从左到右诸位判别,直到确定一个字符。
这可以用生成哈夫曼树的逆过程实现。
由于每个字符的编码各不相同,且编码也是个字符串,所以只要遍历编码串,从哈夫曼树中找到相应的叶子结点,取得相应的字符再将找到的字符连接起来即可。
2.1 存储结构哈夫曼树顺序存储结构2.2 关键算法分析1、统计字符的频度自然语言描述:1)取出字符串中的一个字符2)遍历所有初始化的哈夫曼树结点3)如果结点中有记录代表的字符且字符等于取出的字符,说明该字符的叶子存在,则将该结点的权加一。
4)如果所有结点均没有记录字符与取出字符一致,说明该字符的叶子不存在,则将结点的字符记为取出字符,并将权重设为1.5)重复(1)(2)(3)(4)步骤,如此遍历字符串中的所有字符。
伪代码:1.for(int i=0;i<字符长度;i++)1.1for (int j=0;j<字符长度;j++)1.1.1 if (WordStr[i]==HuffTree[j].word)1.1.1.1权重++1.1.1.2 break;1.1.2否则取字符域为空的结点1.1.2.1 HuffTree[j].word=WordStr[i];1.1.2.2 HuffTree[j].weight=1;1.1.2.3 叶子数++;1.1.2.4 break;结束时间复杂度O(n2),空间复杂度S(0)2、构造哈夫曼树自然语言描述:1)将n个权值的叶子结点存放到数组huffTree的前n个分量中2)通过统计字符频度的算法给n个结点赋权值3)将数组huffTree中出叶子结点外的结点初始化:左右子树、双亲域为-1;权值为0;字符编号域为\0。
4)不断将两棵子树合并为一棵子树,并将新子树的根节点顺序存放到数组huffTree的前n个分量的后面。
伪代码描述:1.数组huffTree初始化,除叶子节点外,所有元素结点左右子树、双亲域为-1;权值为0;字符编号域为\0。
2.进行n-1次合并2.1在二叉树集合中选取两个权值最小的根结点,其下标分别即为j1和j22.2将二叉树j1和j2合并为一棵新的二叉树结点k时间复杂度O(n),空间复杂度S(2)3、为每个叶子结点编码自然语言描述:1)初始化一个字符数组Code暂存每个叶子结点的编码。
2)从叶子结点开始,如果是哈夫曼树的左孩子,则将编码表中的code值赋为0,否则为13)将指针层层上移,重复2)直到根结点4)将所得编码逆置,并将编码最后一位赋为’\0’5)进行下一叶子结点的编码算法时间复杂度O(n2),空间复杂度S(60)4、为信息编码自然语言描述:1)定义字符串str1储存编码2)遍历信息字符串中的每一个字符3)对每一个字符,将其与huffTree前n个叶子结点的word域逐个比较,发现相同的则将该结点的编码串code连接到str1串的末尾。
4)遍历信息字符串结束,输出str1算法时间复杂度O(n2) ,空间复杂度S(2)5、译码自然语言描述:1)从编码串str1第一个字符开始和数组huffTree第一个结点的编码域第一个字符进行比较。
2)若相等,则继续比较两者的后续字符3)否则,从str1第一个字符与huffTree第二个节点的编码域第一个字符进行比较。
4)重复上述过程,当huffTree结点中的字符全部比较完毕则说明本趟匹配成功,输出huffTree结点的word域值。
5)重复上述过程,当str1中的字符全部比较完毕,译码结束。
算法时间复杂度O(n2)1.程序运行结果测试条件:问题规模n的数量级为1。
测试内容:I love data Structure, I love Computer, I will try my best to study data Structure.测试结论:测试的功能有:建立哈夫曼树、对每个字符进行编码、对信息字符串进行编码、对编码串进行译码。
各项功能均能正常运行。
界面的跳转也能实现。
编码前信息总长度为400bits,编码后的长度为320bits。
由于哈夫曼编码采用不等长编码,有效缩短了编码长度,节省了空间。
2.总结调试时出现的问题及解决的方法(1)字符串在函数中的存储在给字符进行编码时,由于对于字符串储存的理解不清楚,以致于在生成解决方案是出现了“屯屯屯”的字样,经过查阅相关资料得知,是因为字符串末尾没有加’\0’所致。
(2)字符串编码的位数由于对于字符串存储位数的不够清晰,走入了以往的经验错误,在储存编码时总是少一位,经检查发现是在逆置时数组的个数没有搞清楚(3)字符串的输入输出问题最初字符串是用cin输入,后来发现此种方式只适用于单个次,遇到’\0’即停止,后来调用了cin.getline才有效的解决了这个问题心得体会哈夫曼树又称做最优二叉树,它是n个带权叶子结点构成的所有二叉树中,带权路径长度WPL最小的二叉树。
在n个带权叶子结点所构成的二叉树中,满二叉树或完全二叉树不一定是最优二叉树。
权值越大的结点离树根越近的二叉树才是最优二叉树。
哈夫曼树是根据字符出现的概率来构造平均长度最短的编码。
它是一种变长的编码。
在编码中,若各码字长度严格按照码字所对应符号出现概率的大小的逆序排列,则编码的平均长度是最小的。
再做本实验的过程中,也出现了很多问题,主要是要编写程序,因为程序比较长,再编写的过程中,经常会出现一些错误,比如:把一些字母编写错误,没区分大小写,漏句,符号写错或漏写等等。
我想这些都是一些比较低级的错误,主要是自己对程序还不是很熟悉,再做实验的时候还不够细心所导致的吧。
这些都是要求我们再做实验的过程中不断总结经验教训,加深对程序的了解和喜爱,不要粗心大意。
通过本实验我也总结了一些经验,那就是再修改程序的时候,不要死转牛角尖,要从大处着手,逐步深入,逐个修改,还要用联系的观点来看程序,有时候一个地方错了,会引起很多个错误,而显示错误的句子本身可能会没有错误,只是与之相关联的一些语句发生了错误而引起的错误。
这时我们就不要死盯着原来的地方不放,而应该找出与之相关联的语句。
哈夫曼树的应用非常广泛,在通信中,采用0,1的不同排列来表示不同的字符,而哈夫曼树在数据编码中的应用,若每个字符出现的频率相同,则可以采用等长的二进制编码,若频率不同,则可以采用不等长的二进编码,频率较大的采用位数较少的编码,频率较小的字符采用位数较多的编码,这样可以使字符的整体编码长度最小,哈夫曼编码就是一种不等长的二进制编码,且哈夫曼树是一种最优二叉树,它的编码也是一种最优编码,在哈夫曼树中,规定往左编码为0,往右编码为1,则得到叶子结点编码为从根结点到叶子结点中所有路径中0和1的顺序排列。
通过这次试验,感觉自己有了很大的提高,再看程序时也没有以前那样不知所云了,修改程序也有了一定的提高,虽然本课程是有点难,但相信功夫不负有心人,只要付出努力,一定会取得成功。
下一步的改进(1)程序中多次使用了遍历数组或对数据进行逐个比对,循环的次数可以通过计算再减少,提高时间效率。
(2)下次争取使用菜单选择工具,选择要进行的功能,。