历届诺贝尔经济学奖获得者演讲词
- 格式:pdf
- 大小:1.23 MB
- 文档页数:31
和平奖墨西哥人罗夫莱斯、波兰总统瓦文萨因在世界裁军运动中发挥了重要作用获诺贝尔和平奖。
墨西哥著名外交家阿方索·加西亚·罗夫菜斯和瑞典知名社会活动家阿尔娃·米达尔,由于在联合国范围内的世界裁军运动中发挥了重要作用,同时荣获一九八二年诺贝尔和平奖金。
经济学奖美国经济学家德布勒因供求理论的数学证明获诺贝尔经济学奖。
罗拉尔·德布鲁(GerardDebreu,1927年7月4日-2004年12月31日),法籍美国人,生前执教于加利福尼亚大学伯克利分校。
德布鲁概括了帕累拖最优理论,其创立的相关商品的经济与社会均衡的存在定理,是当代经济学界的重要理论之一,1983年获诺贝尔经济学奖。
人物简介罗拉尔·德布鲁(GerardDebreu)的工作改写了现代数理经济学,他的影响在各个领域都能看到,他不仅引入了许多重要的新概念,而且对国内外同事和学生产生了许多强有力的影响。
德布鲁的最杰出的贡献或许还是间接性的。
他用词准确,分析有说服力,始终强调把一种理论与其解释截然分开,这一切对经济学中分析方法和分析工具的选择产生了深刻而卓绝的影响。
——1983年瑞典皇家科学院贺辞人物生平吉拉德·德布鲁(GerardDebreu)吉拉德·德布鲁1921年7月4日生于法国的加莱。
1941年夏,德布鲁进入颇有声望的巴黎高等师范学校,在那里学习和生活直至1944年春季。
1945年底1946年初,德布鲁在巴黎取得了数学助教的资格,并开始学习研究生课程。
当他在1943年读莫里斯·阿莱的《个体经济学说研究》中陈述的列昂·华尔拉在1874~1877始创的一般经济均衡的数学理论时,对一般均衡发生了浓厚的兴趣。
第二次世界大战后的欧洲面临重建的繁重任务,使德布鲁认识到经济学在其中扮演重要角色,这进一步激发了他对经济学的热情,结果兴趣变成了终生事业。
得到数学助教资格后的两年半,德布鲁在国家科学研究中心做研究助理。
2009年,美国经济学家埃莉诺·奥斯特罗姆和奥利弗·威廉森以经济治理研究一同摘取诺贝尔经济学奖。
2008年,美国麻省理工学院经济学教授克鲁格曼以在分析国际贸易模式和经济活动的地域等方面所作的贡献获诺贝尔经济学奖。
2007年,明尼苏达大学的赫维茨、芝加哥大学的马斯金,以及美国普林斯顿高等研究中心的罗杰·B.迈尔森为机制设计理论奠定基础而分享诺贝尔经济学奖。
2006年,美国哥伦比亚大学教授、就业与增长理论的著名代表人物埃德蒙·菲尔普斯,以在加深人们对于通货膨胀和失业预期关系的理解方面所做贡献而获奖。
2005年以色列经济学家罗伯特-奥曼和美国经济学家托马斯-斯切林,因“通过博弈论分析加强了我们对冲突和合作的理解”所作出的贡献而获奖。
2004年出生在挪威的经济学家基德兰德和美国经济学家普雷斯科特。
这两位经济学家因对动态宏观经济学所作出的贡献获奖。
他们的研究工作解释了经济政策和技术的变化是如何驱动商业循环的。
2003年美国经济学家罗伯特·恩格尔和英国经济学家克莱夫·格兰杰。
他们发明了“处理许多经济时间序列两个关键特性的统计方法:时间变化的变更率和非平稳性。
”2002年美国普林斯顿大学的丹尼尔-卡赫内曼(拥有美国和以色列双重国籍)和美国乔治-梅森大学的弗农-史密斯。
丹尼尔-卡赫内曼将源于心理学的综合洞察力应用于经济学的研究,从而为一个新的研究领域奠定了基础。
维农-史密斯为实验经济学奠定了基础,他发展了一整套实验研究方法,并设定了经济学研究实验的可靠标准2001年三位美国学者乔治-阿克尔洛夫、迈克尔-斯彭斯和约瑟夫-斯蒂格利茨。
他们在“对充满不对称信息市场进行分析”领域做出了重要贡献。
2000年美国芝加哥大学的詹姆斯-J-赫克曼和加州大学伯克利分校的丹尼尔-L-麦克法登。
他们在微观计量经济学领域作出了贡献。
詹姆斯-赫克曼对分析选择性抽样的原理和方法所做出的发展和贡献,丹尼尔-麦克法登对分析离散选择的原理和方法所做出的发展和贡献。
爱德华·普雷斯科特爱德华·普雷斯科特,美国著名经济学家,2004年与基德兰德一同获得诺贝尔经济学奖,获奖成就:推动了动态宏观经济学在经济政策的时间连贯性和商业周期的驱动力量方面的研究。
个人简介经历爱德华·普雷斯科特普雷斯科特1940年出生于美国纽约州,1967年在卡内基梅隆大学获博士爱德华·普雷斯科特学位。
现任亚利桑那州立大学教授、美国明尼阿波利斯联邦储备银行的研究员。
1962年毕业于Swarthmore学院,获数学学士;1967年获卡内基-梅隆大学经济学博士学位。
普雷斯科特执教过多所美国名校。
1967-1971年,在宾夕法尼亚大学任助教;1971-1980年期间,普雷斯科先后担任卡内基-梅隆大学的助教、副教授和教授;1980-1998年,担任明尼苏达大学经济系教授;1998-1999年,成为芝加哥大学的经济学教授;1999-2003年,重返明尼苏达大学任教;2003年以后,普雷斯科特一直执教于亚历桑那州立大学。
现任职务现在任亚利桑那州立大学教授、联邦储备银行明尼阿波利斯分行的高级顾问。
研究领域为宏观经济学、一般均衡理论与应用、收入差别与计量经济学。
普雷斯科特教授的社会职务还包括:1988年至今,担任美国经济研究局副研究员1992-1995年,经济动态与控制协会主席1992-1994,高级经济理论协会主席1990-1992年,《经济理论》主编;美国艺术与科学院院士。
主要贡献爱德华·普雷斯科特在经济学上的学术贡献爱德华·普雷斯科特除了瑞典皇家科学院公告中的贡献外,普雷斯科特教授的经济学贡献还包括:与卢卡斯合爱德华·普雷斯科特作探讨了不确定性下的投资问题和无穷区间的价格存在性问题;和Mehra合作提出了金融理论的“风险溢价难题”(载1985年《货币经济杂志》)。
该难题引起国际上众多优秀经济学家和金融学家的兴趣,大大促进了金融学的研究,迄今该难题仍未得到彻底解决。
2014年诺贝尔奖获得者中英文介绍2014年诺贝尔奖获得者名单诺贝尔生理学或医学奖:颁奖日期:10月6日获奖者3:【美&英】科学家约翰·奥基夫、【挪威】科学家梅-布里特·莫泽和爱德华·莫泽夫妇俩获奖理由:发现了大脑中的“内置GPS”——定位和导航系统,从而解答了“我们如何得知我们在哪里”“我们怎样找到路径从一个地点到达另一个地点”以及“我们如何储存这些信息,从而下次需要寻找相同路径时可以立刻获得它们”这几个问题。
这是大脑科学领域重大的基础性突破。
颁奖词节选:“为了解记忆、思维和计划等大脑认知功能拓展了新的空间”诺贝尔物理学奖:颁奖日期:10月7日获奖者3:【日】科学家赤崎勇、【日】天野浩和、【美籍日裔】中村修二获奖理由:表彰他们发明蓝色发光二极管(LED),并因此带来新型的节能光源。
颁奖词节选:“白炽灯照亮20世纪,而LED灯将照亮21世纪”诺贝尔化学奖:颁奖日期:10月8日获奖者3:物理学家:【美】艾力克·贝齐格、【美】W·E·莫纳、【德】斯特凡·W·赫尔获奖理由:表彰他们对于发展超分辨率荧光显微镜做出的卓越贡献。
他们的突破性工作使光学显微技术进入了纳米尺度,从而使科学家们能够观察到活细胞中不同分子在纳米尺度上的运动。
颁奖词节选:“为复杂化学系统创立了多尺度模型”诺贝尔文学奖:颁奖日期:10月9日获奖者1:【法】作家帕特里克·莫迪亚诺代表作:《暗店街》、《八月的星期天》、《青春咖啡馆》、《拉孔布·吕西安》等。
颁奖词节选:“用回忆的艺术唤起了最难以触摸的人类之命运,揭示了作家这项职业的生命世界”诺贝尔和平奖:颁奖日期:10月10日获奖者2:【印度】遗传学家斯瓦米纳坦、【巴基斯坦】人权活动家马拉拉·优素福颁奖词节选:“反抗针对儿童和年轻人的压迫,捍卫了儿童受教育的权利”诺贝尔经济学奖:颁奖日期:10月13日获奖者1:【法】经济学大师让·梯若尔获奖理由:表彰他对市场力量与调控领域研究的贡献颁奖词节选:“阐明了如何理解和监管由数家公司巨头主导的行业”2014 Nobel Prize in PhysicsThe Nobel Prize in Physics 2014 was awarded jointly to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura"for the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources".2014 Nobel Prize in ChemistryThe Nobel Prize in Chemistry 2014 was awarded jointly to Eric Betzig,Stefan W. Hell and William E. Moerner"for the development of super-resolved fluorescence microscopy".2014 Nobel Prize in Physiology or MedicineThe Nobel Prize in Physiology or Medicine 2014 was awarded with one half to John O'Keefe and the other half jointly to May-Britt Moser and Edvard I. Moser "for their discoveries of cells that constitute a positioning system in the brain".2014 Nobel Prize in LiteratureThe Nobel Prize in Literature 2014 was awarded to Patrick Modiano"for the art of memory with which he has evoked themost ungraspable human destinies and uncovered the life-world of the occupation".2014 Nobel Peace PrizeThe Nobel Peace Prize 2014 was awarded jointly to Kailash Satyarthi and Malala Yousafzai "for their struggle against the suppression of children and young people and for the right of all children to education2014 Prize in Economic SciencesThe Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2014 was awarded to Jean Tirole "for his analysis of market power and regulation".。
经济学奖美国经济学家库兹涅茨因对国民生产总值和经济增长的开创性研究获诺贝尔经济学奖。
西蒙·史密斯·库兹涅茨(1901年4月30日—1985年7月8日),俄裔美国著名经济学家,“美国的G.N.P.之父”、1971年诺贝尔经济学奖金获得者。
他在经济周期研究中所提出的为期20年的经济周期,被西方经济学界称为“库兹涅茨周期”。
他在国民收入核算研究中提出了国民收入及其组成部分的定义和计算方法,被经济学家们誉为“美国的G.N.P.之父”。
他对经济增长的分析,被西方经济学界认为揭示了各发达国家一个多世纪的经济增长过程,并提出了许多深刻的见解。
