三元一次不等式的解法
- 格式:doc
- 大小:12.40 KB
- 文档页数:2
三元一次不等式的解法三元一次不等式是指含有三个未知数的一次不等式,例如:ax+by+cz>d。
求解三元一次不等式的方法与二元一次不等式类似,需要利用数学知识以及一些常用不等式的性质。
1. 消元法消元法是解决三元一次不等式的一种常见方法,通过消去其中一个未知数,将三元一次不等式化为二元一次不等式,然后再进行求解。
具体方法如下:①如果要求解ax+by+cz>d中的x的范围,可以将x消去,得到: bx+cz>(d-ay)/a②然后再将y消去,得到:cz>(d-ay-bx)/a③最后求解z的范围即可。
2. 套路法套路法是解决三元一次不等式的另一种常见方法,通过利用一些常用不等式的性质,将三元一次不等式化为一个已知的不等式,然后再进行求解。
例如:①对于a1x+b1y+c1z>d1和a2x+b2y+c2z>d2,如果a1/a2<b1/b2<c1/c2,那么两个不等式的解集有交集。
②对于a1x+b1y+c1z>d1和a2x+b2y+c2z>d2,如果a1>b1+c1,那么第一个不等式的解集包含于第二个不等式的解集中。
3. 图像法图像法是解决三元一次不等式的一种直观方法,通过将三元一次不等式转化为三维空间中的图像,求解出图像所对应的区域,即可得到三元一次不等式的解集。
例如:①对于ax+by+cz>d,可以将其转化为一个平面方程,然后再绘制出平面图像,确定其所对应的区域。
②对于ax+by>c和cx+dy>e,可以将其转化为两个平面方程,然后再绘制出两个平面图像,确定两个平面所对应的交集区域。
总之,解决三元一次不等式的方法有多种,需要根据具体情况选择合适的方法。
同时,对于三元一次不等式的求解过程,也需要注意数学性质的应用,以及细致的计算过程,避免出现错误。
第20讲三元一次方程组和一元一次不等式组考点·方法·破译1.了解三元一次方程组和它的解的概念;2.会解三元一次方程组并会用它解决较简单的应用题;3.了解一元一次不等式和一元一次不等式组的解集;4.会解一元一次不等式和一元一次不等式组,并会进行一些简单的应用.经典·考题·赏析【例1】解方程组275322 34416x yx y zx y z-=⎧⎪++=⎨⎪-+=⎩①②③【解法指导】观察发现,本方程组共有两个三元一次方程,一个二元一次方程.解三元一次方程组的基本思想是消元,将其转化为二元一次方程组来求解.因此,根据本题特点有两种主要思路:一是代入法,将①分别代入②、③消去y,从而得到一个以x、z为未知数的二元一次方程组;二是由②③用加减法消去z得一个以x、y为未知数的方程,再与①联系,得一个二元一次方程组.解:方法⑴由①得:y=2x-7 ④将④代入②,得5x+3(2x-7)-3z=2即11x+3z=23 ⑤将④代入③,得3x-4(2x-7)-4z=16即-5x-4z=-12 ⑥解二元一次113235412x zx z+=⎧⎨+=⎩得212xz=⎧⎪⎨=⎪⎩将x=2代入①得y=-3∴原方程组的解为2312 xyz⎧⎪=⎪=-⎨⎪⎪=⎩方法⑵②×2得10x+6y+4z=4 ④④+③得13x+2y=20 ⑤解方程组2713220x yx y-=⎧⎨+=⎩得23xy=⎧⎨=-⎩将23xy=⎧⎨=-⎩代入②得12z=∴原方程组的解为2312 xyz⎧⎪=⎪=-⎨⎪⎪=⎩【变式题组】1.解下列议程组:⑴126218x yx y zx z y-=⎧⎪++=⎨⎪+-=⎩⑵27328344x yy zx z-=⎧⎪+=-⎨⎪-=⎩⑶:5:3:7:2234x yx zx y z=⎧⎪=⎨⎪-+=⎩2.解方程组864x yy zx z+=⎧⎪+=⎨⎪+=⎩,并且mx+2y-z1994=10,求m的值.【例2】北京时间2006年1月23日,科比率领湖人队在洛杉矶迎接多伦多猛龙队的挑战.在比赛中,科比全场46投28中,罚篮命中率高达90%,疯狂砍下职业生涯最高分81分,其中依靠罚球和三分球所得分数比其他投篮得分仅仅少了3分,最终湖人队以122︰104获胜.科比的81分超越了近20年来乔丹69分的得分记录,也成为继张伯伦1962年3月2日对阵纽约尼克斯砍下的NBA 单场最高得分记录100分之后,联盟历史上排名第二的单场个人最高分.在篮球比赛中,三分球每投中一个加3分,除此之外其他的投篮每投中一个加2分.若是对方犯规,罚球每中一个,加1分,且在计算命中率时,罚球是单独计算的,不计入总的出手次数,那么通过上面的这则新闻,你能算出科比投中的三分球、二分球和罚球分别是多少个吗?【解法指导】列方程组解决实际问题时,关键是找出题中的等量关系(注意找全所有的等量关系),然后适当设出未知数,列出各个方程组成方程组.