其中(1)和(3) 在第二章已经解决, 本章要解决第(2)点.
3-2 广义Hooke定律
• 在弹性范围内, 广义Hooke定律可以表达为
ቤተ መጻሕፍቲ ባይዱ
ij E 11ijijkk
• 也可以表示为: ii1 E 2 ii
1 eij 2G Sij
我们来证明一下:
由应力和应变的分解式,即 ij S ij ij m , ij e ij ijm
注意的是上式只是描述了加载过程中的弹塑性变形规律. 加
载的标志是应力强度 i 成单调增长. i 下降时为卸载过 程, 它时服从增量Hooke定律.
3-4 全量理论的基本方程及边值问题的提法
设在物体 V 内给定体力 F i , 在应力边界 S 上给定面
S : pi
力 p i, 在位移边界 S u 上给 定位移为 , 要求确定物 u 在小变形且简单加载的情况下i , 这两个理论是一致的.
(2)增量理论, 又称为流动理论, 它认为在塑性状态下是塑性应 变增量和应力及应力增量之间随关系.有Levy-Mises(莱维-米 泽斯)理论和Prandtl-Reuss(普朗特-罗伊斯)理论.
3-1 建立塑性本构关系的基本要素 Shield和Ziegler指出, 建立塑性本构关系需要考虑三个基本要素: (1)初始屈服条件;(2)流动法则;(3)加载条件.
ii1 E 2 ii
eij 2 1 G Sij
第二个式子是六个方程,但因为有 Sii 0 , 所以有5个是独立的. 从第二式可以看到在弹性范围内应力主轴和应变主轴是一致
的. 应变偏量的分量和相应的应力偏量的分量成正比.
第二式也可以写成 Sij 2Geij ,把它代入应力强度的表达式
就可以得到下面的第二式, 然后有 Gi /3i 再代回上面第