历任纽约国民经济研究所研究员、宾夕法尼亚大学教授、约翰·霍布金斯大学教授。
介绍第三届获奖者西蒙·史密斯·库兹涅茨(SimonSmithKuznets),——GNP(国民生产总值)之父一个国家的经济增长,可以定义为这个国家向她的人民提供经济商品的能力的长期提升,这个增长中的能力,基于改进技术以及它要求的制度和意识形态的调整。
——西蒙·库兹涅茨蒙·史密斯·库兹涅茨(SimonSmithKuznets),经历1901年4月30日,出生在沙皇统治下的俄罗斯国土上。
小库兹涅茨在父母的精心照料下,在出生地哈尔科夫市度过了幼年时代。
十月革命之后,他进入了列宁格勒大学攻读政治经济学。
1920年,库兹涅茨告别故土,只身前往异邦,考入美国哥伦比亚大学经济学院插班学习。
库兹涅茨在学习经济之余,对数学也有浓厚的兴趣。
1923年毕业时,他获得了经济学和数学两个专业的学士学位。
但库兹涅茨并不满足已取得的成绩,随后又考入哥伦比亚大学的研究生院进一步学习经济学。
1924年,库兹茨涅仅用一年时间就取得了硕士学位,受到学界前辈的重视。
美国制度经济学派创始人米切尔教授,对他很赏识,把库兹涅茨招到自己的门下,亲自担任他的指导老师。
从此,他开始了对制度经济学的研究。
经济学奖詹姆斯·赫克曼丹尼尔·麦克法登因发展了能广泛应用于个体和家庭行为实证分析的理论和方法,而共同获得诺贝尔经济学奖。
詹姆斯·赫克曼詹姆斯·赫克曼(JamesJ.Heckman)1944年生于美国伊利诺斯州的芝加哥,曾就读于科罗拉多学院数学系,1971年获普林斯顿大学经济系博士学位。
曾在哥伦比亚大学、耶鲁大学、和芝加哥大学任教。
微观计量经济学的开创者,因对分析选择性抽样的原理和方法所做出的发展和贡献,与丹尼尔·麦克法登一起荣获2000年诺贝尔经济学奖。
生平简介詹姆斯·赫克曼(JamesJ.Heckman)1944年4月19日生于美国伊利诺斯州的芝加哥,曾就读于科罗拉多学院数学系,1971年获普林斯顿大学经济系博士学位。
曾在哥伦比亚大学、耶鲁大学、和芝加哥大学任教。
微观计量经济学的开创者,因对分析选择性抽样的原理和方法所做出的发展和贡献,与丹尼尔·麦克法登一起荣获2000年诺贝尔经济学奖。
从1995年起,赫克曼就在芝加哥大学获任亨利·舒尔茨杰出成就经济学教授,为芝加哥大学的教授。
赫克曼在经济学领域的研究内容涉及诸如社会项目评估、非连续选择和纵向数据的计量经济学模式、劳工市场经济学以及收入分配的模式选择等等。
2000年的诺贝尔经济学奖授予两位美国经济学家詹姆斯·赫克曼和丹尼尔·麦克法登,以奖励他们发展广泛应用在经济学以及其他社会科学中对个人和住户的行为进行统计分析的理论和方法。
尤其是,对赫克曼奖励他“对分析选择性抽样的原理和方法所做出的发展和贡献”获奖。
对麦克法登奖励他对分析离散抉择的理论和方法的发展。
这两位经济学家所从事的学科领域可称为微观计量经济学。
早年计量经济学主要都用在宏观经济学上,即主要研究以国民经济为主体的经济行为。
微观经济学问题,即个人、住户和企业的经济行为问题;例如,决定个人在教育、就业、住房等方面选择的经济因素是什么,不同的劳动市场和教育计划对个人收入和就业有什么激励影响等等。
拉格纳·弗里希拉格纳·弗里希拉格纳·弗里希(1895年—1973年),1895年3月3日生于挪威奥斯陆,是数理经济学和经济计量学研究领域的先驱者,主要致力于长期经济政策和计划,特别是关于发展中国家问题。
弗里希教授发展了经济规划的决策模型,设计了设法利用现代计算机技术的数学规划方法。
中文名:拉格纳·弗里希国籍:挪威出生地:挪威奥斯陆出生日期:1895年3月3日职业:经济学家毕业院校:奥斯陆大学主要成就:荣获首届诺贝尔经济学奖生平简介拉格纳·弗里希(Ragnar Frisch)1895年生于奥斯陆,是数理经济学和经济计量学研究领域的先驱者,主要致力于长期经济政策和计划,特别是关于发展中国家问题。
1969年与简·丁伯根共同获得诺贝尔经济学奖。
1919年,弗里希毕业于奥斯陆大学经济系。
只是在这个时候,他对经济学才发生了兴趣,从而促使他决定把自己的一生献给这门科学。
弗里希于20年代初离开挪威,先后到法、德、英、美、意等国的大学学习经济学。
弗里希教授发展了经济规划的决策模型,设计了设法利用现代计算机技术的数学规划方法。
他首先提出了经济计量学的定义,并第一个运用经济计量学的方法分析资本主义的经济波动,首创描述资本主义经济周期的数学模型,最早把导致经济波动的因素区分为扩散作用和冲击作用两大类,将两者结合起来解释资本主义经济周期,为当代经济周期理论奠定了重要基础。
他在把经济计量学的理论和方法应于社会经济活动方面,也做出了许多贡献。
由于其在经济计量学及其应用方面做出的贡献,1969年,他被授予首届诺贝尔经济学奖。
1961年弗里希获意大利林西国家学院安东尼奥·弗尔特林纳里大奖。
他是英国皇家统计学会、美国科学与技术协会、美国经济协会名誉会员,英国科学院、英国皇家经济学会通讯院士,剑桥大学、伯明翰大学、哥本哈根大学、斯德哥尔摩大学名誉博士。
1965年退休后,他仍然继续从事研究和写作,直到他1973年逝世。
2011诺贝尔经济学奖导读:美国两学者共享诺贝尔经济学奖两美国经济学家因对宏观经济研究获诺贝尔经济学奖诺贝尔经济学奖得主托马斯·萨金特简历诺贝尔经济学奖得主里斯托弗·A·西姆斯简历瑞典皇家科学院2011年诺贝尔经济学奖颁奖声明诺贝尔经济学奖新得主:我无法解决当下混乱瑞典皇家科学院宣布现场美国两学者共享诺贝尔经济学奖在宏观经济政策动因和效果研究领域成就显著瑞典皇家科学院10月10日揭晓了2011年度诺贝尔经济学奖,两位均为68岁的美国经济学家--纽约大学的托马斯·萨金特和普林斯顿大学的克里斯托弗·西姆斯"因其对宏观经济政策动因和效果的深入研究"而在众多角逐者中脱颖而出,共享殊荣。
瑞典皇家科学院诺奖评委会称,萨金特和西姆斯的获奖原因是"宏观经济领域的因果关联",他们分别于上世纪70年代和80年代独立提出的理论解释了暂时性加息和减税措施是怎样影响经济增长和通胀水平的。
"今天,他们所获得的成果已成为实际宏观分析操作过程中的关键分析工具"。
评委会总结道:"萨金特的学术成就从根本上让我们理解了系统性政策调整的可能效果;而西姆斯的研究成就则专注于中期观测效果在经济体系内部的传播情态。
"对于自己获奖的研究成果,西姆斯认为央行应用最广泛的是"试图找到货币政策的效用"。
他指出,他的理论的主要贡献在于提供一种弄清利率与通胀水平关系的方法。
中国学者王福重对记者表示,作为理性预期学派权威人物,萨金特早已有资格赢得诺奖,这就象"诺贝尔文学奖终于颁给了列夫·托尔斯泰"。
萨金特的理论研究更关注宏观政策在瞬息万变的现实经济世界、在市场和民众对经济有所预期的心态及调整下的动态效果,因此更加具有实际应用意义。
国家信息中心经济预测部世界经济研究室副研究员张茉楠在接受记者采访时则指出,与保罗·克鲁格曼在2008年、戴蒙德等三人在去年的获奖相似,萨金特与西姆斯能够在今年荣膺诺奖,一定程度上是因其研究领域与现实世界经济领域的广泛关切有紧密联系。
经济学奖美国经济学家马克威茨因发展了有价证券理论、美国经济学家米勒因对公司财政理论的贡献、美国经济学家夏普因提出资本资产定价模式而共同获得诺贝尔经济学奖。
默顿·米勒默顿·米勒,经济学家,美国经济计量学会会员,1976年,他担任美国金融学会会长和《商业杂志》副主编。
因在金融特别是在证券投资方面做出杰出贡献而获1990年诺贝尔经济学奖。
个人简介1943年以优异的成绩毕业于哈佛大学,并获得文学学士学位。
战争年代,米勒作为一名经济学家先在美国财政部税务研究处,以后在联邦准备系统董事会的研究和统计处工作。
1949年,他选择了巴尔的摩的约翰·霍浦金斯大学的研究生院,并于1952年获翰·霍普金斯大学博士学位。
他的第一个工作是1952——1953年伦敦经济学院的访问助理讲师。
之后,他到了卡内基工学院,即现在的卡内其·梅隆大学。
当时,他们的工业管理研究是领导美国商学院新浪潮的第一家,也是最有影响的一家。
在这里,米勒的同事中有西蒙和莫迪利阿尼,他们分别是1978年和1985年诺贝尔经济学奖获得者。
1958年,他与莫迪利阿尼发表了关于公司理财的MM论文的第一篇,以后还合写了几篇论文,直到60年代中期。
1961年,他来到芝加哥大学。
1965——1981年,他任芝加哥大学商业研究生院布朗(EdwardEagleBrown)讲座银行金融学教授。
1966——1967年,在比利时的鲁文大学作了一年的访问教授。
1981年至今,任芝加哥大学商业研究院马歇尔(LeonCarrolMarshall)讲座功勋教授。
自80年代初以来,米勒的兴趣转移到金融服务业的经济和管制问题,特别是证券和期货交易方面。
米勒现在是芝加哥商业交易所的一名董事。
此前,他曾担任该所的特别学术委员会委员,对1987年10月19—20日的危机作事后分析。
公司财务理论米勒的公司财务理论,解释了什么因素决定公司在应计债务和分配资产方面的选择。
詹姆斯·赫克曼本选择问题的做法。
詹姆斯·赫克曼劳动市场辅导计划诸如在职训练、就业辅助、员工津贴等劳动市场辅导计划,在许多国家都行之有年,评估这类计划的效益当然是一个很重要的问题,赫克曼对这个课题的重大贡献仍然是在于指出样本选择问题的存在:当我们试图测量某一劳动市场辅导计划对参与者的帮助有多大时,我们只能比较计划参与者和非参与者之间的差异。
但是由之前对样本选择问题的讨论中我们应可了解,每一个计划参与者之所以加入计划都是经过一番评估的,只有在认定对自己有帮助时才会选择加入,也就是说,是否要参与计划绝不是随机决定的,所以计划参与者和非参与者的样本资料都有样本选择问题,要比较两者之间的差异必须采用类似赫克曼两阶段法的计量处理方式。
赫克曼在一连串的后续研究中更进一步的指出,一般处理样本选择问题的计量方式,可能还都不能完全消除计划评估的样本选择误差,他因此曾建议采用实验方式收集资料以根本的避免样本选择问题,并对此建议进行详尽的理论分析。
总结赫克曼以及其他学者过去二十多年来的研究,我们发现我们将是不太可能只根据单一的计量方法来评估所有的辅导计划,计划效益的评估必须逐案个别处理。
而从赫克曼所做过的大量个案中我们也可发现,大多数劳动市场辅导计划对参与者的帮助都不明显,不同形式的计划对不同的参与者也会有很不相同的影响。
持续期间所谓“持续期间”是指某一事件延续时间的长短,持续期间之计量分析在经济学中的应用包括失业期间、罢工时间、景气循环周期、消费者购物时点以及人口学的许多课题,诸如婚姻、生育、寿命、迁徙等的持续期间。
赫克曼对持续期间的研究也有相当大的贡献,他特别重视持续期间资料的“隐性差异”问题,现以失业期间的分析为例来说明隐性差异的影响:在失业者中,素质较优的失业者比较容易找到新工作,因而有较短的失业期间,相对而言素质较差的失业者当然会有较长的失业期间,因此“长失业期间样本组”和“短失业期间样本组”之间的差异可能不完全是随机的,而是属于在素质上有根本差异的两个不同群组之间的差异,这两个群组之间的差异到底是什么,通常也无法完全确认,所以便以隐性差异称呼这些无法确认的素质差异,换句话说,失业期间之所以会长短不同,很可能是由无法确认之隐性差异所造成的,若有太多的隐性差异无法确认,则人们当然无法正确分析失业期间的决定因素。
