浙江省湖州中学高二数学选修2-3《排列与组合》课件
- 格式:ppt
- 大小:1.72 MB
- 文档页数:10
第1讲排列与组合A 组一、选择题1.将6名报名参加运动会的同学分别安排到跳绳、接力,投篮三项比赛中(假设这些比赛都不设人数上限),每人只参加一项,则共有x 种不同的方案,若每项比赛至少要安排一人时,则共有y 种不同的方案,其中x y +的值为( )A .1269B .1206C .1719D .756 【答案】A 【解析】将6名报名参加运动会的同学分别安排到跳绳、接力,投篮三项比赛中(假设这些比赛都不设人数上限),每人只参加一项,则共有63729x ==种不同的方案,若每项比赛至少要安排一人时,则首先将6人分成3组,3组的人数为2,2,2或1,2,3或1,1,4,这样无序分组的方法有222114123642654653323290C C C C C C C C C A A ++=种,然后将3个小组与3个比赛对应,又有33A 种,则共有3390540y A =⨯=种不同的方案,所以7295401269x y +=+=,故选择A ,注意无序分组中均匀分组与非均匀分组的计数区别,否则会犯错.2.某校周四下午第三、四两节是选修课时间,现有甲、乙、丙、丁四位教师可开课。
已知甲、乙教师各自最多可以开设两节课,丙、丁教师各自最多可以开设一节课.现要求第三、四两节课中每节课恰有两位教师开课(不必考虑教师所开课的班级和内容),则不同的开课方案共有( )种。
A 、20B 、19C 、16D 、15 【答案】B 【解析】不同的开课方案分四类:第一类,只有甲、乙两人开课,他们每人开设两节,只有一种方案;第二类,甲乙两人开课,同时,丙丁两个中恰有一人开课,这样的方案有1112228C A A =种; 第三类,甲乙两人中只有一人开课,丙丁两人均开课,这样的方案有12224A A =; 第四类,甲乙丙丁四人全部开课,第人一节,这样的方案共有22426C C =种;由分类加法原理知不同的开课方案共有19种,故选B.3.6人站成一排,其中甲不在两端,甲、乙不相邻的站法种数为( ) A .72 B .120 C .144 D .288 【答案】D 【解析】先排甲,再排乙,324434288C C A =,故选D.4.如果小明在某一周的第一天和第七天分别吃了3个水果,且从这周的第二天开始,每天所吃水果的个数与前一天相比,仅存在三种可能:或“多一个”或“持平”或“少一个”,那么小明在这一周中每天所吃水果个数的不同选择方案共有( )种 A .50 B .51 C .140 D .141 【答案】D 【解析】因为第1天和第7天吃的水果数相同,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,所以后面六天中水果数“多一个”或“少一个”的天数可能是0、1、2、3天,共四种情况,所以共有01122336656463141C C C C C C C +++=种5.将4本完全相同的小说,1本诗集全部分给4名同学,每名同学至少1本书,则不同分法有( )A .24种B .28种C .32种D .16种 【答案】D 【解析】不同的分法可能是小说每人一本,诗集给其中1人,共有14C =4种分法,可能有1人分得两本小说,则有442212A A =种分法,因此共有4+12=16种不同的分法.故选D .6.8个人坐成一排,现要调换其中3个人中每一个人的位置,其余5个人的位置不变,则不同调换方式有( )A .38CB . 3388C AC C . 3282C CD .383C 【答案】C 【解析】从8人中任选3人有38C 种,3人位置全调,由于不能是自己原来的位置,因此有22A 种,故有2238A C 种.故选C .7.某电视台的一个综艺栏目对六个不同的节目排演出顺序,最前只能排甲或乙,最后不能排甲,则不同的排法共有( )A .240种B .288种C .192种D .216种 【答案】D 【解析】最前排甲,共有55120A =种,最前只排乙,最后不能排甲,有144496A A =种,根据加法原理可得,共有12096216+=种,故选D .8.甲、乙、丙、丁、戊五人站成一排,要求甲、乙均不与丙相邻,则不同的排法种数为( )A.72种B.52种C.36种D.24种 【答案】C 【解析】52233523332A A A A A --,即先求出总的可能,然后减去甲丙或乙丙相邻,再减去甲乙丙三个相邻的事件.9.