1-5的数学组合计算练习题
- 格式:docx
- 大小:10.66 KB
- 文档页数:1
2021-2022学年北师大版七年级数学下册《1-5平方差公式》同步练习题(附答案)1.下列运算结果正确的是()A.3a﹣a=2B.a2•a4=a8C.(a+2)(a﹣2)=a2﹣4D.(﹣a)2=﹣a22.从前,古希腊一位庄园主把一块边长为a米(a>6)的正方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的一边增加6米,相邻的另一边减少6米,变成矩形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A.没有变化B.变大了C.变小了D.无法确定3.如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205B.250C.502D.5204.下列整式的乘法中,不能用平方差公式进行计算的是()A.(x+y)(x﹣y)B.(﹣x﹣y)(﹣x+y)C.(﹣x﹣y)(x+y)D.(﹣x+y)(x+y)5.下列运算正确的是()A.a2+a2=2a4B.a6÷a2=a3C.(a+3)(a﹣3)=a2﹣6a+9D.(﹣3a3)2=9a66.下列计算正确的是()A.a+a2=a3B.a6÷a3=a2C.(﹣a2b)3=a6b3D.(a﹣2)(a+2)=a2﹣47.如图1,将边长为x的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释下列哪个等式()A.x2﹣2x+1=(x﹣1)2B.x2﹣1=(x+1)(x﹣1)C.x2+2x+1=(x+1)2D.x2﹣x=x(x﹣1)8.下列多项式乘以多项式能用平方差公式计算的是()A.(a+b)(﹣b﹣a)B.(﹣a+b)(﹣b﹣a)C.(a+b)(b+a)D.(﹣a+b)(b﹣a)9.若a+b=6,a2﹣b2=30,则a﹣b=()A.5B.6C.10D.1510.若(2m+5)(2m﹣5)=15,则m2=.11.1002﹣992+982﹣972+962﹣952+…+22﹣12=.12.已知a+b=2,a﹣b=3.则a2﹣b2的值为.13.已知a2+a﹣1=0,则代数式(a+2)(a﹣2)+a(a+2)值为.14.已知x2﹣y2=21,x﹣y=3,则x+y=.15.已知x+2y=13,x2﹣4y2=39,则多项式x﹣2y的值是.16.观察下列各式:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,…根据规律可得:(x﹣1)(x2021+x2020+…+x+1)=.17.请阅读以下材料:[材料]若x=12349×12346,y=12348×12347,试比较x,y的大小.解:设12348=a,那么x=(a+1)(a﹣2)=a2﹣a﹣2,y=a(a﹣1)=a2﹣a.因为x﹣y=(a2﹣a﹣2)﹣(a2﹣a)=﹣2<0,所以x<y.我们把这种方法叫做换元法.请仿照例题比较下列两数大小:x=997657×997655,y=997653×997659.18.计算:x(x+2)+(1+x)(1﹣x).19.课堂上,老师让同学们计算(3a﹣b)(3a+b)﹣a(4a﹣1).(3a﹣b)(3a+b)﹣a(4a﹣1)=3a2﹣b2﹣4a2﹣a=﹣a2﹣b2﹣a左边是小朱的解题过程.请你判断其是否正确?如果有错误,请写出正确的解题过程.20.用乘法公式计算:100×99.21.计算:(x﹣2)(x+2)﹣6x(x﹣3)+5x2.22.利用乘法公式有时能进行简便计算.例:102×98=(100+2)(100﹣2)=1002﹣22=10000﹣4=9996.请参考给出的例题,通过简便方法计算:(1)31×29;(2)195×205.23.计算:(﹣x2y﹣x2y2)•(﹣xy)2﹣(﹣2x2y2﹣3)•(﹣3+2x2y2).24.如图1,是边长分别为a和b的两种正方形纸片.(1)若用这两种纸片各1张按照如图2方式放置,其未叠合部分(阴影部分)面积为S1,则S1=;(用含a,b的代数式表示)(2)在(1)中图2的基础上,再在大正方形的右下角摆放一张边长为b的小正方形纸片(图3),两个小正方形叠合部分(阴影部分)面积为S2,试求S2.(用含a,b的代数式表示)25.某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)(1)该同学解答过程从第几步开始出错,错误原因是什么;(2)写出此题正确的解答过程.26.如图,边长为a的大正方形中有一个边长为b的小正方形,图2由图1中的阴影部分拼成的一个长方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请用含a,b的代数式表示:S1=,S2=(只需表示,不必化简);(2)以上结果可以验证哪个乘法公式?请写出这个乘法公式;(3)运用(2)中得到的公式,计算:20222﹣2023×2021.27.计算:(3x+2)(3x﹣2)(9x2+4).28.计算:(1)2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy];(2)(a﹣2)(a+2)(2a+1).29.若xy=﹣1,且x﹣y=3.(1)求(x﹣2)(y+2)的值;(2)求x2﹣xy+y2的值.30.如图1所示,边长为a的正方形中有一个边长为b的小正方形,图2是由图1中阴影部分拼成的一个长方形,设图1中阴影部分面积为S1,图2中阴影部分面积为S2.(1)请直接用含a和b的代数式表示S1=,S2=;写出利用图形的面积关系所得到的公式:(用式子表达).(2)应用公式计算:.(3)应用公式计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)+1.参考答案1.解:3a和a属于同类项,所以3a﹣a=2a,故A项不符合题意,根据同底数幂的乘法运算法则可得a2•a4=a6,故B项不符合题意,根据平方差公式(a+2)(a﹣2)=a2﹣4,故C项符合题意,(﹣a)2=a2,故D项不符合题意,故选:C.2.解:矩形的面积为(a+6)(a﹣6)=a2﹣36,∴矩形的面积比正方形的面积a2小了36平方米,故选:C.3.解:设较小的奇数为x,较大的为x+2,根据题意得:(x+2)2﹣x2=(x+2﹣x)(x+2+x)=4x+4,若4x+4=205,即x=,不为整数,不符合题意;若4x+4=250,即x=,不为整数,不符合题意;若4x+4=502,即x=,不为整数,不符合题意;若4x+4=520,即x=129,符合题意.故选:D.4.解:A、原式=x2﹣y2,不符合题意;B、原式=(﹣x)2﹣y2=x2﹣y2,不符合题意;C、原式=﹣(x+y)2=﹣x2﹣2xy﹣y2,符合题意;D、原式=y2﹣x2,不符合题意.故选:C.5.解:A、a2+a2=2a2,原计算错误,故此选项不符合题意;B、a6÷a2=a4,原计算错误,故此选项不符合题意;C、(a+3)(a﹣3)=a2﹣9,原计算错误,故此选项不符合题意;D、(﹣3a3)2=9a6,原计算正确,故此选项符合题意;故选:D.6.解:A、a与a2不是同类项,不能合并,原计算错误,故此选项不符合题意;B、a6÷a3=a3,原计算错误,故此选项不符合题意;C、(﹣a2b)3=﹣a6b3,原计算错误,故此选项不符合题意;D、(a﹣2)(a+2)=a2﹣4,原计算正确,故此选项符合题意,故选:D.7.解:由图可知,图1的面积为:x2﹣12,图2的面积为:(x+1)(x﹣1),所以x2﹣1=(x+1)(x﹣1).故选:B.8.解:能用平方差公式计算的是(﹣a+b)(﹣b﹣a),其它的不能用平方差公式计算.故选:B.9.解:∵a+b=6,a2﹣b2=30,∴(a+b)(a﹣b)=30,∴a﹣b=30÷6=5,故选:A.10.解:由(2m+5)(2m﹣5)=15,得4m2﹣25=15.解得m2=10.故答案是:10.11.解:原式=(1002﹣992)+(982﹣972)+(962﹣952)+…+(22﹣12)=(100+99)×(100﹣99)+(98+97)×(98﹣97)+...+(2+1)×(2﹣1)=100+99+98+97+...+4+3+2+1=(100+1)+(99+2)+...+(51+52)=50×101=5050.故答案为:5050.12.解:当a+b=2,a﹣b=3时,a2﹣b2=(a+b)(a﹣b)=2×3=6.故选:6.13.解:(a+2)(a﹣2)+a(a+2)=a2﹣4+a2+2a=2a2+2a﹣4=2(a2+2a)﹣4.∵a2+a﹣1=0,∴a2+a=1.∴原式=2×1﹣4=﹣2.故答案为:﹣2.14.解:因为x2﹣y2=(x﹣y)(x+y)=21,x﹣y=3,所以x+y==7.故答案为:7.15.解:∵x+2y=13,x2﹣4y2=39,∴x2﹣4y2=(x+2y)(x﹣2y)=39,∴x﹣2y=3.故答案为:3.16.解:观察每一个等式左边的代数式与右边的代数式,得(x﹣1)(x2021+x2020+…+x+1)=x2022﹣1.故答案为:x2022﹣1.17.解:令a=997653,b=997655,则x=(a+4)b=ab+4b,y=a(b+4)=ab+4a,∵x﹣y=(ab+4b)﹣(ab+4a)=4(b﹣a)=4×2=8>0,∴x>y.18.解:原式=x2+2x+1﹣x2=2x+1.19.解:不正确,原式=9a2﹣b2﹣4a2+a=5a2﹣b2+a,即正确答案为:5a2﹣b2+a.20.解:100×99=(100+)(100﹣)=10000﹣=9999.21.解:(x﹣2)(x+2)﹣6x(x﹣3)+5x2=x2﹣4﹣6x2+18x+5x2=18x﹣4.22.