10 Economic Sciences 19691. T HE L URES OF U NSOLVABLE P ROBLEMSDeep in the human nature there is an almost irresistible tendency to concen-trate physical and mental energy on attempts at solving problems that seem to be unsolvable. Indeed, for some kinds of active people only the seemingly un-solvable problems can arouse their interest. Other problems, those which can reasonably be expected to yield a solution by applying some time, energy and money, do not seem to interest them. A whole range of examples illustrating this deep trait of human nature can be mentioned.The mountain climber. The advanced mountain climber is not interested in fairly accessible peaks or fairly accessible routes to peaks. He becomes enthu-siastic only in the case of peaks and routes that have up to now not been con-quered.The Alchemists spent all their time and energy on mixing various kinds of matter in special ways in the hope of producing new kinds of matter. To produce gold was their main concern. Actually they were on the right track in prin-ciple, but the technology of their time was not advanced far enough to assure a success.The alluring symmetry problem in particle physics. Around 1900, when the theory of the atom emerged, the situation was to begin with relatively simple. There were two elementary particles in the picture: The heavy and positively charged PROTON and the light and negatively charged ELECTRON. Subsequently one also had the NEUTRON, the uncharged counterpart of the proton. A normal hydrogen atom, for instance, had a nucleus consisting of one proton, around which circulated (at a distance of 0.5. 10-18 cm) one electron. Here the total electric charge will be equal to 0. A heavy hydrogen atom (deuterium) had a nucleus consisting of one proton and one neutron around which circu-lated one electron. And similarly for the more complicated atoms.This simple picture gave rise to an alluring and highly absorbing problem. The proton was positive and the electron negative. Did there exist a positively charged counterpart of the electron? And a negatively charged counterpart of the proton? More generally: Did there exist a general symmetry in the sense that to any positively charged particle there corresponds a negatively charged counter-part, and vice versa? Philosophically and mathematically and from the view-point of beauty this symmetry would be very satisfactory. But it seemed to be an unsolvable problem to know about this for certain. The unsolvability, however, in this case was only due to the inadequacy of the experimental technology of the time. In the end the symmetry was completely established even experimentally. The first step in this direction was made for the light particles (because here the radiation energy needed experimentally to produce the counterpart, although high, was not as high as in the case of the heavy particles). After the theory of Dirac, the positron, i.e. the positively charged counterpart of the electron, was produced in 1932. And subsequently in 1955 (in the big Berkeley accelerator) the antiproton was produced.The final experimental victory of the symmetry principle is exemplified in the following small summary tableR. A. K. Frisch11Electric charge0-1Note. Incidentally, a layman and statistician may not be quite satisfied with the terminology, because the “anti” concept is not used consistently in connection with the electric charge. Since the antiproton has the opposite charge of the proton, there is nothing to object to the term anti in this connection. The difference between the neutron and the antineutron, however, has nothing to do with the charge. Here it is only a question of a difference in spin (and other properties connected with the spin). Would it be more logical to reserve the terms anti and the corresponding neutr to differences in the electric charge, and use expressions like, for instance counter and the corresponding equi when the essence of the difference is a question of spin (and other properties connected with the spin)? One would then, for in-stance, speak of a counterneutron instead of an antineutron.The population explosion in the world of elementary particles. As research pro-gressed a great variety of new elementary particles came to be known. They were extremely short-lived (perhaps of the order of a microsecond or shorter), which explains that they had not been seen before. Today one is facing a variety of forms and relations in elementary particles which is seemingly as great as the macroscopic differences one could previously observe in forms and relations of pieces of matter at the time when one started to systematize things by considering the proton, the electron and the neutron. Professor Murray Gell-Mann, Nobel prize winner 1969, has made path-breaking work at this higher level of systematization. When will this drive for systematization result in the discovery of something still smaller than the elementary particles?Matter and antimatter. Theoretically one may very precisely