板式塔
- 格式:doc
- 大小:115.00 KB
- 文档页数:15
板式塔知识点总结一、板式塔的定义板式塔是一种结构设计较为简单、造型独特的建筑物,通常用于提供通讯、电视信号传输或风力发电等用途。
它由一系列横向和纵向的钢板构成,通过捆绑或焊接在一起形成一个整体。
二、板式塔的结构1. 基础结构:板式塔的基础结构通常是混凝土浇筑的抗震支撑基座,用于支撑塔体,使其稳定立于地面。
2. 主体结构:板式塔的主体结构通常是由角钢、横向钢板和纵向钢板构成的,通过螺栓、焊接或捆绑在一起形成一个稳定的整体。
3. 附件结构:板式塔的附件结构包括横梁、支撑杆、拉索等,用于增强塔体的稳定性和承载能力。
三、板式塔的分类1. 通讯塔:通讯塔通常用于支撑通讯天线、微波天线等设备,为无线通讯提供信号传输服务。
2. 电视塔:电视塔用于支撑电视信号发射天线,为广播电视信号的传输提供服务。
3. 风力发电塔:风力发电塔用于支撑风力发电机组,将风能转化为电能。
4. 观光塔:观光塔通常建造在风景名胜区,供游客观光娱乐之用。
四、板式塔的优点1. 结构简单:板式塔采用钢板构成,结构简单,安装方便快捷。
2. 空间利用率高:板式塔的结构设计紧凑,能够在较小的基地面积上提供较大的通讯或发电服务范围。
3. 耐风抗震性能优异:板式塔能够在恶劣天气条件下保持稳定,具有良好的抗风抗震性能。
4. 维护成本低:板式塔不需要经常性的维护,使用寿命长,维护成本低。
5. 美学性好:板式塔的造型独特,可以成为城市的地标建筑,具有一定的美学价值。
五、板式塔的应用领域1. 通讯行业:板式塔被广泛应用于通讯行业,用于支撑通讯天线、微波天线等设备,提供信号传输服务。
2. 电力行业:板式塔作为高压输电线路的一种支撑结构,被广泛应用于电力行业,用于支撑输电线路。
3. 新能源领域:板式塔被用于支撑风力发电机组,将风能转化为电能。
4. 观光旅游业:板式塔可以建造在风景名胜区,成为一种观光旅游设施。
六、板式塔的设计与施工1. 设计:板式塔的设计首先要考虑塔体的高度、承载能力、抗风抗震性能等因素,然后进行结构设计和材料选型。
一.板式塔的组成基本结构可概括为:塔体:圆筒、封头内件:塔盘、支承结够支座(裙座)接管:人孔,进出料管、仪表接管、附件:扶梯、平台、保温层。
二.塔的类型(略)三.塔盘结构类型:溢流式塔盘:结构有降液管特点板上液层高可调、操作弹性大、大穿流式塔盘结构无降液管、气液同时穿过板上通道流动特点操作弹性差、(因为液面高度不可调)处理量大、小。
故本节重点讲溢流式塔盘1 溢流式塔盘的结构盘圈按结构分角焊结构翻焊结构塔节长度:P351 第一自然段,因为只能伸手安装,所以H=800-1000 ,因为人可勉强入塔,所以H>2000-2500,因为受拉杆长限制,所以H=2500-3000,且盘数<=5-6层结构尺寸图17-37 h1>溢流堰间隙10-12mm(2)分块式塔盘采用原因 a.便于拆装b.增大板刚度类型自身梁式槽式特点是冲压边可增大板刚度,减小厚度,减少材料用量尺寸 P352 第三行—段末分块数原则: a.设置中间通道板一块。
目的是为进塔检修(因为塔体上下有人孔)尺寸且小于人孔尺寸。
b.分块数不易过多,过少。
过多:水平度降低过少:人孔取不出2.溢流式分块塔盘的安装(固定)(1)板与板之间的固定上可拆式上、下可拆式垫片为椭圆形板I板II开同样椭圆孔螺母外尺寸<垫片尺寸(椭圆垫内)当垫片与板孔形状重合时,可拆开(2)板与支撑圈的固定卡子固定图17-43 板孔与垫片形状重合,可拆契形铁固定图17-43二者特点:卡子:紧固件的加工量大,装拆麻烦契铁:简单、成本低(3)支撑圈与壳体的连接一般小塔用扁钢、角钢弯制成圆弧,点焊壳体上。
大塔 DN=2000-3000 板跨度大,刚度不够。
所以为增加刚度,缩短跨度,需中间支撑梁。
即一头支撑圈,一头支撑梁。