解:(1)31×29=(30+1)×(30﹣1)=302﹣12=900﹣1=899;(2)195×205=(200﹣5)×(200+5)=2002﹣52=40000﹣25=39975;23.解:原式=(﹣x2y﹣x2y2)•x2y2﹣[(﹣3)2﹣(2x2y2)2]=﹣x4y3﹣x4y4﹣9+4x4y4=﹣x4y3+x4y4﹣9.24.解:(1)由题意可得,S1是图1中两个正方形面积的差,又∵图1中大正方形的面积为a²,小正方形的面积为b²,∴S1=a²﹣b²,故答案为:a²﹣b²;(2)由题意可得,S2是两个小正方形在长为a,宽为b的矩形内的重叠部分,∴S2=b²+b²﹣ab=2b²﹣ab.25.解:(1)该同学解题过程从第二步开始出错,错误的原因是去括号时第二项没有变号;(2)正确解答为:原式=a2+2ab﹣(a2﹣b2)=a2+2ab﹣a2+b2=2ab+b2.26.解:(1)图1阴影部分的面积为边长为a的大正方形的面积减去边长为b的小正方形的面积,即S1=a2﹣b2,图2中阴影部分的面积是长为(a+b),宽为(a﹣b)的长方形的面积,即S2=(a+b)(a ﹣b),故答案为:a2﹣b2,(a+b)(a﹣b);(2)由(1)中S1=S2可得,a2﹣b2=(a+b)(a﹣b),因此可以验证平方差公式,即:(a+b)(a﹣b)=a2﹣b2;(3)原式=20222﹣(2022+1)(2022﹣1)=20222﹣(20222﹣1)=1.27.解:(3x+2)(3x﹣2)(9x2+4)=(9x2﹣4)(9x2+4)=81x4﹣16.28.解:(1)原式=﹣6xy+2x2﹣(2x2﹣15xy+6x2﹣xy)=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=10xy﹣6x2;(2)原式=(a2﹣4)(2a+1)=2a3+a2﹣8a﹣4.29.解:(1)∵xy=﹣1,x﹣y=3,∴(x﹣2)(y+2)=xy+2(x﹣y)﹣4=﹣1+6﹣4=1;(2)∵xy=﹣1,x﹣y=3,∴x2﹣xy+y2=(x﹣y)2+xy=9+(﹣1)=8.30.解:(1)图1中阴影部分的面积为大正方形与小正方形的面积差,即a2﹣b2,图2中阴影部分是长为(a+b),宽为(a﹣b)的长方形,因此面积为(a+b)(a﹣b),由图1和图2中阴影部分的面积相等可得,a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2,(a+b)(a﹣b),a2﹣b2=(a+b)(a﹣b);(2)原式====;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)+1=(22﹣1)(22+1)(24+1)(28+1)(216+1)(232+1)+1=(24﹣1)(24+1)(28+1)(216+1)(232+1)+1=(28﹣1)(28+1)(216+1)(232+1)+1=(216﹣1)(216+1)(232+1)+1=(232﹣1)(232+1)+1=264﹣1+1=264.。
亲爱的同学,如果把这份试卷⽐作⼀份湛蓝的海,那么,我们现在启航,展开你⾃信和智慧的双翼,乘风踏浪,你定能收获⽆限风光!⼩编整理了⼈教版⼩学五年级上册数学单元练习题(1-5单元全),希望对你有帮助!第⼀单元 ⼀、填空。
1.表⽰4个1.2是多少的乘法算式是(),表⽰4的1.2倍是多少的算式是()。
2.因为8×0.5是求8的()是多少,所以它的积⽐8()。
3.⽤“四舍五⼊”把8.954保留两位⼩数约是(),精确到⼗分位约是()。
4.在乘法中,如果两个因数都不为0,⼀个因数不变,另⼀个因数扩⼤10倍,积就(),⼀个因数扩⼤100倍,另⼀个因数扩⼤10倍,积就()。
5.不⽤计算,写出 (1)1.8×0.27的积有()位⼩数。
(2)9.12÷0.24的商的位是在()位上。
6.0.7除以0.3,商求到⼗分位,商是(),余数是()。
7.在○⾥填上“>”、“1.46×0.99○1.46 54÷0.18○54 0.57×1○0.57 7.6×1.01○7.6 4.8÷1.5○4.8 35÷0.1○35×10 8.由48×32=1536,可知480×0.32=(),0.48×3.2=() 9.由21.45÷15=1.43,可知2.145÷15=(),214.5÷0.15=()。
10.在3.82,5.6,0.35,0.002,2.75,3.2727……中,,是有限⼩数的是(),是循环⼩数的数()。
⼆、判断题。
(正确的在题后的括号内打“√”,错误的打“×”。
) 1. 整数乘以⼩数,积⼀定⼩于被乘数。
() 2. 纯⼩数乘以纯⼩数,积⼀定⼩于其中⼀个因数。
() 3. 2.7×0.4×2.5=2.7×(0.4×2.5)这种运算过程没有依次运算是错误的。
人教版小学五年级上册数学单元练习题(1-5单元全)1.表示4个1.2是多少的乘法算式是(),表示4的1.2倍是多少的算式是()。
2.因为8×0.5是求8的()是多少,所以它的积比8()。
3.用“四舍五入”把8.954保留两位小数约是(),精确到十分位约是()。
4.在乘法中,如果两个因数都不为0,一个因数不变,另一个因数扩大10倍,积就(),一个因数扩大100倍,另一个因数扩大10倍,积就()。
5.不用计算,写出(1)1.8×0.27的积有()位小数。
(2)9.12÷0.24的商的位是在()位上。
6.0.7除以0.3,商求到十分位,商是(),余数是()。
7.在○里填上“>”、“1.46×0.99○1.46 54÷0.18○54 0.57×1○0.57 7.6×1.01○7.6 4.8÷1.5○4.8 35÷0.1○35×108.由48×32=1536,可知480×0.32=(),0.48×3.2=()9.由21.45÷15=1.43,可知2.145÷15=(),214.5÷0.15=()。
10.在3.82,5.6,0.35,0.002,2.75,3.2727……中,,是有限小数的是(),是循环小数的数()。
二、判断题。
(正确的在题后的括号内打“√”,错误的打“×”。
)1. 整数乘以小数,积一定小于被乘数。
()2. 纯小数乘以纯小数,积一定小于其中一个因数。
()3. 2.7×0.4×2.5=2.7×(0.4×2.5)这种运算过程没有依次运算是错误的。
()4. 2.5÷4的商是0.6,余数是1。
()5. 20÷9的商是无限循环小数。
()6. 3.0与3不一定相等。
()7. 0.666……保留两位小数写作0.666……=0.67。
小学四年级数字的组合练习题题一:数字的顺序和大小比较1. 请将以下数字按从小到大的顺序排列:26、19、33、8、45。
()2. 小红和小亮都在数数,小红说:“365比137要大。
”小亮说:“137比365要小。
”他们谁说得对?()3. 用适当的符号(>, < 或 =)将下列数字连起来,并注明结果:25 40 25 ()4. 找出下列数字中的最小值:58,29,36,48。
()5. 请输入一个能够使下列等式成立的数字: 54 + 36 = ________题二:数字的组合与拆分1. 小明家里有16个苹果,他想要吧这些苹果分给自己和弟弟。
如果小明拿走8个苹果,弟弟能拿走多少个苹果?()2. 请将下面的数字组合成一个最大的两位数:3、5、8、7。
()3. 请分别用两个数的和和差表示下列的数字:25 ()4. 请拆分下面的数,使其和为30:23 ()5. 小华有12根火柴,她想要用这些火柴拼成一个数字。
请你告诉他可以拼出哪几个数字。
()题三:数字的进位与退位1. 请计算下面两个数的和:52 + 47 = _____()2. 小明正在测试自己的计算能力,他计算得到了以下结果:841 + 244 = 1165。
请问小明是否出错了?()3. 小亮在解决一个数学问题,他计算得到:279 + 74 = 334。
请问小亮盘算正确吗?()4. 请将下面的两个数相加并写出结果:315+ 487_____5. 请输入下面两个数的差:258 - 103 = _____题四:数字的倍数和因数1. 请问18是否是9的倍数?()2. 如果一个数被2整除,那它能被什么数整除?()3. 请计算下面两个数的最小公倍数:8和6。
()4. 请计算下面两个数的最小公约数:16和24。
()5. 请将下面的数字分别写成因数的形式:36 = __ x __48 = __ x __题五:数字的应用1. 小明的奶奶今年60岁,小明今年10岁。