consider the existence of the “anti” form of, for instance, a normal hydrogen atom. This anti form would have a nucleus consisting of one antiproton around which circulated one positron. And similarly for all the more complicated atoms. This leads to the theoretical conception of a whole world of antimatter. In theory all this is possible. But to realize this in practice seems again a new and now really unsolvable problem. Indeed, wherever and whenever matter and anti-matter would come in contact, an explosion would occur which would produce an amount of energy several hundred times that of a hydrogen bomb of the same weight. How could possibly antimatter be produced experimentally? And how could antimatter experimentally be kept apart from the normal matter that surrounds us? And how could one possibly find out if antimatter exists in some distant galaxes or metagalaxes? And what reflections would the12 Economic Sciences 1969existence of antimatter entail for the conception of the “creation of the world”, whatever this phrase may mean. These are indeed alluring problems in physics and cosmology which - at least today - seem to be unsolvable problems, and which precisely for this reason occupy some of the finest brains of the world today.Travelling at a speed superior to that of light. It is customary to think that this is impossible. But is it really? It all depends on what we mean by “being in a certain place”. A beam of light takes about two million years to reach from us to the Andromeda nebula. But my thought covers this distance in a few seconds. Perhaps some day some intermediate form of body and mind may permit us to say that we actually can travel faster than light.The astronaut William Anders, one of the three men who around Christmas time 1968 circled the moon in Apollo 8 said in an interview in Oslo (2):“Nothing is impossible . . .it is no use posting Einstein on the wall and say: Speed of light-but not any quicker . . .30 nay 20, years ago we said: Impos-sible to fly higher than 50 000 feet, or to fly faster than three times the speed of sound. Today we do both.”The dream of Stanley Jevons. The English mathematician and economist Stanley Jevons (1835-1882) dreamed of the day when we would be able to quantify at least some of the laws and regularities of economics. Today - since the break-through of econometrics - this is not a dream anymore but a reality. About this I have much more to say in the sequel.Struggle, sweat and tears. This slight modification of the words of Winston Churchill is admirably suited to caracterize a certain aspect of the work of the scientists - and particularly of that kind of scientists who are absorbed in the study of “unsolvable” problems. They pass through ups and downs. Some-times hopeful and optimistic. And sometimes in deep pessimism. Here is where the constant support and consolation of a good wife is of enormous value to the struggling scientist. I understand fully the moving words of the 1968 Nobel prize winner Luis W. Alvarez when he spoke about his wife: “She has provided the warmth and understanding that a scientist needs to tide him over the periods of frustration and despair that seem to be part of our way of life” (3).2. A P HILOSOPHY OF C HAOS. T HE E VOLUTION TOWARDS A M AMMOTH S INGULAR T RANSFORMATIONIn the The Concise Oxford Dictionary (4) - a most excellent book - "philo-sophy"is defined as“love of wisdom or knowledge, especially that which deals with ultimate reality, or with the most general causes and principles of things”.If we take a bird’s eye-view of the range of facts and problems that were touched upon in the previous section, reflections on the “ultimate reality”quite naturally come to our mind.A very general point of view in connection with the “ultimate reality” I developed in lectures at the Institut Henri Poincaré in Paris in 1933. Subse-quently the question was discussed in my Norwegian lectures on statistics (5).R. A. K. Frisch 13The essence of this point of view on “ultimate reality” can be indicated by a very simple example in two variables. The generalization to many variables is obvious. It does not matter whether we consider a given deterministic, em-pirical distribution or its stochastic equivalence. For simplicity consider an empirical distribution.Let x 1 and x 2 be the values of two variables that are directly observed in aseries of observations. Consider a transformation of x 1 and x 2 into a new setof two variables y 1 and y 2. For simplicity let the transformation be linear i.e.The b’s and a’s being constants.