初中数学湘教版八年级上册3.3 实数
- 格式:ppt
- 大小:748.50 KB
- 文档页数:166
湘教版数学八年级上册《3.3 实数》教学设计3一. 教材分析湘教版数学八年级上册《3.3 实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统性的学习。
本节课主要让学生了解实数的定义,掌握实数与数轴的关系,以及实数的分类。
教材通过丰富的实例,引导学生探究实数的性质,进而培养学生的逻辑思维能力和抽象思维能力。
二. 学情分析八年级的学生已经掌握了有理数和无理数的基本概念,对数轴有一定的了解。
但是,学生对实数的认识还比较模糊,对实数与数轴的关系尚不明确。
因此,在教学过程中,教师需要以学生已有的知识为基础,通过生动的实例和丰富的活动,让学生深入理解实数的内涵,明确实数与数轴的密切关系。
三. 教学目标1.了解实数的定义,掌握实数与数轴的关系。
2.理解实数的分类,能正确辨别各种实数。
3.培养学生的逻辑思维能力和抽象思维能力。
4.提高学生运用实数解决问题的能力。
四. 教学重难点1.实数的定义及其与数轴的关系。
2.实数的分类。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解实数的含义。
2.数形结合法:利用数轴帮助学生直观地理解实数与数轴的关系。
3.讨论法:分组讨论,让学生在交流中掌握实数的分类。
4.练习法:设计具有针对性的练习题,巩固所学知识。
六. 教学准备1.教学课件:制作涵盖实数定义、实数与数轴关系、实数分类等方面的课件。
2.数轴教具:准备数轴模型,便于学生直观地理解实数与数轴的关系。
3.练习题:准备适量的一课时练习题,包括选择题、填空题、解答题等。
七. 教学过程1.导入(5分钟)利用生活实例引入实数的概念,如身高、体重等。
引导学生思考:这些实数能否用数轴上的点来表示?从而激发学生的学习兴趣。
2.呈现(10分钟)介绍实数的定义,让学生明确实数包括有理数和无理数。
通过数轴教具,展示实数与数轴的关系,引导学生理解数轴上的点与实数的对应关系。
3.操练(10分钟)学生分组讨论实数的分类,教师巡回指导。
初中数学湘教版八年级上册第三章3.3实数练习题 一、选择题 1. 如图,数轴上表示1,√2的对应点分别为点A ,B ,点B 关于点A 对折后的点为C ,则点C 所表示的数是( )A. 1−√2B. 2−√2C. √2−1D. √2−22. 下列选项中的整数,与√17最接近的是( )A. 3B. 4C. 5D. 6 3. 实数√22,√83,0,−π,16,0.1010010001…(相邻两个1之间依次多一个0),其中无理数有( )个.A. 1B. 2C. 3D. 4 4. 在下列实数√3、0.31、π3、17、3.6024×103、√9、1.212 212 221…(每两个1之间依次多一个2)中,无理数的个数为( )A. 1B. 2C. 3D. 45. 实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A. |a|>bB. ad >0C. a +c >0D. c −b <06. 下列各数中,有理数是( )A. √2B. πC. 3.14D. √737. 如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )A. |a|>|b|B. a +b >0C. ab <0D. |b|=b8. 实数a 、b 在数轴上的对应点的位置如图所示,下列关系式不成立的是( )A. a −5>b −5B. 6a >6bC. −a >−bD. a −b >09. −√2的相反数是( )A. −√22 B. √22 C. −√2 D. √210. 估计√38的值在( )A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间二、填空题 11. 若把无理数√17,√11,√7,√3.7表示在数轴上,则在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是___.12. −√6的相反数是______.13. √17的倒数是______. 14. 比较大小(填“>”“<”或“=”):23______2√3−14.三、解答题15. 