2022-2023学年北师大版九年级数学下册《1.5三角函数的应用》题型分类练习题(附答案)一.测量计算物体高度问题1.如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据:≈1.41,≈1.73)2.两栋居民楼之间的距离CD=30米,楼AC和BD均为10层,每层楼高3米.(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部?3.如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)4.某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)5.一种可折叠的医疗器械放置在水平地面上,这种医疗器械的侧面结构如图实线所示,底座为△ABC,点B、C、D在同一条直线上,测得∠ACB=90°,∠ABC=60°,AB=32cm,∠BDE=75°,其中一段支撑杆CD=84cm,另一段支撑杆DE=70cm.求支撑杆上的点E到水平地面的距离EF是多少?(用四舍五入法对结果取整数,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.732)6.“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)7.第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图1),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图2是其示意图,已知:助滑坡道AF=50米,弧形跳台的跨度FG=7米,顶端E到BD的距离为40米,HG∥BC,∠AFH=40°,∠EFG=25°,∠ECB=36°.求此大跳台最高点A距地面BD的距离是多少米(结果保留整数).(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)8.如图,信号塔PQ座落在坡度i=1:2的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成60°角时,测得信号塔PQ落在斜坡上的影子QN长为2米,落在警示牌上的影子MN长为3米,求信号塔PQ的高.(结果不取近似值)9.太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为30°,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D、F,CD垂直于地面,FE⊥AB于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号).10.图1是太阳能热水器装置的示意图.利用玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好,假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光线与玻璃吸热管垂直),请完成以下计算:如图2,AB⊥BC,垂足为点B,EA⊥AB,垂足为点A,CD∥AB,CD=10cm,DE=120cm,FG⊥DE,垂足为点G.(1)若∠θ=37°50′,则AB的长约为cm;(参考数据:sin37°50′≈0.61,cos37°50′≈0.79,tan37°50′≈0.78)(2)若FG=30cm,∠θ=60°,求CF的长.11.汛期即将来临,为保证市民的生命和财产安全,市政府决定对一段长200米且横断面为梯形的大坝用土石进行加固.如图,加固前大坝背水坡坡面从A至B共有30级阶梯,平均每级阶梯高30cm,斜坡AB的坡度i=1:1;加固后,坝顶宽度增加2米,斜坡EF的坡度i=1:,问工程完工后,共需土石多少立方米?(计算土石方时忽略阶梯,结果保留根号)12.如图1,水坝的横截面是梯形ABCD,∠ABC=37°,坝顶DC=3m,背水坡AD的坡度i(即tan∠DAB)为1:0.5,坝底AB=14m.(1)求坝高;(2)如图2,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底同时拓宽加固,使得AE=2DF,EF⊥BF,求DF的长.(参考数据:sin37°≈,cos37°≈,tan37°≈)二.实际问题数学抽象13.如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m的圆形门?14.日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L:(H﹣H1),其中L为楼间水平距离,H为南侧楼房高度,H1为北侧楼房底层窗台至地面高度.如图②,山坡EF朝北,EF长为15m,坡度为i=1:0.75,山坡顶部平地EM上有一高为22.5m的楼房AB,底部A到E点的距离为4m.(1)求山坡EF的水平宽度FH;(2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗台P处至地面C 处的高度为0.9m,要使该楼的日照间距系数不低于1.25,底部C距F处至少多远?15.图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC宽3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM=60°.(1)求点M到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:≈1.73,结果精确到0.01米)16.如图是把一个装有货物的长方体形状的木箱沿着坡面装进汽车货厢的示意图.已知汽车货厢高度BG=2米,货厢底面距地面的高度BH=0.6米,坡面与地面的夹角∠BAH=α,木箱的长(FC)为2米,高(EF)和宽都是1.6米.通过计算判断:当sinα=,木箱底部顶点C与坡面底部点A重合时,木箱上部顶点E会不会触碰到汽车货厢顶部.三.三角函数的应用17.如图1是某中学教学楼的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转35°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin35°≈0.6,cos35°≈0.8,≈1.4)18.2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA是垂直于工作台的移动基座,AB、BC为机械臂,OA=1m,AB=5m,BC=2m,∠ABC=143°.机械臂端点C到工作台的距离CD=6m.(1)求A、C两点之间的距离;(2)求OD长.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈2.24)19.随着我国科学技术的不断发展,科学幻想变为现实.如图1是我国自主研发的某型号隐形战斗机模型,全动型后掠翼垂尾是这款战斗机亮点之一.图2是垂尾模型的轴切面,并通过垂尾模型的外围测得如下数据,BC=8,CD=2,∠D=135°,∠C=60°,且AB∥CD,求出垂尾模型ABCD的面积.(结果保留整数,参考数据:≈1.414,≈1.732)20.如图1为搭建在地面上的遮阳棚,图2、图3是遮阳棚支架的示意图.遮阳棚支架由相同的菱形和相同的等腰三角形构成,滑块E,H可分别沿等长的立柱AB,DC上下移动,AF=EF=FG=1m.(1)若移动滑块使AE=EF,求∠AFE的度数和棚宽BC的长.(2)当∠AFE由60°变为74°时,问棚宽BC是增加还是减少?增加或减少了多少?(结果精确到0.1m,参考数据:≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)21.小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.(1)连结DE,求线段DE的长.(2)求点A,B之间的距离.(结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)参考答案一.测量计算物体高度问题1.解:(1)如图2中,作BO⊥DE于O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°﹣90°=60°,∴OD=BD•sin60°=20(cm),∴DE=OD+OE=OD+AB=20+5≈39.6(cm).(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.则四边形PCHG是矩形,∵∠CBH=60°,∠CHB=90°,∴∠BCH=30°,∵∠BCD=165°,∴∠DCP=45°,∴CH=BC sin60°=10(cm),DP=CD sin45°=10(cm),∴DF=DP+PG+GF=DP+CH+AB=(10+10+5)(cm),∴下降高度:DE﹣DF=20+5﹣10﹣10﹣5=10﹣10≈3.2(cm).2.解:(1)延长BG,交AC于点F,过F作FH⊥BD于H,由图可知,FH=CD=30m,∵∠BFH=∠α=30°,在Rt△BFH中,BH=,FC=30﹣17.32=12.68,再用12.68÷3≈4.23,所以在四层的上面,即第五层,答:此刻B楼的影子落在A楼的第5层;(2)连接BC,∵BD=3×10=30=CD,∴∠BCD=45°,答:当太阳光线与水平面的夹角为45度时,B楼的影子刚好落在A楼的底部.3.解:(1)延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).(2)在Rt△BCH中,CH=BC=5米,BH=5≈8.65(米),∴DH=15(米),在Rt△ADH中,AH=≈=20(米),∴AB=AH﹣BH=20﹣8.65≈11.4(米).答:AB的长度约为11.4米.4.解:如图作CM∥AB交AD于M,MN⊥AB于N.由题意=,即=,CM=(米),在Rt△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∴AN≈12.32(米),∵MN∥BC,AB∥CM,∴四边形MNBC是平行四边形,∴BN=CM=(米),∴AB=AN+BN=12.32+1.5≈13.8(米).5.解:方法一:如图1,过点D作DM⊥EF于M,过点D作DN⊥BA交BA延长线于N,在Rt△ABC中,∠ABC=60°,AB=32(cm),∴BC=AB•cos60°=32×=16(cm),∵DC=84(cm),∴BD=DC+BC=84+16=100(cm),∵∠F=90°,∠DMF=90°,∴DM∥FN,∴∠MDB=∠ABC=60°,在Rt△BDN中,sin∠DBN=sin60°=,∴DN=×100=50(cm),∵∠F=90°,∠N=90°,∠DMF=90°,∴四边形MFND是矩形,∴DN=MF=50,∵∠BDE=75°,∠MDB=60°,∴∠EDM=∠BDE﹣∠MDB=75°﹣60°=15°,∵DE=70(cm),∴ME=DE•sin∠EDM=70×sin15°≈18.2(cm),∴EF=ME+MF=50+18.2≈104.8≈105(cm),答:支撑杆上的点E到水平地面的距离EF大约是105cm.