(2.2)is the Jacobian of the transformation, as it appears in this linear case.It is quite obvious - and well known by statisticians - that the correlation coefficient in the set (y 1y 2) will be different from-stronger or weaker than-thecorrelation coefficient in the set (x 1x 2) (“spurious correlation”). It all dependson the numerical structure of the transformation.This simple fact I shall now utilize for my reflections on an “ultimate reality”in the sense of a theory of knowledge.It is clear that if the Jacobian (2.2)is singular, something important happens.In this case the distribution of y 1 and y 2 in a (y 1y 2) diagram is at most one-dimensional, and this happens regardless of what the individual observations x 1 and x 2 are - even if the distribution in the (x 1x 2) diagram is a completelychaotic distribution. If the distribution of x 1 and x 2 does not degenerate to apoint but actually shows some spread, and if the transformation determinant is of rank 1, i.e. the determinant value being equal to zero but not all its elements being equal to zero, then all the observations of y 1 and y 2 will lie on a straight linein the (y l y2) diagram. This line will be parallel to the y 1 axis if the first row ofthe determinant consists exclusively of zeroes, and parallel to the y 2 axis if thesecond row of the determinant consists exclusively of zeroes. If the distribution of x 1 and x 2 degenerates to a point, or the transformation determinant is of rankzero (or both) the distribution of y 1 and y 2 degenerates to a point.Disregarding these various less interesting limiting cases, the essence of the situation is that even if the observations x 1 and x 2 are spread all over the (x 1x 2)diagram in any way whatsoever, for instance in a purely chaotic way, the corresponding values of y 1 and y 2 will lie on a straight line in the (y 1y 2) diagramwhen the transformation matrix is of rank 1. If the slope of this straight line is finite and different from zero, it is very tempting to interpret y 1 as the “cause”of y 2 or vice versa. This “cause”,however, is not a manifestation of somethingintrinsic in the distribution of x 1 and x 2, but is only a human figment, a humandevice, due to the special form of the transformation used.What will happen if the transformation is not exactly singular but only14Economic Sciences 1969near to being singular? From the practical viewpoint this is the crucial question. Here we have the following proposition:(2.3)Suppose that the absolute value of the correlation coefficient r x i n(x1x2) is not exactly 1. Precisely stated, suppose that(2.3.1)0 1.This means that ε may be chosen as small as we desire even exactly 0, but it must not be exactly 1. Hence |rX|may be as small as we please even exactly 0, but not exactly 1.Then it is possible to indicate a nonsingular transformation from x1 and x2to the new variables y1 and y2with the following property: However small wechoose the positive, but not 0, number δ, the correlation coefficient rYi n(yl y2) will satisfy the relation(2.3.2) |rY|( 0R. A. K. Frisch 15 techniques. The latter is only an extension of the former. In principle there is no difference between the two. Indeed, science too has a constant craving for regularities. Science considers it a triumph whenever it has been able by some partial transformation here or there, to discover new and stronger regularities. If such partial transformations are piled one upon the other, science will help the biological evolution towards the survival of that kind of man that in the course of the millenniums is more successful in producing regularities. If “the ultimate reality” is chaotic, the sum total of the evolution over time - biological and scientific - would tend in the direction of producing a mammoth singular transformation which would in the end place man in a world of regularities. How can we possibly on a scientific basis exclude the possibility that this is really what has happened? This is a crucial question that con-fronts us when we speak about an “ultimate reality”. Have we created the laws of nature, instead of discovering them? Cf. Lamarck vs. Darwin.What will be the impact of such a point of view? It will, I believe, help us to think in a less conventional way. It will help us to think in a more advanced, more relativistic and less preconceived form. In the long run this may indirectly be helpful in all sciences, also in economics and econometrics.But as far as the concrete day to day work in the foreseeable future is con-cerned, the idea of a chaotic “ultimate reality” may not exert any appreciable influence. Indeed, even if we recognize the possibility that it is evolution of man that in the long run has created the regularities, a pragmatic view for the fore-seeable future would tell us that a continued search for regularities - more or less according to the time honoured methods - would still be “useful” to man.Understanding is not enough, you must have compassion. This search for regularities may well be thought of as the essence of what we traditionally mean by the word “understanding”. This “understanding”is one aspect of man’s activity. Another - and equally important - is a vision of the purpose of the