本题中,等量关系有3个:⑴科比全场共得81分;⑵科比46投28中,即他的三分球和二分球总共中了28次;⑶罚球和三分球所得的分数比其他投篮得分仅仅少了3分,即三分球和罚球的分数之和比二分球得分少3分.利用这三点就很容易建立方程组求解.解:设科比投中x 个二分球,y 个三分球,z 个罚球. 依题意得:238128323x y z x y y z x ++=⎧⎪+=⎨⎪+=-⎩解得L 21718x y z =⎧⎪=⎨⎪=⎩【变式题组】1.某车间每天可以生产甲种零件600个或乙种零件300个或丙种零件500个,这三种零件各一个可以配成一套,现要在63天的生产中,使生产的三种零件全部配套,这个车间应该对这三种零件的生产各用几天才能使生产出来的零件配套?2.2003年全国足球甲A 联赛的前12轮(场)比赛后,前三各比赛成绩如下表.胜(场) 平(场) 负(场) 积分 大连实德队 8 2 2 26 上海申花队 6 5 1 23 北京现代队5722问每队胜一场、平一场、负一场各得多少分?【例3】下列各命题,是真命题的有( )①若a >b ,则a -b >0 ②若a >b ,则ac 2>bc 2③若ac >bc ,则a >b④若ac 2>bc 2,则a >b ⑤若a >b ,则3a >3b ;⑥若a >b ,则-3a +1>-3b +1 A .1个B .2个C .3个D .4个【解法指导】不等式的三条性质,是解决有关不等式的命题的重要依据,深入透彻理解不等式的三条性质的真实内涵,是判断上述各命题的关键.第①题是直接运用不等式的性质1,完全正确.第②题是将不等式a >b 的两边同乘以c 2,但c 2≥0,当c 2=0时,ac 2=bc 2,故本题不对.第③题是将ac >bc 的两边同除c 得到a >b ,虽然条件知c ≠0,但c 可正可负,当c <0时,a >b 就不成立,故本题不对.第④题由条件ac 2>bc 2知c 2≠0,因而c 2>0,故本题正确.第⑤题中,设a >b 两边同乘以3,满足性质2,故正确.第⑥题中由a >b 得-3a <-3b .因而-3a +1<-3b +1,因此不对,本小题运用了性质3和性质1.解:C 【变式题组】1.下列各命题,正确的有()①若a -b >0,则a >b ②若a <b ,则ac <bc ③若ab c c>,则a >b④若a <b ,则22a bc c <⑤若a >b ,则2211a bm m ++> ⑥若a >b ,则a 2>abA .1个B .2个C .3个D .4个2. ⑴关于x 的不等式(m 2+1)x >m 2+1解集是________________;⑵若关于x 的不等式(m +1)x <m +1的解集是x <1,则m 满足的条件是_________ 3.若关于x 的不等式(2a -b )x >3a +b 的解集是x <73,则关于x 的不等式2ax ≥3b 的解集是多少?【例4】解不等式组159104131722x x x x -<-⎧⎪⎨--⎪⎩①≤②并把解集在数轴上表示出来. 【解法指导】不等式的解集就是不等式组中每个不等式的公共解集.这就要求首先会解每个不等式然后会综合不等式组的解集.一般地,对于a <b ,有下列四种情形.⑴x ax b x b>⎧⇒>⎨>⎩即同大取大⑵x ax a x b <⎧⇒<⎨<⎩即同小取小 ⑶x aa xb x b>⎧⇒<<⎨<⎩即大小小大中间找⑷x ax b>⎧⇒⎨>⎩无解即大大小小无法找解:由不等式①可得x >1, 由不等式②得x ≤4综合可得此不等式组的解集是1<x ≤4【变式题组】1.解不等式组,并把解集在数轴上表示出来.⑴31422x x x ->-⎧⎨+⎩≤ ⑵5122(43)3112x x x --⎧⎪⎨-<⎪⎩≤2.已知整数x 满足不等式3x -4≤6x -2和不等式21132x x +--1<,并且满足3(x +a )-5a +2=0,试求2152a a-的值.3.已知|1-x |=x -1,则不等式组5421312x x x +>-⎧⎨-<⎩的解集为________________【例5】若关于x 的不等式组3(2)224x x a x x --<⎧⎪⎨+>⎪⎩①②有解,则a 的取值范围是多少?【解法指导】分别解每个不等式,可得22x a x >⎧⎪⎨<⎪⎩,若原不等式组有解,由“大小小大中间找”的法则,可知︰在数轴上看,2与2a 之间必有“空隙”,且2在2a的左边,将它们表示在数轴上如下图:显然只有图⑶才符合要求,所以2<2a,即a <4. 解:由⑴可知:x >2 由⑵可知:x <2a ∵原不等式有解 ∴2<2a 即a >4故a 的取值范围是a >4 【变式题组】 1.