常用支撑梁的结构主梁由两槽钢焊成主梁由钢板冲制或焊接成中间受液槽支撑梁的强度与刚度计算=(最大弯矩 Mmax= 操作时按均匀载荷的简支梁 M=(17-3)检修时按均匀载荷与集中载荷 DN>200 M=(17-4),DN<2000时M 17-5)最大挠度 fmax=(17-6)判断其中由手册查得四.降液管及受液盘1.降液管(1)类型圆形一根或数根钢管长圆形适用于DN较小的塔弓形用挡板把塔壁隔成弓形。
板式塔基本结构
板式塔是一种常见的结构塔之一,主要由以下几个基本部分组成:
1. 主体框架:板式塔的主体框架一般由四根立柱和连接这些立柱的水平横梁组成,形成一个四边形或多边形的框架结构。
立柱和水平横梁一般由钢材制成,具有较高的强度和刚度。
2. 斜撑系统:为了提高板式塔的稳定性和抗风性能,通常会在主体框架的四个角上设置斜撑系统。
斜撑系统由斜撑和对角线组成,能够有效地将水平荷载和垂直荷载传递到地基,保证塔的稳定性。
3. 平台系统:板式塔一般需要设置多个平台,方便人员进行巡视和维护。
平台一般位于塔的不同高度上,通过扶手和防护栏围绕,以确保人员的安全。
平台通常由钢材制成,具有足够的强度和稳定性。
4. 灯具和设备安装:板式塔上通常安装有灯具和设备,如信号灯、天线、雷达等。
这些设备需要通过支架或吊臂等方式进行安装,以确保设备的稳固性和安全性。
总的来说,板式塔的基本结构主要包括主体框架、斜撑系统、平台系统和灯具设备安装等部分。
这些部分相互配合,能够提供足够的强度和稳定性,适用于各种塔的应用场景。
板式塔一、板式塔的概念、用途、示意图板式塔是一类用于气液或液液系统的分级接触传质设备,由圆筒形塔体和按一定间距水平装置在塔内的若干塔板组成。
用途:广泛应用于精馏和吸收,有些类型(如筛板塔)也用于萃取,还可作为反应器用于气液相反应过程.操作时(以气液系统为例),液体在重力作用下,自上而下依次流过各层塔板,至塔底排出;气体在压力差推动下,自下而上依次穿过各层塔板,至塔顶排出。
每块塔板上保持着一定深度的液层,气体通过塔板分散到液层中去,进行相际接触传质。
板式塔结构示意图如右图:塔板又称塔盘,是板式塔中气液两相接触传质的部位,塔板决定了塔的操作性能,一般由以下三个部分组成:1 气体通道为保证气液两相充分接触2 溢流堰为保证气液两相在塔板上形成足够的相际传质表面3 降液管使液体有足够的停留时间二、各类型塔板的结构及其特点:按照塔内气、液流动方式,可将塔板分为错流塔板与逆流塔板两类。
错流塔板为塔内气、液两相成错流流动,即液体横向流过塔板,而气体垂直穿过液层,错流塔板广泛用于蒸馏、吸收等传质操作中。
逆流塔板亦称穿流板,板上不设降液管,气、液两相同时由板上孔道逆向穿流而过。
这种塔板结构虽简单,板面利用率也高,但需要较高的气速才能维持板上液层,操作范围较小,分离效率也低,工业上应用较少.常见塔板泡罩塔板 Bubble-cap tray泡罩塔塔板上的主要部件是泡罩。
罩内覆盖着一段很短的升气管,升气管的上口高于罩下沿的小孔或齿缝。
塔下方的气体经升气管进入罩内之后,折向下到达罩与管之间的环形空隙,然后从罩下沿的小孔或齿 缝分散气泡而进入板上的液层。
优点:弹性大、操作稳定可靠。
缺点:结构复杂,成本高,压降大.对于大直径塔,塔板液面落差大,导致塔板操作不均匀。
现状:近二、三十年来已趋于淘汰三、板式塔的工艺设计筛板塔化工设计计算 (1)塔的有效高度 Z已知:实际塔板数 N P ; 塔板间距 H T ;有效塔高:塔体高度=有效高+顶部+底部+其他塔板间距和塔径的经验关系:(2)塔径确定原则: 防止过量液沫夹带液泛 步骤: 先确定液泛气速 uf (m/s ); 然后选设计气速 u ; 最后计算塔径 D.① 液泛气速pT N H Z ⋅=VVLf C u ρρρ-=2.02020⎪⎭⎫⎝⎛=σC CC :气体负荷因子,与 HT 、 液体表面张力和两相接触状况有关. 两相流动参数 FLV :② 选取设计气速 u 选取泛点率: u / u f一般液体, 0.6 ~0。
第六节 板式塔一、塔板的结构型式板式塔的壳体通常为圆筒形,里面沿塔高装有若干块水平的塔板。