计算:(1)√9−√(−6)2−√−273(2)√83−|√3−3|+√2516. 阅读下面的文字,解答问题大家知道,√2是无理数,而无理数是无限不循环小数,因此√2的小数部分我们不可能全部地写出来,于是小明用√2−1来表示√2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如因为√4<√7<√9,即2<√7<3,所以行的整数部分为2,小数部分为√7−2.请解答(1)√83的整数部分为______;小数部分为______;(2)有人说,如果√83的整数部分为x ,√97的小数部分记为y ,则x +y =√97,你认为对吗?为什么?(3)如果√35的整数部分为a ,√35的小数部分为b ,求a −2b +2√35的值.17. 把下列各数填在相应的集合中:−5,13,0.62,−|−4|,−1.1,−(−7.3),0.23⋅⋅,0.1010010001…,0,π2(1)非正整数:{______…}(2)分数:{______…}(3)正有理数:{______…}(4)无理数:{______…}答案和解析1.【答案】B【解析】【分析】本题考查的是实数与数轴,两点间距离有关知识,首先根据已知条件可以求出线段AB 的长度,然后根据对称的性质解答即可.【解答】解:∵数轴上表示1,√2的对应点分别为点A ,B ,∴AB =√2−1,由题意可知:CA =AB ,∴点C 的坐标为:1−(√2−1)=2−√2.故选B .2.【答案】B【解析】【分析】本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键,依据被开方数越大对应的算术平方根越大进行解答即可.【解答】解:∵16<17<20.25,∴4<√17<4.5,∴与√17最接近的是4.故选B .3.【答案】C【解析】解:√83=2,实数√22,√83,0,−π,16,0.1010010001…(相连两个1之间依次多一个0),其中无理数有√22,−π,0.1010010001…(相连两个1之间依次多一个0)共3个. 故选:C .无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.【答案】C,1.212 212 221…(每两个1之间依【解析】解:在所列的7个数中,无理数有√3,π3次多一个2)这3个,故选:C.无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,据此逐一判断即可得.本题主要考查的是无理数的概念,熟练掌握无理数的三种类型是解题的关键.5.【答案】A【解析】解:由数轴可知a<b<0<c<d,于是可知|a|>0>b,∴答案A正确;a<0,d>0,∴ad<0,∴答案B错误;a<0,c>0,但是|a|>|c|,∴a+c<0,∴答案C错误;a<b<0<c<d,∴c−b>0,∴答案D错误;故选:A.根据数轴可以发现,a<b<0<c<d,由此即可判断以上选项正确与否.本题考查的是实数与数轴的相关内容,会利用数轴比较实数的大小是解决问题的关键.6.【答案】C3是无理数,3.14是有理数.【解析】解:√2、π、√7故选:C.根据有理数是有限小数或无限循环小数,可得答案.本题考查了特殊角的三角函数值以及有理数的分类,解题时熟记特殊角的三角函数值是关键,此题难度不大,易于掌握.7.【答案】C【解析】解:根据图,得0<a<1,−2<b<−1A、由上式得0<|a|<1,1<|b|<2,∴|a|<|b|;故选项A错误;B、−2<a+b<0;不等式两边同时相加,不等式符号不变,故选项B错误;C、−2<ab<−1,不等式两边同乘以负数,不等式符号改变,故选项C正确;D、负数的绝对值是它本身的相反数,故选项D错误.故选:C.首先根据题意看列出关于a、b的不等式(组),再解不等式(组)即可求解.本题考查的是实数的绝对值,不等式的计算及如何利用数轴的信息解题.8.【答案】C【解析】解:由图可知,b<0<a,且|b|<|a|,∴a−5>b−5,6a>6b,−a<−b,a−b>0,∴关系式不成立的是选项C.故选:C.根据数轴判断出a、b的正负情况以及绝对值的大小,然后解答即可.本题考查了实数与数轴,实数的大小比较,利用了两个负数相比较,绝度值大的反而小.9.【答案】D【解析】解:−√2的相反数是√2,故选:D.根据相反数的定义,即可解答.