understand-ing. Is the purpose just to produce an intellectually entertaining game for those relatively few who have been fortunate enough through intrinsic abilities and an opportunity of top education to be able to follow this game? I, for one, would be definitely opposed to such a view. I cannot be happy if I can’t believe that in the end the results of our endevaours may be utilized in some way for the betterment of the little man’s fate.I subscribe fully to the words of Abba Pant, former ambassador of India to Norway, subsequently ambassador of India to the United Arab Republic, and later High Commissioner of India to Great Britain:“Understanding is not enough, you must have compassion.” (6).3. A B RIEF S URVEY OF THE D EVELOPMENT OF E CONOMICS IN THE L AST C ENTURY Turning now to the more specifically economic matters, it is inevitable that I should begin by making a brief survey of the development of economics in the last century.In the middle of the 19th century John Stuart Mill (1806-1873) in his famous work “Principles of Economics”said that so far as general principles are concerned the theory of value and price was now completely elaborated.16 Economic Sciences 1969There was nothing more to add, he said, neither for himself nor any other author. To us with our relativistic view on knowledge and the development of science, it is difficult to understand that such a statement could be made. But to the generation that lived at that time these words by Mill appeared to be very close to the truth. In Mill’s “Principles” the ideas of Adam Smith (1723-1790), David Ricardo (1772-l823)and Thomas Robert Malthus (1766-1834) had been knit together into an organic, logically and seemingly complete whole.Subsequent developments have thoroughly denounced Stuart Mill’s words. Two break-throughs have emerged in economic theory since the time of Stuart Mill.The classical theory of value - as we find it streamlined in Stuart Mill - was essentially a theory of production costs based on the thinking of the private entrepreneur. The entrepreneur will think about as follows: “If I could only cut my selling price I would be able to draw the customers to me. This, how-ever, is also the way my competitors think. So, there emerges a sort of gravita-tional force that pulls prices down. The cost of production is so to speak the solid base on to which the prices fall down and remain. Hence the cost of production is “the cause”of prices. This general viewpoint the classical economists applied with great sagacity to a whole range of commodities , to the relation between wages and profits and to the theory ofinternational prices etc.This theory contains, of course, an irrefutable element of truth. But it is too simple to give even a crude presentation of the forces at play. The economic process is an equilibrium affair where both technological and subjective forces. are at play. The subjective element was nearly left out by the classicists.On this point economic theory was completely renewed in the years between 1870 and 1890 when a number of Austrian economists headed by Karl Menger (1840-1921) undertook a systematic study of the human wants and their place in a theory of prices. Similar thoughts were expressed also by the Swiss Léon Walras (1834-1910) and the Englishman Stanley Jevons (1835-l882). This was the first break-through since Stuart Mill.The Englishman Alfred Marshall (1842-1924) subsequently did much to combine the subjective viewpoint and the cost of production viewpoint. This led to what we now usually speak of as the neo-classical theory.Neither the classicists nor the neo-classicists did much to verify their theo-retical results by statistical observations. The reason was partly that the statistics were poor, and partly that neither the classical nor the neo-classical theory was built out with the systematic statistical verification in view. The architec-tural plan of the theory had so to speak not made room for this verification. This fact was criticized by the German historical school under the leadership of Gustav Schmoller (1838-1917) and by the American institutionalists. These schools, however, had an unfortunate and rather naive belief in something like a “theory-free” observation.