用红、黄、蓝三种颜色去涂图中标号为92,1 的9个小正方形,使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为“3,5,7”的小正方形涂相同的颜色,则符合条件的所有涂法共有( )种A .18B .36C .72D .108 【答案】D 【解析】3(1222)(1222)⨯⨯⨯+⨯⨯⨯+108=.故选D .(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类. (3)弄清分步、分类的标准是什么. (4)利用两个计数原理求解.10.如图,图案共分9个区域,有6种不同颜色的涂料可供涂色,每个区域只能涂一种颜色的涂料,其中2和9同色、3和6同色、4和7同色、5和8同色,且相邻区域的颜色不相同,则涂色方法有( )A .360种B .720种C .780种D .840种 【答案】B 【解析】先排1,有6种方法,再排2,3,4,5有45A 种方法,故一共有456720A ⋅=种.11.2014年3月8日,马肮370MH 航班客机从吉隆坡飞往北京途中失联,随后多国加入搜救行动,同时启动水下黑匣子的搜寻,主要通过水机器人和娃人等手段搜寻黑匣子.现有3个水下机器人,,A B C 和2个蛙人,a b ,各安排一次搜寻任务,搜寻时每次只能安排1个水下机器人或1个蛙人下水,其中C 不能安排在第一个下水,A 和a 必须相邻安排,則不同的搜寻方式有( )A .24种B .36种C .48种D .60种 【答案】B 【解析】A 和a 捆绑,相当于4个,先排第一位,则方法数有1333236C A ⨯⋅=种.12.一排九个坐位有六个人坐,若每个空位两边都坐有人,共有( )种不同的坐法 A .7200 B .3600 C .2400 D .1200 【答案】A 【解析】由题意得,6个人之间形成5个空,插入3个座位,可得不同的坐法共有53657200A C =种,故选A.13.某校在半期考试中要考察六个学科,已知语文考试必须安排在首场,且数学与英语不能相邻,则这六个学科总共有( )种不同的考试顺序 A .36 B .48 C .72 D .112 【答案】C 【解析】先排语文,有1种排法,再排除了数学和英语外的3科,全排列有336A =种,把数学和英语插在这3科的空中有2412A =种排法,利用分步乘法计数原理,共有161272⨯⨯=种排法.故选C. 二、填空题14.某广场中心建造一个花圃,花圃分成5个部分(如图),现有4种不同颜色的花可以栽种,若要求每部分必须栽种一种颜色的花且相邻部分不能栽种同样颜色的花,则不同的栽种方法有 种.(用数字作答)【答案】72 【解析】根据题意,分析可得本题是分类计数问题,分2种情况讨论,当选3种颜色时,就是②④同色,③⑤同色,从4中颜色中选3中,在三个元素上排列;当4种颜色全用,只能②④或③⑤用一种颜色,先选出同色的一对,再用四种颜色全排列,由分类计数原理计算可得答案.解:由题意,分2种情况讨论:第一:当选用3种颜色时②④同色,③⑤同色,共有涂色方法C 43•A 33=24种,第二:4色全用时涂色方法,即②④或③⑤用一种颜色,共有C 21•A 44=48种, 根据分类加法原理知不同的着色方法共有24+48=72种. 故答案为72.15.将编号为1、2、3、4、5的五名同学全部安排到A 、B 、C 、D 四个班级上课,每个班级至少安排一名同学,其中1号同学不能安排到A 班,那么不同的安排方案共有种.【答案】72 【解析】由题意得,首先分析1号同学,1号可以放在B 、C 、D 三个班上,有3种情况,再分两种情况讨论其他四名同学,即(1)B 、C 、D 三个班上每班一个;(2)B 、C 、D 三个班中一个班一个,另一个班两人,分别求出其情况数目,由加法原理可得其他四人的情况数目,由分类计数原理计算可得出答案;16.从4名男同学、3名女同学中选3名同学组成一个小组,要求其中男、女同学都有,则共有 种不同的选法.(用数字作答) 【答案】30 【解析】由题意得,从7个人中不讲顺序的挑3个人,共有3537=C 种,除掉不符合题意的事件有:3名全部是女生的有133=C 种,3名全部是男生的有434=C 种,所以符合题意的选法共有30种17.有6名学生,其中有3名会唱歌,2名会跳舞,1名既会唱歌也会跳舞.