本题考查了实数的性质,解决本题的关键是熟记实数的性质.10.【答案】C【解析】解:∵√36<√38<√49,∴6<√38<7,∴√38的值在整数6和7之间.故选C.利用算术平方根的性质,得出√36<√38<√49,进而得出答案.此题主要考查了估计无理数的大小,得出√36<√38<√49是解题关键.11.【答案】√11【解析】【分析】本题考查实数与数轴,估算无理数的大小,首先利用估算的方法分别得到√17,√11,√7,√3.7表示前后的整数(即它们分别在那两个整数之间),从而可判断出被覆盖的数.【解答】解:∵4<√17<5,3<√11<4,2<√7<3,1<√3.7<2,且墨迹覆盖的范围是3∼4,∴被墨迹(如图所示)覆盖住的无理数是√11.故答案为√11.12.【答案】√6【解析】解:−√6的相反数是:√6.故答案为:√6.直接利用相反数的定义得出答案.此题主要考查了相反数,正确掌握相关定义是解题关键.13.【答案】√7【解析】解:√17=√77, ∴√17的倒数是=7=√7. 故答案为:√7.先化简二次根式,然后依据倒数的定义求解即可.本题主要考查的是实数的性质,掌握二次根式的性质、倒数的定义是解题的关键. 14.【答案】>【解析】解:23−2√3−14=812−6√3−312=11−6√312, ∵11=√121,6√3=√108,√121>√108, ∴11−6√312>0,∴23>2√3−14,故答案为:>.两数相减后,根据正负情况,即可得到答案.本题考查了实数大小比较,正确掌握实数大小比较的方法是解题的关键.15.【答案】解:(1)√9−√(−6)2−√−273=3−6−(−3)=0(2)√83−|√3−3|+√25=2−(3−√3)+5=2−3+√3+5=4+√3【解析】(1)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.(2)首先计算开方和绝对值,然后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.16.【答案】(1)9;√83−9(2)正确;理由:∵√83的整数部分为x,√97的小数部分记为y,∴x=9,y=√97−9,则x+y=√97(3)15【解析】解:(1)∵9<√83<10,∴√83的整数部分为9;小数部分为:√83−9;故答案为:9,√83−9;(2)见答案;(3)∵√35的整数部分为a ,√35的小数部分为b ,∴a =5,b =√35−5,∴a −2b +2√35=5−2(√35−5)+2√35=15.【分析】(1)直接利用已知结合无理数接近的有理数进而得出答案;(2)根据题意得出x ,y 的值即可得出答案;(3)根据题意得出a ,b 的值即可得出答案.此题主要考查了估算无理数的大小,正确得出各无理数的小数部分是解题关键. 17.【答案】−5,−|−4|,0, 13,062,−1.1,−(−7.3),0.2.3., 13,0.62,−(−7.3),0.2.3., 0.1010010001…,π2,【解析】解:(1)非正整数有−5,−|−4|,0;(2)分数有13,062,−1.1,−(−7.3),0.2.3.;(3)正有理数有13,0.62,−(−7.3),0.2.3.;(4)无理数有0.1010010001…,π2;故答案为:(1)−5,−|−4|,0;(2)13,062,−1.1,−(−7.3),0.2.3.;(3)13,0.62,−(−7.3),0.2.3.;(4)0.1010010001…,π2.根据实数分类解答即可.本题考查了实数,无限循环小数或有限小数是有理数;无限不循环小数是无理数;有理数和无理数统称实数.。
湘教版数学八年级上册3.3《实数的分类及性质》说课稿2一. 教材分析湘教版数学八年级上册3.3《实数的分类及性质》这一节的内容是在学生已经掌握了有理数和无理数的概念基础上,进一步对实数进行分类,并探讨实数的性质。
教材通过具体的例子和问题,引导学生理解实数的分类和性质,培养学生的逻辑思维能力和抽象思维能力。
本节内容主要包括实数的分类和实数的性质两个方面。
实数的分类包括正实数、负实数和零,学生需要理解各类实数的概念和特点。
实数的性质包括实数的加法、减法、乘法和除法的运算规则,学生需要掌握实数的运算方法和技巧。
二. 学情分析学生在学习这一节内容时,已经具备了一定的数学基础,对有理数和无理数的概念有一定的了解。