方法二:如图2,过点D作DH⊥BA交BA延长线于H,过点E作EG⊥HD延长线于G,在Rt△ABC中,∠ABC=60°,AB=32(cm),∴BC=AB•cos60°=32×=16(cm),∵DC=84(cm),∴BD=DC+BC=84+16=100(cm),同方法一得,DH=BD•sin60°=50(cm),∵在Rt△BDH中,∠DBH=60°,∴∠BDH=30°,∵∠BDE=75°,∴∠EDG=180°﹣∠BDH﹣∠BDE=180°﹣75°﹣30°=75°,∴∠DEG=90°﹣75°=15°,∴DG=DE•sin15°≈18.2(cm),∴GH=DG+DH=18.2+50≈104.8≈105(cm),∵∠F=90°,∠H=90°,∠G=90°,∴EF=GH≈105(cm),答:支撑杆上的点E到水平地面的距离EF大约是105cm.6.解:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE•tan∠BDE≈18.75(cm),如图,过C作AE的垂线,垂足为F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四边形CDEF为矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE﹣AF≈10.8(cm),答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.7.解:如图,过点E作EN⊥BC于点N,交HG于点M,则AB=AH﹣EM+EN.根据题意可知,∠AHF=∠EMF=∠EMG=90°,EN=40(米),∵HG∥BC,∴∠EGM=∠ECB=36°,在Rt△AHF中,∠AFH=40°,AF=50,∴AH=AF•sin∠AFH≈50×0.64=32(米),在Rt△FEM和Rt△EMG中,设MG=m米,则FM=(7﹣m)米,∴EM=MG•tan∠EGM=MG•tan36°≈0.73m,EM=FM•tan∠EFM=FM•tan25°≈0.47(7﹣m),∴0.73m=0.47(7﹣m),解得m≈2.7(米),∴EM≈0.47(7﹣m)=2.021(米),∴AB=AH﹣EM+EN≈32﹣2.021+40≈70(米).∴此大跳台最高点A距地面BD的距离约是70米.8.解:如图作MF⊥PQ于F,QE⊥MN于E,则四边形EMFQ是矩形.在Rt△QEN中,设EN=x米,则EQ=2x米,∵QN2=EN2+QE2,∴20=5x2,∵x>0,∴x=2,∴EN=2(米),EQ=MF=4(米),∵MN=3米,∴FQ=EM=1(米),在Rt△PFM中,PF=FM•tan60°=4(米),∴PQ=PF+FQ=(4+1)米.9.解:过A作AG⊥CD于G,则∠CAG=30°,在Rt△ACG中,CG=AC sin30°=50×=25(cm),∵GD=50﹣30=20(cm),∴CD=CG+GD=25+20=45(cm),连接FD并延长与BA的延长线交于H,则∠H=30°,在Rt△CDH中,CH==2CD=90(cm),∴EH=EC+CH=AB﹣BE﹣AC+CH=300﹣50﹣50+90=290(cm),在Rt△EFH中,EF=EH•tan30°=290×=(cm),答:支撑角钢CD和EF的长度各是45cm,cm.10.解:(1)如图,作EP⊥BC于点P,作DQ⊥EP于点Q,则CD=PQ=10,∠2+∠3=90°,∵∠1+∠θ=90°,且∠1=∠2,∴∠3=∠θ=37°50′,则EQ=DE sin∠3=120×sin37°50′,∴AB=EP=EQ+PQ=120sin37°50′+10=83.2(cm),故答案为:83.2;(2)如图,延长ED、BC交于点K,由(1)知∠θ=∠3=∠K=60°,在Rt△CDK中,CK==(cm),在Rt△KGF中,KF===(cm),则CF=KF﹣KC=﹣==(cm).11.解:过A作AH⊥BC于H,过E作EG⊥BC于G,则四边形EGHA是矩形,∴EG=AH=30×30=900,GH=AE=2,∵斜坡AB的坡度i=1:1,∴AH=BH=9米,∴AB=9,∴BG=BH﹣HG=7米,∵斜坡EF的坡度i=1:,∴FG=9米,∴BF=FG﹣BG=9﹣7,∴S梯形ABFE=(2+9﹣7)×9=,∴共需土石为×200=100(81﹣45)立方米.12.解:(1)作DM⊥AB于M,CN⊥AN于N.由题意:tan∠DAB==2,设AM=x,则DM=2x,∵四边形DMNC是矩形,∴DM=CN=2x,在Rt△NBC中,tan37°===,∴BN=x,∵x+3+x=14,∴x=3,∴DM=6,答:坝高为6m.(2)作FH⊥AB于H.设DF=y,则AE=2y,EH=3+2y﹣y=3+y,BH=14+2y﹣(3+y)=11+y,由△EFH∽△FBH,可得=,即=,解得y=﹣7+2或﹣7﹣2(舍弃),∴DF=2﹣7,答:DF的长为(2﹣7)m.二.实际问题数学抽象13.解:工人师傅搬运此钢架能通过一个直径为2.1m的圆形门,理由是:过B作BD⊥AC于D,∵AB>BD,BC>BD,AC>AB,∴求出DB长和2.1m比较即可,设BD=xm,∵∠A=30°,∠C=45°,∴DC=BD=xm,AD=BD=xm,∵AC=2(+1)m,∴x+x=2(+1),∴x=2,即BD=2m<2.1m,∴工人师傅搬运此钢架能通过一个直径为2.1m的圆形门.14.解:(1)在Rt△EFH中,∵∠H=90°,∴tan∠EFH=i=1:0.75==,设EH=4xm,则FH=3xm,∴EF==5xm,∵EF=15m,∴5x=15m,x=3,∴FH=3x=9m.即山坡EF的水平宽度FH为9m;(2)∵L=CF+FH+EA=CF+9+4=CF+13,H=AB+EH=22.5+12=34.5,H1=0.9,∴日照间距系数=L:(H﹣H1)==,∵该楼的日照间距系数不低于1.25,∴≥1.25,∴CF≥29.答:要使该楼的日照间距系数不低于1.25,底部C距F处29m远.15.解:(1)如图,过M作MN⊥AB于N,交BA的延长线于N,Rt△OMN中,∠NOM=60°,OM=1.2,∴∠M=30°,∴ON=OM=0.6,∴NB=ON+OB=3.3+0.6=3.9;即点M到地面的距离是3.9米;(2)取CE=0.65,EH=2.55,∴HB=3.9﹣2.55﹣0.65=0.7,过H作GH⊥BC,交OM于G,过O作OP⊥GH于P,∵∠GOP=30°,∴tan30°==,∴GP=OP=≈0.404,∴GH=3.3+0.404=3.704≈3.70>3.5,∴货车能安全通过.16.解:∵BH=0.6米,sinα=,∴AB==1米,∴AH=0.8米,∵AF=FC=2米,∴BF=1米,作FJ⊥BG于点J,作EK⊥FJ于点K,∠EKF=∠FJB=∠AHB=90°,∠EFK=∠FBJ=∠ABH,BF=AB,∴△EFK∽△FBJ∽△ABH,△FBJ≌△ABH,∴,BJ=BH=0.6米,即,解得,EK=1.28,∴BJ+EK=0.6+1.28=1.88<2,∴木箱上部顶点E不会触碰到汽车货厢顶部.三.三角函数的应用17.解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,∵AB=CD,AB+CD=AD=2,∴AB=CD=1,在Rt△ABE中,∠A=35°,AB=1,∴BE=AB•sin A=1×sin35°≈0.6,∴AE=AB•cos A=1×cos35°≈0.8,在Rt△CDF中,∠D=45°,CD=1,∴CF=CD•sin D=1×sin45°≈0.7,∴DF=CD•cos D=1×cos45°≈0.7,∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC是平行四边形,∴BC=EM,在Rt△MEF中,FM=CF+CM=1.3,EF=AD﹣AE﹣FD=0.5,∴EM==≈1.4,答:B与C之间的距离约为1.4米.18.解:(1)如图,过点A作AE⊥CB,垂足为E,在Rt△ABE中,AB=5m,∠ABE=37°,∵sin∠ABE=,cos∠ABE=,∴=0.60,=0.80,∴AE=3m,BE=4m,∴CE=6m,在Rt△ACE中,由勾股定理AC==3≈6.7m.(2)过点A作AF⊥CD,垂足为F,∴FD=AO=1m,∴CF=5m,在Rt△ACF中,由勾股定理AF==2m.∴OD=2≈4.5m.19.解:如图,过点A作CD的垂线,交CD的延长线于F,过点C作AB的垂线,交AB 的延长线于E,∵AB∥CD,∴四边形AECF是矩形,∵∠BCD=60°,∴∠BCE=90°﹣60°=30°,在Rt△BCE中,∠BCE=30°,BC=8,∴BE=BC=4,CE=BC=4,∵∠ADC=135°,∴∠ADF=180°﹣135°=45°,∴△ADF是等腰直角三角形,∴DF=AF=CE=4,由于FC=AE,即4+2=AB+4,∴AB=4﹣2,∴S梯形ABCD=(2+4﹣2)×4=24,答:垂尾模型ABCD的面积为24.20.解:(1)∵AE=EF=AF=1m,∴△AEF是等边三角形,∴∠AFE=60°,连接MF并延长交AE于K,则FM=2FK,∵△AEF是等边三角形,∴AK=(m),∴FK==(m),∴FM=2FK=(m),∴BC=4FM=4≈6.92≈6.9(m),答:∠AFE的度数为60°,棚宽BC的长约为6.9m;(2)∵∠AFE=74°,∴∠AFK=37°,∴KF=AF•cos37°≈0.80(m),∴FM=2FK=1.60(m),∴BC=4FM=6.40(m)<6.92(m),6.92﹣6.40=0.52≈0.5(m),答:当∠AFE由60°变为74°时,棚宽BC是减少了,减少了0.5m.21.解:(1)如图,过点C作CF⊥DE于点F,∵CD=CE=5cm,∠DCE=40°.∴∠DCF=20°,∴DF=CD•sin20°≈5×0.34≈1.7(cm),∴DE=2DF≈3.4cm,∴线段DE的长约为3.4cm;(2)∵横截面是一个轴对称图形,∴延长CF交AD、BE延长线于点G,连接AB,∴DE∥AB,∴∠A=∠GDE,∵AD⊥CD,BE⊥CE,∴∠GDF+∠FDC=90°,∵∠DCF+∠FDC=90°,∴∠GDF=∠DCF=20°,∴∠A=20°,∴DG=≈≈1.8(cm),∴AG=AD+DG=10+1.8=11.8(cm),∴AB=2AG•cos20°≈2×11.8×0.94≈22.2(cm).∴点A,B之间的距离22.2cm.。