“Let the facts speak for themselves”. The impact of these schools on the development of economic thought was therefore not very great, at least not directly. Facts that speak for themselves, talk in a very naive language.A. A. K. Frisch17In the first part of the 20th century the picture changed. Partly under the influence of the criticism of the historical school and the institutionalists the theoreticians themselves took up a systematic work of building up the theory in such a way that the theory could be brought in immediate contact with the observational material. One might say that from now on economics moved into that stage where the natural sciences had been for a long time, namely the stage where theory derives its concepts from the observational technique, and in turn theory influences the observational technique.For the first time in history it now seemed that the work on the theoretical front in economics - now to a large extent mathematically formulated - and the work on the outer descriptive front should converge and support each other, giving us a theory that was elaborate enough to retain the concrete observatio-nal material, and at the same time a mass ofobservations that were planned and executed with a view to be filled into the theoretical structure.Of course, there had been forerunners for such a combination of economic theory, mathematics and statistics even earlier. It was represented by such men as Johan Heinrich von Thünen (1783-l850), Augustin Cournot (1801-1877), A. J. Dupuit (1804-1866) and Hermann Heinrich Gossen (1810-1858). But from the first part of the 20ieth century the movement came in for full. This was the beginning of the econometric way of thinking. And this is what I would call the second break-through since Stuart Mill.A crucial point in this connection is the quantification of the economic concepts, i.e. the attempts at making these concepts measurable. There is no need to insist on what quantitative formulation of concepts and relations has meant in the natural sciences. And I would like to state that for more than a generation it has been my deepest conviction that the attempted quantification is equally important in economics.The quantification is important already at the level of partial analysis. Here one has studied the demand for such important commodities as sugar, wheat, coffe, pig iron, American cotton, Egyptian cotton etc.And the quantification is even more important at the global level. Indeed, at the global level the goal of economic theory is to lay bare the way in which the different economic factors act and interact on each other in a highly complex system, and to do this in such a way that the results may be used in practice to carry out in the most effective way specific desiderata in the steering of the economy.As long as economic theory still works on a purely qualitative basis without attempting to measure the numerical importance of the various factors, practically any “conclusion”can be drawn and defended. For instance in a depression some may say: A wage reduction is needed because that will increase the profits of the enterprises and thus stimulate the activity. Others will say: A wage increase is needed because that will stimulate the demand of the consumers and thus stimulate activity. Some may say: A reduction of the interest rate is needed because this will stimulate the creation of new enter-prises. Others may say: An increase of the interest rate is needed because that18Economic Sciences1969will increase the deposits in the banks and thus give the banks increased capacity of lending money.Taken separately each of these advocated measures contains some particle of truth, taken in a very partial sense when we only consider some of the obvious direct effects, without bothering about indirect effects and without comparing the relative strengths of the various effects and countereffects. Just as one would say: If I sit down in a rowing boat and start rowing in the ordinary way, the boat will be driven backwards because of the pressure exerted by my feet in the bottom of the boat.In a global analysis that shall be useful for practical applications in economic policy in the nation as a whole, the gist of the matter is to study the relative strengths of all relevant effects and countereffects, hence the need for quanti-fication of the concepts.This perhaps is the most general and most salient formulation of the need for econometrics. How far we would be able to go in this direction was of course another question. But at least the attempt had to be made if economics were to approach the state of an applied science.It goes without saying that econometrics as thus conceived does not exhaust all the contents of economics. We still need - and shall always need - also broad philosophical discussions, intuitive suggestions of fruitful directions of research, and so on. But this is another story with which I will not be concerned here (7). Let me only say that what econometrics - aided by electronic computers - can do, is only to push forward by leaps and bounds the line of demarcation from where we have to rely on our intuition and sense of smell.4. S OME H ISTORICAL N OTES ON THE F OUNDING OF T HE E CONOMETRIC S OCIETY In the files of the Oslo University Institute of Economics I have located a folder containing letters and copies of letters dating from the years when the plans for an econometric society took shape. Here are interesting ideas and opinions from outstanding people in different parts of the