但学生在理解实数的分类和性质时,可能会存在一定的困难,因为实数是一个比较抽象的概念。
因此,教师在教学过程中需要注重引导学生通过具体的例子来理解和掌握实数的分类和性质。
三. 说教学目标1.知识与技能目标:学生能够理解实数的分类和性质,掌握实数的运算规则。
2.过程与方法目标:学生通过观察、分析和归纳,培养逻辑思维能力和抽象思维能力。
3.情感态度与价值观目标:学生培养对数学的兴趣,增强自信心,培养合作意识和探究精神。
四. 说教学重难点1.教学重点:实数的分类和性质,实数的运算规则。
2.教学难点:实数的分类和性质的理解和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件、教学卡片和黑板等教学工具。
六. 说教学过程1.导入:通过复习有理数和无理数的概念,引导学生思考实数的分类。
2.新课导入:介绍实数的分类和性质,引导学生通过具体的例子来理解和掌握。
3.课堂讲解:讲解实数的分类和性质,引导学生通过观察、分析和归纳来掌握实数的运算规则。
4.课堂练习:布置一些实数的运算题目,让学生巩固所学知识。
5.课堂小结:总结本节课的主要内容和知识点。
6.课后作业:布置一些实数的运算题目,让学生进一步巩固所学知识。
33 实 数第2课时 实数的运算和大小比较学习目标1掌握实数的运算法则,熟练地利用计算器去解决有关实数的运算问题;(重点) 2熟练掌握实数的大小比较方法.(难点)教学过程:(一)回顾旧知⑴ 在有理数范围内绝对值、相反数、倒数的意义是什么?⑵ 比较两个有理数的大小有哪些方法?⑶ 你能借用有理数范围内的规定举例说明无理数的绝对值、无理数的倒数、两个无理数互为相反数吗?(二)探求新知1、预习课本相关内容,对比有理数,对于实数,我们可以得出:每个正实数有且只有两个平方根,它们互为相反数;0的平方根是0在实数范围内,负实数没有平方根;在实数范围内,每个实数a 有且只有一个立方根。
2、计算下列各式的值(1) ( 53 )-5 (2) 33-323、比较3与7的大小,说说你的方法。
[设计说明:问题1起着承上启下的作用,在比较的过程中,学生可能有各种不同的方法,教师要鼓励学生进行充分的交流。
]实数的大小比较和运算,通常可取它们的近似值进行.4、π的大小吗?解 用计算器求得3+2≈314626437,而 π≈3141592654,因此 3+2>π.5、你认为215- 与05哪个大?你是怎么想的?与同学交流。
通过估算,你能比较215-与43的大小吗?[设计说明:教师应先让学生独立思考,然后进行充分的交流,在交流中应更多的关注学生能否运用有理数估算一个无理数的大致范围,把握数的相对大小,同时理解一些比较两个数大小的方法:a 、通过估算 b 、作差 c 、作商 d 、利用已有的结论 e 、利用计算器。
]6、计算 ⑴π+5 (保留2位小数) ⑵322⨯(保留2位有效数字)[设计说明:例1主要让学生会用计算器求一个无理数,例2是在例1的基础上增加了难度,对学生也提出了更高的要求,让学生学会用计算器求多个无理数的混合运算及实数运算,在实数运算中涉及无理数的计算,可根据问题的要要取其近似值转化成有理数进行计算,向学生说明:在计算过程中,取近似值时,可以按照计算结果要求的精确度,多保留一位。
3.3 实数-湘教版八年级数学上册教案一、教学目标1.了解有理数和无理数的概念。
2.掌握实数的基本性质。
3.能够正确比较实数大小。
4.能够解决实数的加减乘除问题。
二、教学重点和难点1.教学重点:实数的概念和基本性质。
2.教学难点:实数的分类和比较大小。
三、教学内容和方法1. 实数的概念和分类•教学内容:介绍实数的定义和有理数、无理数的概念。
•教学方法:通过课堂讲解和实际例子分析,使学生理解实数的概念和分类。
2. 实数的基本性质•教学内容:介绍实数的加减乘除运算,以及实数的比较大小的方法,说明实数是一个有序数域。
•教学方法:通过计算实数的加减乘除以及实例解题,使学生掌握实数的基本性质。
3. 实数的比较大小•教学内容:介绍实数的大小比较,包括数轴和大小关系符号的使用。
•教学方法:通过举例说明实数的大小比较方法,让学生熟练掌握。
4. 实数的加减乘除•教学内容:介绍实数的加减乘除方法,以及应用场景。
•教学方法:通过实例讲解和练习,让学生掌握实数的加减乘除方法。