小学数学10道口算练习题1. 123 + 456 = ?2. 789 - 123 = ?3. 234 × 5 = ?4. 630 ÷ 9 = ?5. 876 + 543 = ?6. 982 - 345 = ?7. 456 × 7 = ?8. 972 ÷ 6 = ?9. 789 + 654 = ?10. 876 - 432 = ?在这篇文章中,我将给你提供十个小学数学的口算练习题。
这些题目旨在帮助小学生们练习他们的口算能力,并提高他们的数学思维能力。
1. 123 + 456 = ?计算:123加456等于多少?2. 789 - 123 = ?计算:789减去123等于多少?3. 234 × 5 = ?计算:234乘以5等于多少?4. 630 ÷ 9 = ?计算:630除以9等于多少?5. 876 + 543 = ?计算:876加543等于多少?6. 982 - 345 = ?计算:982减去345等于多少?7. 456 × 7 = ?计算:456乘以7等于多少?8. 972 ÷ 6 = ?计算:972除以6等于多少?9. 789 + 654 = ?计算:789加654等于多少?10. 876 - 432 = ?计算:876减去432等于多少?通过这十道口算练习题,孩子们可以提高他们加减乘除的能力,并增加对数字的理解。
这些练习题旨在培养他们的逻辑思维和注意力,为更复杂的数学问题打下坚实的基础。
希望你通过这些练习题能够巩固自己的数学技能,提高你的口算能力,并且享受到解题的乐趣。
加油!。
一年级数学分类专项练习题第一部分:简单加法1. 2 + 3 =2. 5 + 1 =3. 4 + 2 =4. 3 + 4 =5. 1 + 1 =第二部分:简单减法1. 4 - 2 =2. 6 - 3 =3. 5 - 1 =4. 3 - 1 =5. 2 - 2 =第三部分:简单乘法1. 2 × 2 =2. 1 × 3 =3. 3 × 1 =4. 5 × 0 =5. 4 × 4 =第四部分:简单除法1. 4 ÷ 2 =2. 6 ÷ 3 =3. 9 ÷ 3 =4. 7 ÷ 2 =5. 10 ÷ 5 =第五部分:组合运算1. 2 + 3 × 4 =2. (5 + 1) ÷ 2 =3. 6 - 3 × 2 =4. (4 + 2) ÷ 2 =5. 3 + 4 - 1 =第六部分:大小比较1. 3 > 2,对或错?2. 5 < 2,对或错?3. 4 > 8,对或错?4. 6 < 9,对或错?5. 10 > 10,对或错?第七部分:找规律1. 2, 4, 6, 8, __2. 5, 10, 15, 20, __3. 3, 6, 9, 12, __4. 1, 4, 7, 10, __5. 8, 6, 4, 2, __第八部分:填空题1. 3 + __ = 52. __ + 4 = 93. 6 - __ = 24. __ - 3 = 75. 2 × __ = 10第九部分:数字排序请将以下数字按照从小到大的顺序进行排列:6, 3, 8, 1, 5第十部分:解决问题小明有5个苹果,他送给小红2个苹果,小红原本已经有3个苹果。
请问现在小明和小红手上分别还有几个苹果?以上是一年级数学分类专项练习题,请按照题目要求完成每个题目的计算或填空。
祝您顺利完成!。
小学数学简便运算练习题数字排列组合
在小学数学中,简便运算是指通过一些特定的方法,能够快速而准
确地进行数值计算的技巧。
数字排列组合是指将一组数字按照一定的
规则进行排列和组合,从而得到不同的数值结果。
本文将通过一些简
便运算练习题,帮助小学生掌握数字排列组合的方法。
1. 加法的数字排列组合
a) 请计算以下数字的和:8 + 6 + 3 + 9 + 2。
b) 将数字1、2、3、4、5进行排列组合,共有多少种可能的结果?
2. 减法的数字排列组合
a) 请计算以下数字的差:10 - 5 - 3 - 2 - 1。
b) 将数字5、4、3、2、1进行排列组合,共有多少种可能的结果?
3. 乘法的数字排列组合
a) 请计算以下数字的积:2 x 3 x 4 x 5。
b) 将数字1、2、3、4进行排列组合,共有多少种可能的结果?
4. 除法的数字排列组合
a) 请计算以下数字的商:36 ÷ 6 ÷ 3 ÷ 2。
b) 将数字6、4、2、1进行排列组合,共有多少种可能的结果?
5. 综合运算的数字排列组合
a) 请计算以下算式的结果:8 + 4 x 2 - 5。
b) 将数字1、2、3、4进行排列组合,并在每个组合中使用加法、减法、乘法、除法运算符,共有多少种可能的结果?
通过以上的练习题,小学生不仅可以熟练掌握简便运算的技巧,还可以通过数字的排列组合提高思维能力和逻辑思维能力。
同时,通过多种练习题的训练,小学生可以不断提高自己的计算速度和准确度。
希望小学生能够在数学学习中善于运用简便运算的方法,并通过数字的排列组合来提高自己的数学能力。
《1~5的加减法练习》同步试题一、看谁算得又快又对2+3= 3+2= 5-3= 5-2=1+3= 3+1= 4-1= 4-3=考查目的:考查学生对1~5的加法和减法的计算正确率和速度,初步感知加、减法之间的关系。
答案:5 5 2 34 4 3 1解析:每一行的算式之间是相互关联的四道题,引导学生先观察题目特点和规律,再进行计算,渗透加、减法之间的关系,帮学生提高计算正确率和计算速度,为后续学习打好基础。
二、看图列式考查目的:考查学生理解题意的能力,和用加、减法解决问题的能力。
答案:3+1=4,5-4=1(或5-1=4)解析:引导学生先看图说题意,并提出问题,再列式计算解决问题,最后追问学生为什么用加(或减)法计算,在对比中强化加减法的意义,为后面学习更复杂的数量关系,解决更复杂的问题做好准备。
第二题要注意图意与算式的一致性。
三、连一连考查目的:考查学生审题、解决问题的能力,以及计算1~5的加法和减法的计算能力。
答案:解析:让学生认真审题,弄清题目的要求,再独立完成,培养学生认真审题的习惯。
四、在()里填“+”或“-”2()3=5 4()1=3 5()1=4 5()2=33()1=2 1()2=3 4()1=5 3()2=5考查目的:培养学生全面的观察能力及对运算意义的理解,同时培养学生的数感、符号感。
答案:+----+++解析:要求学生用运算符号连接3个数,这需要全面的观察后再进行选择,对一年级学生来说是一项挑战。
可以让学生借助摆一摆、画一画等方式来完成题目,注重对运算意义的理解。
五、用自己的方式表示出下面算式的意思考查目的:培养学生正确理解题目要求的能力,考查学生对运算的理解,以及用数学语言进性表达的能力。
答案:略解析:让学生先说一说对这道题的理解,然后用自己的方式表示运算的含义,最后进行小组或全班交流,培养学生理解与表达、交流与倾听的能力。
《1~5的认识、比大小练习》同步试题一、接着画考查目的:能够正确理解数的意义。
一年级数学各种练习题1. 加法练习题1.1. 计算以下数字的和:1.1.1. 5 + 3 =1.1.2. 8 + 2 =1.1.3. 9 + 4 =1.1.4. 6 + 7 =1.1.5. 3 + 1 =1.2. 填写正确的数字使等式成立:1.2.1. 5 + ? = 81.2.2. ? + 4 = 91.2.3. 3 + ? = 71.2.4. 2 + ? = 61.2.5. ? + 6 = 102. 减法练习题2.1. 计算以下数字的差:2.1.1. 8 - 3 =2.1.2. 9 - 5 =2.1.4. 6 - 1 =2.1.5. 7 - 4 =2.2. 填写正确的数字使等式成立: 2.2.1. 8 - ? = 52.2.2. ? - 4 = 12.2.3. 10 - ? = 82.2.4. ? - 2 = 42.2.5. 9 - ? = 63. 乘法练习题3.1. 计算以下数字的积:3.1.1. 2 × 3 =3.1.2. 4 × 5 =3.1.3. 6 × 2 =3.1.4. 7 × 3 =3.1.5. 9 × 4 =3.2. 填写正确的数字使等式成立: 3.2.1. 5 × ? = 203.2.2. ? × 4 = 163.2.4. ? × 7 = 353.2.5. 6 × ? = 184. 除法练习题4.1. 计算以下数字的商:4.1.1. 6 ÷ 2 =4.1.2. 10 ÷ 5 =4.1.3. 12 ÷ 4 =4.1.4. 15 ÷ 3 =4.1.5. 18 ÷ 6 =4.2. 填写正确的数字使等式成立: 4.2.1. 8 ÷ ? = 44.2.2. ? ÷ 5 = 24.2.3. 20 ÷ ? = 44.2.4. ? ÷ 3 = 54.2.5. 15 ÷ ? = 35. 综合练习题5.1. 填写适当的数字使等式成立: 5.1.1. 7 + ? = 12 - 35.1.3. 4 × ? = 20 ÷ 55.1.4. 8 ÷ ? = 2 × 25.1.5. ? + 6 = 14 - 55.2. 解答以下问题:5.2.1. 小明有3个苹果,他又买了5个苹果,一共有多少个苹果?5.2.2. 一包巧克力里有6块巧克力,小红分给了小明2块,还剩下多少块巧克力?5.2.3. 小兰有5本故事书,她想平均分给2个朋友,每人分多少本?5.2.4. 小华有12颗糖果,她想分成3堆,每堆有多少颗糖果?5.2.5. 一盒酸奶有15瓶,小明买了3瓶,还剩下多少瓶酸奶?通过以上各种类型的练习题,一年级的学生可以有机会巩固和提升他们的数学能力。