传质机理:塔内液体依靠重力作用,由上层塔板的降液管流到下层塔板的受液盘,然后横向流过塔板,从另一侧的降液管流至下一层塔板。
溢流堰的作用是使塔板上保持一定厚度的液层。
气体则在压力差的推动下,自下而上穿过各层塔板的气体通道(泡罩、筛孔或浮阀等),分散成小股气流,鼓泡通过各层塔板的液层。
在塔板上,气液两相密切接触,进行热量和质量的交换。
在板式塔中,气液两相逐级接触,两相的组成沿塔高呈阶梯式变化,在正常操作下,液相为连续相,气相为分散相。
为有效地实现气液两相之间的传质,板式塔应具有以下两方面的功能: ①在每块塔板上气液两相必须保持密切而充分的接触,为传质过程提供足够大而且不断更新的相际接触表面,减小传质阻力;②在塔内应尽量使气液两相呈逆流流动,以提供最大的传质推动力。
由吸收章可知,当气液两相进、出塔设备的浓度一定时,两相逆流接触时的平均传质推动力最大。
在板式塔内,各块塔板正是按两相逆流的原则组合起来的。
但是,在每块塔板上,由于气液两相的剧烈搅动,是不可能达到充分的逆流流动的。
为获得尽可能大的传质推动力,目前在塔板设计中只能采用错流流动的方式,即液体横向流过塔板,而气体垂直穿过液层。
由此可见,除保证气液两相在塔板上有充分的接触之外,板式塔的设计意图是,在塔内造成一个对传质过程最有利的理想流动条件,即在总体上使两相呈逆流流动,而在每一块塔板上两相呈均匀的错流接触。
板式塔的结构1-塔壳体;2-塔板;3-溢流堰;4-受液盘;5-降液管 1 2 3 5 4塔板是板式塔的核心构件,其功能是使气、液两相保持充分的接触,使之能在良好的条件下进行传质和传热传递过程。
塔板上的气液两相流动方式有错、逆流两种,如图5—4所示。
错流塔板在板间设有专供液体流通的降液管(又称溢流管)。
从降液管出来的液体横过塔板,然后再溢流进入另一降液管而到达下一层塔板;气体则经过板上的孔道上升,在每一层塔板上气、液两相呈错流方式接触。
板式塔的结构范文板式塔是一种常见的结构类型,广泛应用于石化、化工、环保等行业的装置中。
它具有结构简单、自重轻、抗风抗震能力强等特点,因此在实际工程中被广泛采用。
1.板式塔的基本概念和特点板式塔是一种由平行板组成的塔结构,其中的平行板称为板架,通过螺栓连接并形成一个整体。
每根板子上都设有横向杆束以增加结构强度。
板架上的板子可以是圆形、方形、三角形等形状,具体根据工艺要求和使用环境而定。
板式塔的特点主要有以下几个方面:1.1结构简单:由于主要由平板构成,在制造和安装过程中比较简单。
而且板式塔的每个单元都相对独立,可以根据需要进行灵活组合。
1.2质量轻:板架由轻钢材料制成,板子的材质通常是塑料、铝合金等轻质材料,所以整体结构比较轻巧。
1.3抗风能力强:板式塔可以通过合理的设计和加固措施来提高其抗风能力,减小其在风力作用下的变形和破坏风险。
1.4提高传质效率:板式塔内每一层板子的密度较大,通过板子的阻力增加了气体与液体的接触面积,从而提高了传质效率。
2.板式塔的结构设计2.1塔顶塔顶是板式塔的一个重要组成部分,主要包括排气管、下部挡雨帽和上部挡水帽等。
排气管的作用是将内部的气体排出,并防止外部异物进入。
挡雨帽用来防止雨水进入塔内,挡水帽用来防止水进入塔内,一般应具有良好的密封性能。
2.2横梁和纵梁横梁和纵梁是连接塔板的重要部件,用于增加结构的稳定性和强度。
横梁一般位于塔板的下方,纵梁则位于塔板的两侧,它们通过螺栓连接起来,形成一个整体。
2.3板子的选择和安装板子通常由塑料、铝合金或玻璃钢等材料制成。
选择具体板子的形状和材质,应根据工艺要求、介质性质和使用环境等因素综合考虑。
板子的安装一般是通过螺栓紧固于梁上,需要注意安装的准确度和平整度,以确保整个结构的稳定性。
3.板式塔的安装与维护3.1安装板式塔的安装一般分为塔身和塔盘的安装过程。
首先,根据设计要求将塔架立起来,然后将板子一层一层地按照设计顺序安装在横梁和纵梁上,通过螺栓进行连接紧固。