四、教学设计1. 导入环节请学生用数轴表示数-2和数3,让学生感受有理数和无理数的概念。
2. 展开教学•第一步,介绍实数的概念和分类。
通过实际例子,让学生清楚地认识到有理数和无理数的含义,理解实数的概念和分类。
•第二步,介绍实数的基本性质。
通过计算实数的加减乘除,让学生掌握实数的基本性质。
同时,说明实数是一个有序数域。
•第三步,介绍实数的大小比较。
通过举例说明实数的大小比较方法,让学生熟练掌握。
•第四步,介绍实数的加减乘除。
通过实例讲解和练习,让学生掌握实数的加减乘除方法。
说明实数加减乘除的应用场景。
3. 总结与作业通过小组讨论,总结本节课的知识点,以及加深对实数的理解。
布置作业:完成教材中的练习。
五、教学反思本节课通过课堂讲解和实例分析,使学生掌握实数的概念和基本性质,以及实数的大小比较和加减乘除方法。
通过让学生进行动手实践,实践出真知,提高了学生的综合能力。
3.3实数第1课时 实数的概念1.从感性上认可无理数的存在,并通过探索说出无理数的特征,弄清有理数与无理数的本质区别,了解并掌握无理数、实数的概念以及实数的分类,知道实数与数轴上的点的一一对应关系.2.让学生经历数系扩展的过程,体会数系的扩展源于社会实际,又为社会实际服务的辩证关系 .3.培养学生勇于发现真理的科学精神,渗透“数形结合”及分类的思想和对立统一、矛盾转化的辨证唯物主义观点.【教学重点】无理数、实数的概念和实数的分类.【教学难点】无理数与有理数的本质区别,实数与数轴上的点的一一对应关系.一、情景导入,初步认知我们在前面学过无理数,什么样的数是无理数呢?举例说明?【教学说明】复习相关内容,为本节课的教学作准备.二、思考探究,获取新知1.下列各数中,哪些是有理数?哪些是无理数?2、0、1、414、9、π、-32、32、0.1010010001… (相邻两个1之间逐次增加一个0)【教学说明】学生自己回忆有理数、无理数的分类,为引入实数的概念及分类作好铺垫.【归纳结论】有理数和无理数统称为实数.2.根据实数的概念,你能对实数分类吗?【归纳结论】实数以概念可分为:【教学说明】通过对实数进行分类,让学生进一步领会分类的思想,培养学生从多角度思考问题,为他们以后更好地学习新知识作准备.同时也能使学生加深对无理数和实数的理解.3.任何有理数都可以用数轴上唯一的一个点来表示,那么无理数是否可以用数轴上的点来表示呢?思考:如何用数轴上的点表示无理数8和-8?我们已经知道,一个面积为8的正方形的边长是8,因此我们以原点为圆心,以正方形的边长为半径画弧,与正半轴的交点M就表示8,与负半轴的交点N就表示-8,如图所示:这样,我们就分别用数轴上唯一的一个点表示出了无理数8和-8.事实上,每一个无理数都可以用数轴上唯一的一个点来表示.【归纳结论】每一个实数都可以用数轴上唯一的一个点来表示.反过来,数轴上每一个点都表示唯一的一个实数.即:实数和数轴上的点一一对应.4.实数从正负性又如何分类呢?【归纳结论】实数分为正实数、零、负实数.5.有理数中有互为相反数的两个有理数,那么实数中有没有互为相反数的两个实数呢?举例说明.6.对于实数a的绝对值,又是什么样的呢?【归纳结论】设a表示一个实数,则:【教学说明】使学生通过类比的方式得到实数的相关知识,加深对实数的理解.三、运用新知,深化理解1.教材P118例1.2.判断下列说法是否正确(1)无限小数都是无理数(2)有理数都是有限小数(3)无理数都是无限小数(4)带根号的数都是无理数答案:四个全是错的.3.实数x 满足x+x 2=0,则x 是( C )A.非零实数B.非负数C.零和负数D.负数4.当x 时,式子102+x 有意义.答案:≥-55.如图,在数轴上表示实数14的点可能是( C )A.点MB.点NC.点PD.点Q6.下列各数中,哪些是有理数,哪些是无理数?π、-3.1415926、113355、39、321、38、0、27、3π、0.5、3.14159、-0.020*******、13、22、3625、0.10010001… 答案:略.7.求-364 、3-π的相反数和绝对值解:-364的相反数是364,绝对值是364;3-π的相反数是π-3,绝对值是π-3.【教学说明】巩固提高.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题3.3”中第1、2 题.