《排列组合》练习题(含答案)内容概述加乘原理,排列组合是四年级一个重要的学习内容,在之前的学习中,我们已经对它们有所了解,对于加乘原理我们只需要记住:加法分类,类类独立;乘法分步,步步相关!排列组合的应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.可利用图示法,可使问题简化便于正确理解与把握.本讲主要巩固加强此部分知识,注重排列组合的综合应用. 排 列在实际生活中常遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法.就是排列问题.在排的过程中,不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n 个不同的元素中任取出m 个(m ≤n )元素,按照一定的顺序排成一列.叫做从n 个不同元素中取出m 个元素的一个排列.由排列的定义可以看出,两个排列相同,不仅要求这两个排列中的元素完全相同,而且各元素的先后顺序也一样.如果两个排列的元素不完全相同.或者各元素的排列顺序不完全一样,则这就是两个不同的排列.从n 个不同元素中取出m 个(m ≤n )元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,我们把它记做(m ≤n ),.其中.【例1】 4名男生和2名女生去照相,要求两各女生必须紧挨着站在正中间,有几种排法?分析:分两步进行,先安排两个女生有22P 种方法,4个男生站的位置有44P 种方法,共有2424P P ⨯=2×1×4×3×2×1=48(种),故有48种排法.【巩固】停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,一共有多少种不同的停车方案?m np m (1)(2) (1)m n p n n n n m =---+14444244443共个数!(1) (1)n n P n n n ==⨯-⨯⨯分析:把4个空车位看成一个整体,(4个空车位看成一样的)与8辆车一块儿进行排列..【前铺】讲解此部分例题之前,请根据本班情况,将排列公式的计算练习一下!计算:(1)321414P P - ; (2)53633P P - 分析:(1)321414P P -=14×13×12-14×13=2002 ; (2)53633P P -=3×(6×5×4×3×2)-3×2×1=2154 .【例2】 书架上有4本不同的漫画书,5本不同的童话书,3本不同的故事书,全部竖起排成一排,如果同类型的书不要分开,一共有多少种排法?如果同类书可以分开,一共有多少种排法?(只写出表达式,不用计算)分析:每种书内部任意排序,分别有44P ,55P ,33P 种排法,然后再排三种类型的顺序,有33P 种排法,整个过程分4步完成.44P ×55P ×33P ×33P =103680(种).如果同类书可以分开,就相当于4+5+3=12本书随意排,有1212P 种排法.【例3】 用0,1,2,3,4可以组成多少个没重复数字的三位数?分析:(法1)在本题中要注意的是0不能为首位数字,因此,百位上的数字只能从1,2,3,4这四个数字中选择1个,有4种方法;十位和个位上的数字可以从余下的4个数字中任选两个进行排列,有24P 种方法.由分步计数原理得,三位数的个数是:4×24P =48(个). (法2):从0,1,2,3,4中任选三个数字进行排列,再减去其中不合要求的,即首位是0.从0,1,2,3,4这五个数字中任选三个数字的排列数为35P ,其中首位是0的三位数有24P 个.三位数的个数是:35P -24P =5×4×3-4×3=60-12=48(个).不是简单的全排列,有一些其它的限制,这样要么全排列再剔出不合题意的情况,要么直接在排列的时候考虑这些限制因素.【前铺】(1)用1,2,3,4,5可以组成多少个没有重复数字的三位数? (2)用1,2,3,4,5可以组成多少个三位数? 分析:(1)要组成三位数,自然与三个数字的排列顺序有关,所以这是一个从五个元素中取出三个进行排列的问题,可以组成=5×4×3=60种没有重复数字的三位数.(2)没有要求数字不能重复,所以不能直接用来计算,分步考虑,用乘法原理可得:599362880P =35P 35P×5×5=125(个).注意“重复”和“没有重复”的区别!【巩固】用数码0,1,2,3,4可以组成多少个小于1000的没有重复数字的自然数? 分析:小于1000的自然数包括一位数、两位数、三位数,可以分类计算.注意“0”是自然数,且不能作两位数、三位数的首项.11124444569P P P P +⨯+⨯=(个).很自然的知道需要根据位数分类考虑,而且首位非零的限制也需要考虑.【例4】 由4个不同的独唱节目和3个不同的合唱节目组成一台晚会,要求任意两个合唱节目不相邻,开始和最后一个节目必须是合唱,则这台晚会节目的编排方法共有多少种?分析:先排独唱节目,四个节目随意排,有=24种排法;其次在独唱节目的首尾排合唱节目,有三个节目,两个位置,对应=6种排法;再在独唱节目之问的3个位置中排一个合唱节目,有3种排法,由乘法原理,一共有24×6×3=432种不同的编排方法.【例5】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法? (1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排.分析:(1)775040P =(种).(2)只需排其余6个人站剩下的6个位置.66720P =(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×66P =1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ⨯= (种).(5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ⨯=(种).(6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,44P 23P一般先考虑特殊情况再去全排列.【例6】 某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜,至少要试多少次?分析:四个数字之和为9的情况有:l+1+1+6=9;1+1+2+5=9;1+1+3+4=9;1+2+2+4=9;1+2+3+3=9;2+2+2+3=9,分别计算这6种情况.对于“l+1+1+6”这种情况,我们只需考虑6,其它1放那都一样;对于“1+1+2+5”这种情况,只需考虑2和5,其它同理,可得答案:12222144444456()P P P P P P +++++=次【巩固】有3所学校共订300份中国少年报,每所学校订了至少98份,至多102份.问:一共有多少种不同的订法?分析:可以分三种情况来考虑:(1)3所学校订的报纸数量互不相同,有98,100,102;99,100,101两种组合,每种组各有=6种不同的排列,此时有6×2=12种订法.(2)3所学校订的报纸数量有2所相同,有98,101,101;99,99,102两种组合,每种组各有3种不同的排列,此时有3×2=6种订法.(3)3所学校订的报纸数量都相同,只有100,100,100一种订法. 由加法原理,不同的订法一共有12+6+l=19种.组 合一般地,从n 个不同元素中取出m 个(m≤n )元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.由组合的定义可以看出,两个组合是否相同,只与这两个组合中的元素有关,而与取到这些元素的先后顺序无关.只有当两个组合中的元素不完全相同时,它们才是不同的组合.从n 个不同元素中取出m 个元素(m ≤n )的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作(1)...(1)!m mn n n n m C m ⨯-⨯⨯-+=64444744448个数这就是组合数公式.【例7】 以右图中的8个点中的3个为顶点,共可以画出多少个不同的三角形?分析:从8个点中选3个点,一共有56种不同的选法.但是因为在一条直线上的3个点不能组成三角形,所以应去掉两条直线上不合要求的选法.5个点选3个的选法有10种.4个点选3个的选法有4种.所以一共可以画出56-(10+4)=42不同的三角形.【前铺】右图共有11条射线,那么图中有多少个锐角?33P分析:如图,最大的为锐角,它内部的各个角一定也是锐角,图中共有11条射线,任取两条作为角的两边便可确定一个锐角.因为角的两边不存在顺序关系,所以应该用组合.211C =55.几何题中的数个数问题往往可以采用这样的组合方法来解题.【前铺】讲解例题之前请根据本班情况先将组合公式计算练习一下! 计算:(1)241655,,C C C ,(2)352777,,C C C分析:(1)26651521C ⨯==⨯,45543254321C ⨯⨯⨯==⨯⨯⨯,15551C == ; (2)3776535321C ⨯⨯==⨯⨯ ,57765432154321C ⨯⨯⨯⨯==⨯⨯⨯⨯ ,57765432154321C ⨯⨯⨯⨯==⨯⨯⨯⨯注意:从上发现规律m n mn n C C -=.【巩固】从3、5、7、11这四个质数中任取两个相乘,可以得到多少个不同的乘积?分析:由于3,5,7,11都是质数,因此所得乘积各不相同,因此只要求出不同的质数对的个数就可以了.24C =6.【巩固】一个口袋中有4个球,另一个口袋中有6个球,这些球颜色各不相同.