01材料在静载荷下的力学性能
- 格式:ppt
- 大小:9.95 MB
- 文档页数:3
工程材料的性能包括使用性能和工艺性能。
使用性能是指材料在使用条件下表现出来的性能如力学性能、物理性能和化学性能;工艺性能是指材料在加工过程中反映出的性能如切削加工性能、铸造性能、塑性加工性能、焊接性能和热处理性能等。
其具体的分类如下:一、强度、刚度、塑性、硬度材料在静载荷的作用下所表现出的各种性能称为静态力学性能。
材料的静态力学性能可以通过静载试验确定,该试验可以确定材料在静载荷作用下的变形(弹性变形、塑性变形)和断裂行为,这些数据广泛应用于结构载荷机件的强度和刚度设计中,也是材料加工工艺有关材料变形行为的重要资料。
在生产金属材料的工厂,静载试验是检验材料质量的基本手段之一。
此外,科学工作者也能够从材料的变形和断裂行为的分析中得到很多有关材料性能的重要资料,这些资料对于研究和改善材料的组织与性能十分必要。
一、拉伸试验拉伸试验是工业上应用最广泛的金属力学性能试验方法之一。
这种试验方法的特点是温度、应力状态和加载速率是确定的,并且常用标准的光滑圆柱试样进行试验。
通过拉伸试验可以揭示材料在静载荷作用下常见的三种失效形式,即弹性变形、塑性变形和断裂。
还可以标定出材料最基本的力学性能指标,如屈服强度σ、抗拉强度σb、断后伸长率δ和断面收材料的性能使用性能工艺性能强度、硬度、塑性和韧性等室温下抵抗各种化学作用的性能高温下抵抗各种化学作用的性能密度、熔点、磁性、导电导热性、热膨胀性等缩率ψ。
1、拉伸试验曲线拉伸试验曲线有以下几种表示方法:(1)载荷-伸长曲线(P-ΔL)这是拉伸试验机的记录器在试验过程中直接描画出的曲线。
P是载荷的大小,ΔL指试样标距长度L0受力后的伸长量。
(2)工程应力-应变曲线(σ-ε曲线)令F0为试样原有的横截面面积,则拉伸应力σ=P / F0,拉伸应变ε=ΔL / L0。
以σ-ε为坐标作图得到的曲线就是工程应力-应变曲线,它和P-ΔL曲线形状相似,仅在尺寸比例上有一些差异。
图2-1为低碳钢的拉伸曲线。
材料的力学性能1.1材料在静载荷下的力学性能1.1.1拉伸试验对试样沿轴向缓慢施加拉伸力,会得到拉伸力F-伸长量ΔL的关系曲线。
为了消除试样尺寸的影响可用拉伸力F除以式样的原始截面积S0,得到拉应力б;用试样的伸长量ΔL除以试样的原始长度L0得到应变ε。
1.弹性与刚度(1)弹性形变:对试样加载的应力不超过一定,卸载后试样会恢复原状,这种变形称为弹性变形。
该力为材料的弹性变形的阶段所能承受的最大应力,被称为弹性极限。
(2)弹性模量:在弹性变形阶段,应力与应变成正比关系,其壁纸为E=б/ε为材料的弹性模量。
(E越大,产生一定量的弹性模量所需要的应力越大。
)弹性模量E与原子间的作用力有关,决定于金属原子的本性和晶格类型。
合金化、热处理、冷塑性变形、加载速率等对其影响都不大。
提高零件刚度的方法是增大横截面积或改变截面的形状。
2.强度(1)强度:材料在外力作用下抵抗变形和断裂的能力叫做强度。
分为抗拉强度、抗弯强度、抗剪强度等。
拉伸试验中获得的屈服强度(Re)和抗拉强度(Rm)应用最为广泛。
(材料强度越高,材料承受的外力越大,使用越安全。
)(2)塑性变形:加载的超过拉伸极限的力,卸载后,试样不会恢复原状,这种变形称为塑性变形。
(塑性变形分为三个阶段:塑性变形、均匀塑性变形、不均匀塑性变形)(3)屈服强度(Re):当应力值到达s点时,曲线上出现了水平的波折线,表明即使外力不增加试样仍能继续伸长,这就是屈服现象。
(发生屈服所对应的应力值即为屈服强度。
屈服强度反映材料抵抗永久变形的能力。
)(4)抗拉强度(Rm):b点是拉伸曲线的最高点,对应能承受的最大应力,称为抗拉强度。
(所以b点是均匀塑性变形和不均匀塑性变形阶段的分界线,反映材料抵抗断裂破坏的能力。
)(5)断裂强度():超过b点后,缩颈出迅速伸长,应力明显下降,在k处断裂,用бk表示,所对应的应力值为断裂强度。
3.塑性(1)塑性:塑性是指金属材料断裂前发生永久变形的能力。
实验一 拉伸和压缩实验拉伸和压缩实验是测定材料在静载荷作用下力学性能的一个最基本的实验。