world. Most of these people have now passed away.One of them was my good friend professor Francois Divisia. His letter of 1 September 1926 from his home in Issy les Moulineaux (Seine) was handwritten in his fine characters, 8 pages to the brim with every corner of the paper used. Most of the letter contained discussions on specific scientific questions, but there were also some remarks of an organizational sort. He spoke for instance of his correspondence with professor Irving Fisher of Yale. About this he said: ”Je suppose qu'il s’agit d’une liste destinée àétablir une liason entre les écono-mistes mathématiciens du monde entier”.Whether this was an independent initiative on the part of Fisher in connection with a plan for a society, or it was an outcome of my previous correspondence with Fisher, I have not been able to ascertain, because the files are missing. Divisia continues:“Dans la politique, je ne suis pas très partisan des organismes internationaux . . .mais dans les domaines desinteresses comme celui de la science, j’en suis au contraire partisan sans restriction”.Answering Divisia in a letter of 4 September 1926 I said inter alia: “JeR. A. K. Frisch19 saisis avec enthousiasme l’idee d’une liste ou d’un autre moyen de communication entre les économistes mathematiciens du monde entier. J’ai eu moi-même l’idée de tâcher de réaliser une association avec un périodique consacré à ces questions. Il est vrai que les périodiques ordinaires tels que la Revue d’économie politique ou l’Economic Journal, etc. acceptent occasionnellement des memoires mathematiques, mais toujours est-il que l’auteur d’un tel memoire se trouve duns l’obligation de restreindre autant que possible l’emploi de symboles mathematiques et le raisonnement par demonstration mathematique.Je connais déjà plusieurs economistes-mathématiciens dans differents pays, et j'ai pensé érire un jour ou l’autre une lettre à chacun d’eux pour avoir leur opinion sur la possiblité d’un périodique, (que dites-vous d’une “Econometrica”?, la soeur du”Biometrika”.) Maintenant je serai heureux d’avoir votre opinion d’abord. Si vous pensez que cela vaut la peine on pourra peut-être commencer par former un cercle restreint qui s’adressera plus tard au public. Dans les années à venir j’aurai probablement l’occasion de voyager souvent en Amérique et en Europe, alors j'aurai l’occasion de faire la connaissance des économistes qui pourront s’intéresser à ce projet, et j’aurai l’occasion de faire un peu de propagande. Peut-être pourra-t-on obtenir l’appui d’une des grandes fondations américaines pour la publication du périodique.Voici une liste de quelque personnes que je connais par correspondance comme étant très intéressées au sujet de l’économie pure: Jaime Algarra, Professeur d’éc. pol. UniversitéBarcelone, L. von Bortkievicz, Professeur de Stat. Univ. Berlin, E. Bouvier, Prof. de S C. fin. Univ. Lyon, K. Goldziher, Prof. Techn. Hochschule, Budapest, K. G. Hagström, Actuaire, Stockholm, Charles Jordan, Docteur és S C., Budapest, Edv. Mackeprang, Dr. polit., Copenhague, W. M. Persons, Prof. de Stat. Harvard Univ. Cambridge. Mass. U.S.A., E. Slutsky, Moscou, A. A. Young, Prof. d’éc. polit., Harvard Univ. Cam-bridge. Mass. U.S.A., P. Rédiadis. Contreamiral, Athènes.”I mentioned also a number of others, among whom were: Anderson, Prof. Ecole Supérieure de Commerce, Varna, Bulgarie, Graziani, Prof. d’éc. pol. Univ. Napoli, Italie, Huber, Dir. de la Stat.gén. de la France, Paris, Ricci, Prof. Univ. Roma, Gustavo del Vecchio R. Univ. Commerciale, Trieste.In a letter of 22 September 1926 Divisia answered inter alia: “Je suis, vous le savez, tout à fait d’accord avec vous sur l’utilité d’une Association Internationale d’Éco-nomie pure et j'aime beaucoup le titre d’"Econometrica" auquel vous avez songé pour un périodique. Toutefois, avant de passer aux realisations, je pense qu’il est indispensable de réunir tout d’abord un certain nombre d’adhésions. .. . je me demande s’il ne serait pas aussi possible et opportun de s’aboucher à une organisation existente comme l’lnstitut international de statistique. . . .Enfin, d’ores et déjà, tout mon concours vous est acquis.”In a letter of 1 November 1926 I wrote to Divisia: “Mon départ pour l’Amérique a été ajourné de quelques mois. J’en ai profité pour écrire aux personnes suivantes: Bortkievicz, Université de Berlin, A. L. Bowley, London School of Economics, Charles Jordan,Université de Budapest, Eugen Slutsky, Moscou, pour avoir leur opinion sur l’utilité et la possibilité de réaliser d’abord un cercle restreint et plus turd peut-être une association formelle . . .J’ai trouvé que je n’ai pas pû expliquer la chose d’une meilleure fagon qu’en copiant certains passages de votre dernière lettre . . .C’est peut-être là une petite indiscretion dont je me suis rendu coupable.”The same day 1 November 1926 I wrote to the four persons in question. In。