从两个口袋中各取2个球,共有多少种不同结果?分析:分步考虑,224661590C C ⨯=⨯=(种).【例8】 有13个队参加篮球比赛,比赛分两个组,第一组七个队,第二组六个队,各组先进行单循环赛(即每队都要与其它各队比赛一场),然后由各组的前两名共四个队再进行单循环赛决定冠亚军.问:共需比赛多少场?分析:分三部分考虑,第一组预赛、第二组顶赛和最后的决赛.第一组要赛:=21(场),第二组要赛:=15(场),决赛阶段要赛:=6(场),总场数:21+15+6=42(场).【拓展】一个盒子装有10个编号依次为1,2,3,…,10的球,从中摸出6个球,使它们的编号之和为奇数,则不同的摸法种数是多少?分析:10个编号中5奇5偶,要使6个球的编号之和为奇数,有以下三种情形:(1)5奇1偶,对奇数只有1种选择,对偶数有5种选择.由乘法原理,有1×5=5种选择; (2)3奇3偶,对奇数有35C =10种选择,对偶数也有35C =10种选择.由乘法原理,有10×10=100种选择;(3)1奇5偶,对奇数有5种选择,对偶数只有1种选择.由乘法原理,有5×1=5种选择. 由加法原理,不同的摸法有:5+100+5=110种.27C 26C 24C【例9】某年级6个班的数学课,分配给甲、乙、丙三名数学老师任教,每人教两个班,分派的方法有多少种?分析:分三步进行:第一步,取两个班分配给甲,与先后顺序无关,是组合问题,有15种选法;第二步,从余下的4个班中选取两个班给6种选法;第三步,剩余的两个班给丙,有1种选法.根据乘法原理,一共有15×6×l=90种不同的分配方法.【拓展】从8名候选人中选出正、副班长各1人,再选出3名班委会成员.一共有多少种不同的选法?分析:先选正、副班长,分别有8种和7种选法.再从剩下的6人中选出3人,有36C=20种选法.由乘法原理,共有8×7×20=1120种不同的选法.【例10】工厂从100件产中任意抽出三件进行检查,问:(1)一共有多少种不同的抽法?(2)如果100件产品有2件次品,抽出的3件中恰好有一件是次品的抽法有多少种?(3)如果100件产品中有2件次品,抽出的3件中至少有一件是次品的抽法有多少种? 、分析:从100件产品中抽出3件检查,与抽出3件产品的顺序无关,是一个组合问题.(1)不同的抽法数就是从100个元素中取3个元素的组合数.3100C=161700(种).(2)可分两步考虑,第一步:从2件次品中抽出一件次品的抽法有12C种;第二步:从98件合格品中抽出2件合格品的抽法有298C种.再用分步计数原理求出总的抽法数,12 2989506C C⨯=.(3)可以从反面考虑,从抽法总数3100C中减去抽出的三件都是合格品的情况,便得到抽出的三件产品中至少有一件是次品的抽法总数.33100981617001520969604C C-=-=.【例11】从10名男生,8名女生中选出8人参加游泳比赛.在下列条件下,分别有多少种选法?(1)恰有3名女生入选;(2)至少有两名女生入选;(3)某两名女生,某两名男生必须入选;(4)某两名女生,某两名男生不能同时入选;(5)某两名女生,某两名男生最多入选两人.分析:(1)恰有3名女生入选,说明男生有5人入选,应为:3581014112C C⨯=;(2)要求至少两名女生人选,那么“只有一名女生入选”和“没有女生入选”都不符合要求.运用包含与排除的方法,从所有可能的选法中减去不符合要求的情况:8871 181010842753C C C C--⨯=.(3)4人必须入选,则从剩下的14人中再选出另外4人. 4141001C =.(4)从所有的选法818C 中减去这4个人同时入选的414C 种可能:818C -414C =42757.(5)分三类情况:4人无人入选,4人仅有1人入选,4人中有2人入选,共:8172614414414C C C C C +⨯+⨯=34749.【例12】 用2个1,2个2,2个3可以组成多少个互不相同的六位数?用2个0,2个1,2个2可以组成多少个互不相同的六位数?分析:先考虑在6个数位上选2个数位放1,这两个1的顺序无所谓,故是组合问题有26C =15种选法;再从剩下的4个数位上选2个放2,有24C =6种选法;剩下的2个数位放3,只有1种选法.由乘法原理,这样的六位数有15×6×l=90个. 在前一问的情况下组成的90个六位数中,首位是1、2、3的各30个.如果将3全部换成0,这30个首位是0的数将不是六位数,所以可以组成互不相同的六位数90—30=60个.【例13】 从1,3,5,7,9中任取三个数字,从2,4,6,8中任取两个数字,组成没有重复数字的五位数,一共可以组成多少个数?分析:整个过程可以分三步完成:第一步,从1,3,5,7,9中任取三个数字,这是一个组合问题,有35C 种方法; 第二步,从2,4,6,8中任取两个数字,也是一个组合问题,有24C 种方法; 第三步,用取出的5个数字组成没有重复数字的五位数,有55P 种方法. 再由分步计数原理求总的个数:35C ×24C ×55P =7200(个).附加题目【附1】小明的书架上原来有6本书,不重新排列,再放上3本书,可以有多少种不同的放法?分析:放第一本书时,有原来的6本书之间和两端的书的外侧共7个位置可以选择;放第二本书时,有已有的7本书之间和两端的书的外侧共8个位置可以选择.同样道理,放第三本书时,有9个位置可以选择.由乘法原理,一共可以有7×8×9=504种不同的放法.【附2】一栋12层楼房备有电梯,第二层至第六层电梯不停.在一楼有3人进了电梯,其中至少有一个要上12楼,则他们到各层的可能情况共有多少种?分析:每个人都可以在第7层至第12层中任何一层下,有6种情况,那么三个人一共有6×6×6=216种情况,其中,都不到12楼的情况有5×5×5=125种.因此,至少有一人要上12楼的情况有216-125=91种.【附3】某校组织进行的一次知识竞赛共有三道题,每道题满分为7分,给分时只能给出自然数l ,2,3,…,7分.已知参加竞赛者每人三道题的得分的乘积都是36,而且任意二人各题得分不完全相同,那么请问参加竞赛的最多有多少人?分析:将36分解为不大于7的三个数的乘积,有1×6×6;3×3×4;2×3×6三种情况.考虑到因数的先后顺序,第一种情况,考虑1有三个位置可选择,其余位置放6,有3种顺序;第二种情况与第一种情况相似,有3种顺序;最后一种情况,有3×2×l=6种顺序.由加法原理,一共有12种顺序,所以参赛的最多有12人.【附4】某市的电视台有八个节目准备分两天播出,每天播出四个,其中某动画片和某新闻播报必须在第一天播出一场,体育比赛必须在第二天播出,那么一共有多少种不同的播放节目方案?分析:某动画片和某新闻播报在第一天播放,对于动画片而言,可以选择当天四个节目时段的任何一个时段,一共有4种选择,对于新闻播报可以选择动画片之外的三个时段中的任何一个时段,一共有3种选择,体育比赛可以在第二天的四个节目时段中任选一个,一共有4种选择.剩下的5个节目随意安排顺序,有=120种选择.由乘法原理,一共有4×3×4×120=5760种不同的播放节目方案.【附5】某旅社有导游9人,其中3人只会英语,2人只会日语,其余4个既会英语又会日语.现要从中选6人,其中3人做英语导游,另外3人做日语导游.则不同的选择方法有多少种?分析:此题若从“多面手”出发来做,不太简便,由于只会日语的人较少,所以针对只会日语的人讨论,分三类:(1)只会日语的2人都出场,则还需1个多面手做日语导游,有4种选择.从剩下的只会英语的人和多面手共6人中选3人做英语导游,有36C =20种,由乘法原理,有4×20=80种选择.(2)只会日语的2人中有1人出场,有2种选择.还需从多面手中选2人做日语导游,有24C =6种选择.剩下的只会英语的人和多面手共5人中选3人做英语导游,有35C =10种选择.由乘法原理,有2×6×10=120种选择.(3)只会日语的人不出场,需从多面手中选3人做日语导游,有34C =4种选择.剩下的只会英语的人和多面手共4人中选3人做英语导游,有34C =4种选择.由乘法原理,有4×4=1655P种选择.根据加法原理,不同的选择方法一共有80+120+16=216种.【附6】五个瓶子都贴了标签,其中恰好贴错了三个,贴错的可能情况共有多少个? 分析:首先考虑哪三个瓶子贴错了,有35C 种可能,3个瓶子贴错后互相贴错标签又分成两种不同情况.所以共有35C ×2=20(种).此题容易出错的是三个出错的瓶子确定后,他们之间错误的可能情况数目,有的同学很容易忽略这一环节,而有的会不假思索的把它当作一个全排列,这都是不正确的.【附7】马路上有编号为1,2,3,…,l0的十只路灯,为节约用电又能看清路面,可以把其中的三只灯关掉,但又不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法有多少种?分析:l0只灯关掉3只,实际上还亮7只灯,而又要求不关掉两端的灯和相邻的灯,此题可以转化为在7只亮着的路灯之问的六个空档中插入三只熄灭的灯,有36C =20种插法.练习十二1.给出1,2,3,4四个数字,试求:(1)可组成多少个数字不重复的四位数? (2)可组成多少个数字不重复的自然数? (3)可组成多少个不超过四位的自然数?分析:(1)44P =4×3×2×1=24个数字不重复的四位数.(2)利用1,2,3,4可组成数字不重复的一位、两位、三位、四位自然数,分类考虑:12344444P P P P +++=64个.(3)此题数位上的数字允许重复,利用1,2,3,4可组成一位、两位、三位、四位自然数.进一步考虑,一位数有4个,两位数有4×4=16个,三位数有4×4×4=64个,四位数有4×4×4×4=256个.故共有4+16+64+256=340个.2.由四个不同的非0数字组成的所有四位数中,数字和等于12的共有多少个?分析:四个数字都不同而数字和为12的数字有1,2,3,6和1,2,4,5两种情况,对于每种情况,可以组成=24个不同的四位数.