本次教学,我坚持从兴趣入手,从差异入手,做到了在细致处求真、求创意,真正地使学生表明自己的看法,阐述自己的观点,大胆表现自我,张扬个性,体现出他们这个年龄应有的特点,因此,我认为这节课不仅很好地实现了知识与技能目标,对于过程与方法和情感态度与价值观两个目标的实现也非常到位,是比较成功的.第2课时实数的运算1.了解有理数的运算在实数范围内仍然适用,能用有理数估计一个无理数的大致范围.2.理解有效数字的概念,会根据要求进行近似值的运算.3.能利用计算器比较实数的大小,进行实数的四则运算.4.通过用不同的方法比较两个无理数的大小,理解估算的意义、培养数感和估算能力.5.养成学生的合作互助意识,提高学生的交流和表达能力.【教学重点】在实数范围内会运用有理数运算.【教学难点】用有理数估算一个无理数的大致范围.一、情景导入,初步认知1.在有理数范围内绝对值、相反数、倒数的意义是什么?2.比较两个有理数的大小有哪些方法?3.你能借用有理数范围内的规定举例说明无理数的绝对值、无理数的倒数、两个无理数互为相反数吗?【教学说明】复习相关内容,为本节课的教学作准备.二、思考探究,获取新知1.做一做:填空设a,b,c是任意实数,则(1)a+b= (加法交换律);(2)(a+b)+c= (加法结合律);(3)a+0=0+a= ;(4)a+(-a)=(-a)+a= ;(5)ab= (乘法交换律);(6)(ab)c= (乘法结合律);(7)1·a=a·1= ;(8)a(b+c)= (乘法对于加法的分配律);(9)实数的减法运算规定a-b=a+ ;(10)对于每一个非零实数a,存在一个实数b,满足a ·b=b·a=1,我们把b叫作a的;(11)实数的除法运算(除数b≠0),规定a÷b=a·;(12)实数有一条重要性质,如果a≠0,b≠0,那么ab 0.【教学说明】学生合作交流、探讨,并求出答案. 让一名同学上黑板展示,并讲解该题的解题过程.2.两个实数是如何比较大小的呢?【教学说明】结合有理数的比较,采用类比的方式得到比较实数大小的方法.3.有理数的相关运算在实数范围内是否适用?为什么?【归纳结论】对比有理数,对于实数,我们可以得出:每个正实数有且只有两个平方根,它们互为相反数;0的平方根是0;在实数范围内,负实数没有平方根;在实数范围内,每个实数a有且只有一个立方根.4.动脑筋:不用计算器,比较5与2哪个大?与3比较呢?【分析】因为(5)2=5,22=4,且5>4,所以5>2; 因为32=9,且5<9,所以5<3.【教学说明】教师适当引导,学生相互交流,找到解题办法.三、运用新知,深化理解1.教材P120例2、例3.2.要使二次根式1 x 有意义,字母x 的取值必须满足的条件是( A )A.x ≥1B.x ≤1C.x>1D.x<13.不用计算器,计算:(1)26+36-46解:原式=6(2)27+37-7解:原式=(2+3-1)7=47(3)32+52-72-22解:原式=-2(4)323-345+341+325 解:原式=336.已知实数x ,y 满足|x-5|+y+4=0,求代数式(x+y )2016的值.解:依题意当x=5,y=-4时,解得(x+y )2016=(5-4)2016=17.你还会比较2+3与π的大小吗? 解:用计算器求得2+3≈3.14626437,而 π≈3.141592654,因此2+3>π.8.已知5的整数部分是a ,小数部分是b ,求a-b1的值. 【分析】由于22=4<5<32=9,估计5的大小,可得a 、b 的值,将ab 的值代入代数式可得答案.解:∵22=4<5<32=9,∴2<5<3,∴a=2,b=5-2,∴原式=-5.【教学说明】结合有理数的运算,采用类比的方式得到实数的运算与有理数的运算是一样的.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题3.3”中第4、5、6、10 题.本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系.根据新课标精神,对学生的评价不能过分要求技巧,应关注学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否依据算理正确地进行计算,能否确认结果的合理性等等.对于较复杂的实数运算,应关注学生是否会使用计算器进行运算.因此,注意对运算技能要求作恰当的定位,特别是在开始运算的第一课时,不要提高要求.。