工矿企业、研究所一般都用此类方法对材料进行出厂检验或进厂复检,通过拉伸和压缩实验所测得的力学性能指标,可用于评定材质和进行强度、刚度计算,因此,对材料进行轴向拉伸和压缩试验具有工程实际意义。
不同材料在拉伸和压缩过程中表现出不同的力学性质和现象。
低碳钢和铸铁分别是典型的塑性材料和脆性材料,因此,本次实验将选用低碳钢和铸铁分别做拉伸实验和压缩实验。
低碳钢具有良好的塑性,在拉伸试验中弹性、屈服、强化和颈缩四个阶段尤为明显和清楚。
低碳钢在压缩试验中的弹性阶段、屈服阶段与拉伸试验基本相同,但最后只能被压扁而不能被压断,无法测定其压缩强度极限bc σ值。
因此,一般只对低碳钢材料进行拉伸试验而不进行压缩试验。
铸铁材料受拉时处于脆性状态,其破坏是拉应力拉断。
铸铁压缩时有明显的塑性变形,其破坏是由切应力引起的,破坏面是沿45︒~55︒的斜面。
铸铁材料的抗压强度bc σ远远大于抗拉强度b σ。
通过铸铁压缩试验观察脆性材料的变形过程和破坏方式,并与拉伸结果进行比较,可以分析不同应力状态对材料强度、塑性的影响。
一、 实验目的1.测定低碳钢的屈服极限s σ(包括sm σ、sl σ),强度极限b σ,断后伸长率δ和截面收缩率ψ;测定铸铁拉伸和压缩过程中的强度极限b σ和bc σ。
2.观察低碳纲的拉伸过程和铸铁的拉伸、压缩过程中所出现的各种变形现象,分析力与变形之间的关系,即P —L ∆曲线的特征。
3.掌握材料试验机等实验设备和工具的使用方法。
二、 实验设备和工具1. 液压摆式万能材料试验机。
2. 游标卡尺(0.02mm)。
三、 拉伸和压缩试件材料的力学性能sm s σσ(、sl σ)、b σ、δ和ψ是通过拉伸和压缩试验来确定的,因此,必须把所测试的材料加工成能被拉伸或压缩的试件。
试验表明,试件的尺寸和形状对试验结果有一定影响。
为了减少这种影响和便于使各种材料力学性能的测试结果可进行比较,国家标准对试件的尺寸和形状作了统一的规定,拉伸试件应按国标GB /T6397—1986《金属拉伸试验试样》进行加工,压缩试件应按国标GB /T7314—1987《金属压缩试验方法》进行加工。
工程材料力学性能工程材料力学性能是指材料在力的作用下的反应和变形能力,主要包括强度、韧性、延展性、硬度、抗疲劳性、耐腐蚀性和温度承受能力等。
材料力学性能的好坏对工程建设和材料选择至关重要。
本文将从强度、韧性和延展性三个方面来探讨工程材料力学性能。
一、强度强度是指材料在受载时抵抗破坏的能力。
工程中使用的材料常常会受到连续和间歇的荷载和外力的作用。
如果材料在受力时能够保持整体的完整性和稳定性,那么可以说该材料具有良好的强度。
强度通常分为静态强度和动态强度两种。
静态强度指材料在静态荷载下的抗拉强度、抗压强度、屈服强度等。
一般来说,材料的静态强度越高,使用范围越广,但也需要考虑材料的重量、成本等其他方面因素。
在材料的选择中,需要根据具体的应用场景选择适当的强度。
动态强度指材料在动态荷载下的抗拉强度和抗压强度。
工程中常出现的冲击荷载、振动荷载、爆炸荷载等都属于动态荷载,因此动态强度是一个十分重要的性能指标。
在深水油田开发中,海底管线通常受到海流、海浪等动态荷载的作用,因此管道材料的动态强度也是一个重要的因素。
二、韧性韧性是指材料在发生变形时能够继续承受载荷的能力。
在工程建设中,材料通常需要承受多种类型的荷载,在发生局部破坏时需要具有一定的韧性才能维持完整性。
如果材料的韧性不足,就容易出现断裂、疲劳、裂纹等问题。
韧性通常分为断裂韧性和塑性韧性两种。
断裂韧性指材料在破坏前的吸收能量的能力,而塑性韧性指材料发生塑性变形时吸收能量的能力。
这两种韧性都是衡量材料耐久性和疲劳性的重要指标。
三、延展性延展性是指材料在受到拉力或挤压力作用下,在不断变形的过程中产生的延伸量。
高延展性的材料能够在受到外力时在一定程度上发生形变,而不是立即断裂或产生异形。
延展性通常用材料的伸长率和断后伸长率来衡量。
延展性对于金属、塑料、橡胶等许多工程材料都很重要,因为它们可以在受到重要载荷时产生适当的挠曲,从而减轻载荷。
例如,在建筑结构和机械工程中广泛应用高延展性的钢材,因为它能够缓冲瞬间高峰负荷并保持结构稳定。