板式塔分类及应用板式塔,又称泡沫板塔,是一种常用的气液分离设备。
其工作原理是将气体和液体通过塔板来实现相互接触与分离。
板式塔结构简单、操作便捷,广泛应用于化工、石油、冶金、环保等领域。
根据不同的工艺要求和分离效果,板式塔可分为多种类型。
以下将从结构分类和应用领域两个方面详细介绍板式塔的分类及应用。
1. 结构分类:(1)重力流板式塔:重力流板式塔是最常见的板式塔类型。
其特点是气体与液体在板上的接触是靠重力引起的,通过自然下落实现传质和分离。
在重力流板式塔中,板上呈现大量的层板结构,通过改变板数和安装方式,可调节气液分离效果。
重力流板式塔被广泛应用于气体分离、脱硫、脱盐、除尘等工艺中。
(2)气体增强型板式塔:气体增强型板式塔是在重力流板式塔的基础上改良而来的一种形式。
其主要特点是在板上安装了增强器,能够提高气体速度和传质效果。
气体增强型板式塔广泛应用于污水处理、废气处理等工艺中。
(3)气液混合型板式塔:气液混合型板式塔的主要区别在于板上设置了气液混合装置,实现了气液的混合和均匀分布,提高了传质效果。
气液混合型板式塔常用于吸收液的添加,提高吸收效果。
(4)湿式板式塔:湿式板式塔又称湿式洗涤塔,是一种以水为媒介进行气体净化处理的设备。
湿式板式塔主要利用水对气体含有的有害物质进行吸收、净化和处理。
常见的湿式板式塔有喷雾塔和冷凝塔等。
2. 应用领域:(1)化工领域:板式塔在化工领域的应用非常广泛。
例如,重力流板式塔可用于分离空气中的氮、氧、氩等气体;同时,重力流板式塔也可用于各种化学反应的物料分离和提纯。
(2)石油领域:在石油炼制过程中,板式塔常被用于原油分馏、汽油净化、脱硫、脱盐等环节。
通过合理设置板数和板间装置,可以实现原油的分级筛选和各种石油产品的提纯。
(3)冶金领域:冶金工业中也广泛应用板式塔,特别是重力流板式塔。
例如,在炼铁过程中,板式塔用于去除高炉煤气中的硫化氢、氨等有害气体,净化煤气以提高冶炼效率。
化工课程设计板式塔化工课程设计板式塔是指在化工过程中用于分离或提取物质的设备,本文将从定义、组成、工作原理、设计要点、操作维护等方面进行详细介绍。
一、定义板式塔是指利用板式结构实现液相和气相交换、物质分离或应用的一种装置。
也可称为板塔、塔板或塔盘。
二、组成板塔的主要组成部分为塔壳、进出口管路、塔板和填料层。
1. 塔壳:塔壳是板塔的外壳,可以由钢板、不锈钢或玻璃钢制成,但需要满足工作压力和温度的需求。
2. 进出口管路:进出口管路是塔体内部进出液体、气体的通道。
3. 塔板:塔板是板塔的关键部分,由网格、滴板、方格或管道组成。
不同类型的塔板具有不同的分离效率和流体力学性能。
4. 填料层:填料层是用于增加化学反应表面积和触点数的分散剂,在分离和转化反应过程中起到重要的作用,能够提高反应的效率。
三、工作原理板塔的工作原理是利用板式结构制造液相和气相间的联系界面,在板内形成液滴和气泡着,并在板上提供一个平衡的场所以实现物质的分离。
当气体从塔底进入塔体时,经过填料层形成气泡,与从塔顶倾倒而下的液体形成液滴。
气泡和液滴在塔板上相互接触并进行质量交换。
气体中的揮发性组分就在接触面借助蒸汽能量与液体相互传递,使液滴中的揮发性组分从液相向气相转移。
非揮发性组分则从气相传到液相。
这样,在塔板的作用下,相互传递和交换的物质逐渐分离和进一步分级。
四、设计要点板式塔的设计是根据不同的物理、化学或生物反应过程,选择塔内填充材料、塔板类型和填料高度等参数,使塔的运行能够实现预期的生产效果。
下面是板式塔设计的主要要点:1. 填料的类型和表面积。
不同填料的表面积不同,因此要根据化学反应和环境要求来选择不同类型的填料。
一般而言,比表面积越大、填料容纳性越强的填料能使反应更为高效。
2. 填料的高度。
填料高度极大影响了反应的效率,过低的填料会导致反应不足,而过高的填料会降低实际分离效果。
因此,填料高度是根据实际生产过程来制定的。
3. 塔板的选择和设计。