对于所以,共可以组成24+24=48个不同的四位数.3.桌子上有3张红卡片,2张黄卡片,和1张蓝卡片,如果将它们横着排成一排,同种颜色的卡片不分开,一共有多少种排法?分析:32133213P P P P ⨯⨯⨯=72种.4.在1~100中任意取出两个不同的数相加,其和是偶数的共有多少种不同的取法?44P分析:两个数的和是偶数,这两个数必然同是奇数或同是偶数,而取出的两个数与顺序无关,所以是组合问题;从50个偶数中取出2个,有250C =1225种取法;从50个奇数中取出2个,也有250C =l225种取法.根据加法原理,一共有1225+1225=2450种不同的取法. 5.在一个口袋内装有大小相同的7个白球和1个黑球. (1)从口袋内取出3个球,共有多少种取法?(2)从口袋取出3个球,使其中含有1个黑球,有多少种取法? (3)从口袋内取出3个球,使其中不含黑球,有多少种取法?分析:(1)从口袋内的8个球中取出3个球,与顺序无关,是组合问题,其取法种数是56种. (2)从口袋内取出的3个球中有1个是黑球,于是还要从7个白球中再取出2个,其取法种数是21种.(3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,其取法种数是35种.6.在6名女同学,5名男同学中选出4名女同学,3名男同学站成一排,有多少种排法?分析:男女同学分别考虑,再整体排列.437657C C P ⨯⨯ =756000(种).。
一年级数学计算题练习试题答案及解析1.口算。
2+4= 3+2= 3+4= 2+4=3+3= 4+1= 3+3= 2+5=5+1= 5+2= 6+1= 4+3=5+2= 0+6=( )+3=7 2+( )=77+( )=7 ( )+3=75+( )=6 ( )+5=7( )+3=3 4+( )=6【答案】6;5;7;6;6;5;6;7;6;7;7;7;7;6;4;5;0;4;1;2;0;2【解析】 6、7的加法表:1 +5=6;5 +1 =6;2+4=6;4+2 =6;3+3 = 6;0+6 =6;6 +0= 6;1+6=7;6+1=7;2+5=7;5+2=7;3+4=7;4+3=7;0+7-7;7+0=7。
【考点】6、7的加法。
总结:交换加数的位置和不变。
2.口算。
3+3= 5+1= 0+7= 3+4= 6+1= 4+3=1+5= 5+2= 6+1= 4+2= 2+5= 3+3= 5+2=0+7= 2+4= 4+3= 1+6= 6+0= 1+5=5+( )=7 ( )+2=7 ( )+1=7 4+( )=4 ( )+4=6【答案】6;6;7;7;7;7;6;7;7;6;7;6;7;7;6;7;;7;6;6;2;5;6;0;2【解析】 6、7的加法表:1 +5=6;5 +1 =6;2+4=6;4+2 =6;3+3 = 6;0+6 =6;6 +0= 6;1+6=7;6+1=7;2+5=7;5+2=7;3+4=7;4+3=7;0+7-7;7+0=7。
【考点】6、7的加法。
总结:交换加数的位置和不变。
3.计算。
4-2= 4-3= 5-3= 2-0= 1-0=3-1= 5-2= 3-2= 4-1= 1-0=2-2= 0-0= 3-2= 3-1= 2-1=5-4= 5-5= 4-3= 3-2= 5-5=【答案】2;1;2;2;1;2;3;1;3;1;0;0;1;2;1;1;0;1;1;0【解析】5以内的减法表:5-1=4;5-2=3;5-3=2;5-4=1;5-0=5;5-5=0;4-1=3;4-2=2;4-3=1;4-4=0;4-0=0;3-1=2;3-2=1;;3-0=3;3-3=0;2-1=1;2-2=0;2-0=2;1-1=0;1-0=1。
一年级数学分成合成练习题1. 问题导言在学习数学的过程中,练习题是巩固知识和提高技能的重要方式之一。
为了帮助一年级的学生更好地学习数学,本文将为他们准备一组合成练习题。
这些练习题涵盖了一年级数学的基础知识和技能,旨在培养学生的思维能力和运算技巧。
请同学们认真阅读每个问题,并尽力解答。
祝你们学习愉快!2. 练习题2.1 计算题1) 计算:2 + 3 = _______2) 计算:5 - 1 = _______3) 计算:4 × 2 = _______4) 计算:10 ÷ 2 = _______2.2 填空题1) 3 + ____ = 52) 7 - ____ = 43) 2 × ____ = 64) 8 ÷ ____ = 22.3 数字排列请将下列数字按从小到大的顺序排列:4、1、6、3、2、52.4 数字组合用给定的数字组合出所有可能的两位数(每个数字只能使用一次):2、5、82.5 计数问题小明有4个苹果,小红有3个苹果,他们一共有几个苹果?2.6 算式填空1) □ + 5 = 82) □ - 2 = 43) □ × 3 = 124) □ ÷ 4 = 22.7 图形识别请根据描述,选择正确的图形:1) "一个有4个直角的四边形" 对应图形:①正方形②三角形③长方形2) "一个有三个顶点的图形" 对应图形:①正方形②三角形③长方形2.8 分类问题请将下列物品分别放入相应的分类中:“水果”或“蔬菜”:苹果、西瓜、胡萝卜、香蕉、番茄3. 答案2.1 计算题:1) 2 + 3 = 52) 5 - 1 = 43) 4 × 2 = 84) 10 ÷ 2 = 52.2 填空题:1) 3 + 2 = 52) 7 - 3 = 43) 2 × 3 = 64) 8 ÷ 4 = 22.3 数字排列:1、2、3、4、5、62.4 数字组合:25、28、52、58、82、852.5 计数问题:4 + 3 = 72.6 算式填空:1) 8 - 5 = 32) 4 + 2 = 63) 12 ÷ 3 = 44) 2 × 4 = 82.7 图形识别:1) "一个有4个直角的四边形" 对应图形:③长方形2) "一个有三个顶点的图形" 对应图形:②三角形2.8 分类问题:苹果、西瓜、番茄:水果胡萝卜:蔬菜香蕉:水果希望这组合成练习题对一年级学生的数学学习有所帮助。
一年级数学分合思维练习题题目一:加减法练习1. 小明现在有3个苹果,他又买了5个苹果。
请计算小明现在一共有多少个苹果?2. 小红有7只红色的球,她放弃了3只,又得到了2只蓝色的球。
请计算小红现在一共有多少只球?3. 请计算 8 + 4 - 2 = ?题目二:组合数学1. 在一个花坛中有4朵红花和3朵白花,小明从花坛中随机摘了一朵花,再从花坛中摘了一朵白花。
请计算小明摘到一朵红花和一朵白花的概率?2. 在一个活动中,老师让3个学生分别选一张牌,其中有2个学生选了梅花,另一个选了红桃。
请计算选到梅花的概率和选到红桃的概率。
题目三:数列练习1. 请写出下面数列的规律并继续完成:1,4,7,10,13,...2. 如果一个等差数列的首项为5,公差为3,求第10项的值是多少?题目四:时间问题1. 小明从早上8点钟起床,花了15分钟洗漱,再花了5分钟穿上衣服。
请问小明几点钟可以完成这些准备?2. 现在是下午4点钟,如果再过25分钟是什么时间?题目五:单位换算1. 请将3000毫升转换成升。
2. 小明的身高是120厘米,换算成米是多少?题目六:几何形状1. 请画出一个正方形和一个长方形,并写出它们的特点。
2. 画出一个圆形,并写出它的特点。
题目七:乘法练习1. 请计算 3 × 4 = ?2. 请计算 5 × 7 = ?3. 请计算 9 × 2 = ?题目八:分数概念1. 请将 3/4 转换成小数形式。
2. 请将 0.6 转换成分数形式。
题目九:问题解决小明一共有8支铅笔,他每天使用两支铅笔。
请问,小明用完这些铅笔需要多少天?题目十:逻辑思维将下面的数字按照顺序连线,并算出每条线上数字的和:3 2 6 14 5 8 9以上是一些针对一年级学生的数学思维练习题,请按照相关要求完成练习,并记得仔细计算。
希望通过这些练习能够提高你们的数学思维能力。
加油!。
一年级数学5以内练习题【注意】根据题目要求,本文将以一年级数学5以内练习题为主题展开讨论。
请按照以下格式完成文章的撰写。
1. 数的认识和数的大小比较在数的认识方面,一年级的学生需要学会认识1至5之间的数字,并能够正确地将其用手指表示出来。
为了培养学生对不同数字的辨认能力,我们可以设计一些有趣的练习题。
比如:a) 请将下列数字按从小到大的顺序排列:3、1、5、4、2。
b) 请比较下列数字的大小,并用"<"或">"填空:4 ___ 2;3 ___ 3;1 ___ 5。
2. 数字的拆分与组合一年级的学生还需要掌握数字的拆分与组合。
我们可以通过以下练习题来巩固他们的这一能力:a) 将数字3拆分成1和___。
b) 将数字2与数字3组合成6。
c) 请写出各位数相同的两个两位数,比如33。
3. 加减法基础运算掌握加减法基础运算对于一年级的学生来说至关重要。
我们可以设计一些简单的练习题来帮助他们提高计算能力。
比如:a) 计算:2 + 3 = ___。
b) 计算:4 - 1 = ___。
c) 计算:3 + 1 = 5 - ___。
4. 数的排序数的排序训练可以帮助学生培养逻辑思维和分析能力。
以下是一些相关的练习题:a) 请将下列数字按从小到大排序:1、5、2、4、3。
b) 请将下列数字按从大到小排序:4、3、5、1、2。
5. 数的连线和填空通过连线和填空的练习,学生可以进一步巩固对数字的认识和理解。
以下是一些例子:a) 请将数字和相应数量的物品进行连线。
1 - ___个苹果2 - ___个鸟3 - ___个球b) 请填空:1 + 2 = ___;___ - 1 = 4。
6. 数的模式和规律培养学生对数的模式和规律的观察能力有助于他们在数学学习中形成良好的思维习惯。
以下是一些相关的练习题:a) 请写出下一个数字:1、2、3、___、___。
b) 观察以下数列,给出下一个数字:2、4、6、8、___。