现从中选出2名会唱歌的,1名会跳舞的去参加文艺演出,则共有选法______种. 【答案】15 【解析】不选既会唱歌也会跳舞的学生,选法有:61223=C C 种;既会唱歌也会跳舞的学生参加唱歌,选法共有61213=C C 种;既会唱歌也会跳舞的学生参加跳舞,选法有:323=C 种,所以共有15366=++种. 18.冬季供暖就要开始,现分配出5名水暖工去3个不同的居民小区检查暖气管道, 每名水暖工只去一个小区, 且每个小区都要有人去检查, 那么分配的方案共有 种.【答案】150 【解析】分配的方案为“311”,“221”,对应种数为3353C A 及112534C A C ,共有3311253534150.C A C A C +=及19.将6位志愿者分成4组,每组至少1人,至多2人分赴第五届亚欧博览会的四个不同展区服务,不同的分配方案有 种(用数字作答). 【答案】1080 【解析】由题设6人应分成1,1,2,2四组,不同的分法种数为45222426=A C C ,故分赴第五届亚欧博览会展区服务,则不同分配方案有10804544=A ,应填1080.20.2016年11月,举办了亚太经合组织第二十三次领导人非正式会议,出席会议的有21个国家和地区的领导人或代表.其间组委会安排这21位领导人或代表合影留念,他们站成两排,前排11人,后排10人,若中国领导人站在第一排正中间位置,美俄两国领导人站在与中国领导人相邻的两侧,如果对其他领导人或代表所站的位置不做要求,那么不同的排法共有 种(用排列组合表示).【答案】218218A A【解析】先让中国领导人站在第一排正中间位置共一种站法,再让美俄两国领导人站在与中国领导人相邻的两侧共22A 站法,最后,另外18个领导人在前后共18位置任意站,共有1818A 种站法,所以,根据分步计数乘法原理,不同的排法共有218218A A 种,故答案为218218A A .三、解答题21.4个不同的球,4个不同的盒子,把球全部放入盒内. (1)恰有1个盒不放球,共有几种放法? (2)恰有1个盒内有2个球,共有几种放法? (3)恰有2个盒不放球,共有几种放法? 【解析】(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步计数原理,共有12124432144C C C A ⨯=(种)(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法. (3)确定2 个空盒有24C 种方法.4个球放进2个盒子可分成()()3,12,2、两类,第一类有序不均匀分组有312412C C A 种方法;第二类有序均匀分组有22242222C C A A ⋅种方法,故共有222312242441222284C C C C C A A A ⎛⎫+⋅= ⎪⎝⎭(种)放法.B 组一、选择题1.西部某县委将7位大学生志愿者(4男3女) 分成两组, 分配到两所小学支教, 若要求女生不能单独成组, 且每组最多5人, 则不同的分配方案共有( )A .36种B .68种C .104种D .110种 【答案】C 【解析】分组的方案有3、4和2、5两类,第一类有3272(1)68C A -⋅=种;第二类有222732()36C C A -⋅=种,所以共有N=68+36=104种不同的方案.2.用2种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,则3个矩形中相邻矩形颜色不同的概率是( )A .18 B .14 C .38 D .12【答案】B 【解析】用2种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,由乘法分步原理可得共有涂色方法2228⨯⨯=种, 其中相邻矩形颜色不同有2112⨯⨯=种,则所求概率为2184=,故本题答案选B. 3.某学校一共排7节课(其中上午4节,下午3节),某教师某天高三年级1班和2班各有一节课,但他要求不能连排2节课(其中上午第4节和下午第1节不算连排),那么该教师这一天的课的所有可能的排法种数共有( ) A .16 B .15 C .32 D .30 【答案】C 【解析】运用分类计数原理求解:若第一节排课,则有5种排课方式;若第二节排课,则有4种排课方式;若第三节排课,则有3种排课方式;若第四节排课,则有3种排课方式;若第五节排课,则有1种排课方式。