选择题:⑴若关于x 的不等式组210340x a x a -+⎧⎨-+⎩≤≥有解,则a 的取值范围是()A .a <3B .a ≤3C .a >3D .a ≥3⑵若关于x 的不等式组3(2)432x x x a x --<⎧⎨-<⎩无解,则a 的取值范围是()A .a <1B .a ≤1C .a =1D .a ≥122 2 2a22a ⑴⑵⑶⑶若不等式组0122x a x x +⎧⎨--⎩≥>有解,则a 的取值范围是()A .a >-1B .a ≥-1C .a ≤1D .a <12.试确定a 的取值范围,使不等式组:114111.5(1)()0.5(21)22x x a a a x x +⎧+⎪⎪⎨⎪-+-+-⎪⎩>①>② 只有一个整数解. 3.不等式组12x a x a ->-⎧⎨-<⎩的解集中,任一个x 的值均不在3≤x ≤7的范围内,求a 的取值范围。
人教版七年级数学下册第八章第四节三元一次方程组的解法复习试题(含答案)阅读下列解方程组的过程:解方程组:123x y y z z x +=⎧⎪+=⎨⎪+=⎩①②③由①+②+③,得2(x +y +z )=6,即x +y +z =3.④ 由④-①,得z =2;由④-②,得x =1;由④-③,得y =0.则原方程组的解为102x y z =⎧⎪=⎨⎪=⎩按上述方法解方程组:215216217x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩【答案】345x y z =⎧⎪=⎨⎪=⎩【解析】【分析】三个方程相加可得x+y+z=12,然后用减法进行计算即可得答案.【详解】215216217x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩①②③, ①+②+③得:4x+4y+4z+48,即x+y+z=12④,①-④得:x=3,②-④得:y=4,③-④得:z=5,∴方程组的解为:45y z ⎪=⎨⎪=⎩. 【点睛】本题考查解三元一次方程组,三个方程相加求出x+y+z 的值是解题关键.32.解方程组:6321234x y z x y z x y z ++=⎧⎪-+=⎨⎪--=-⎩【答案】312x y z =⎧⎪=⎨⎪=⎩【解析】【分析】先把三元一次方程组化为二元一次方程组,然后再通过消元、移项、系数化为1,求出二元一次方程组的解,从而求出三元一次方程组的解【详解】6321234x y z x y z x y z ++=⎧⎪-+=⎨⎪--=-⎩①②③ ①+②得:4x+3z=18④,①+③得:2x-2z=2,即x-z=1⑤,④+⑤×3得7x=21,解得:x=3,把x=3代入⑤得:z=2,把x=3,z=2代入①得:y=1,∴方程组的解为12y z ⎪=⎨⎪=⎩. 【点睛】本题考查解三元一次方程组,解三元一次方程组的基本思路是:通过“代入”或“加减”进行消元,将“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.33.解方程组:(1)1310224x y x y ⎧+=⎪⎨⎪-=⎩; (2)64239318a b c a b c a b c -+=⎧⎪++=⎨⎪-+=⎩【答案】(1)32x x =⎧⎨=⎩ ;(2)123a b c =⎧⎪=-⎨⎪=⎩. 【解析】【分析】(1)利用加减消元法进行求解即可;(2)先消去c ,得到关于a 、b 的二元一次方程组,解二元一次方程组求得a 、b 的值,继而求得c 的值即可.【详解】 (1)1310224x y x y ⎧+=⎪⎨⎪-=⎩①②, ①×2+②,得8x=24,解得:x=3,把x=3代入②,得6-y=4,解得;y=2,所以方程组的解为2x ⎨=⎩; (2)64239318a b c a b c a b c -+=⎧⎪++=⎨⎪-+=⎩①②③, ②-①,得3a+3b=-3④,③-①,得8a-2b=12⑤,④÷3+⑤÷2,得5a=5,解得a=1,把a=1代入④,得3+3b=-3,解得b=-2,把a=1,b=-2代入①,得1+2+c=6,解得c=3,所以方程组的解为123a b c =⎧⎪=-⎨⎪=⎩. 【点睛】本题考查了解二元一次方程组,解三元一次方程组,熟练掌握和灵活运用加减消元法、代入消元法是解题此类问题的关键.34.根据下面的等式,求出妈妈买回来的鱼、鸭、鸡各花了多少钱. 鸡+鸭+鱼=35.4元,鸡+鱼=20.4元,鸭+鱼=21.4元.【答案】妈妈买回来的鱼、鸭、鸡分别花了6.4元,15元,14元.【解析】【分析】设买鱼花了x 元,买鸭花了y 元,买鸡花了z 元,根据题意列出三元一次方程组,即可求解.设买鱼花了x 元,买鸭花了y 元,买鸡花了z 元.由题意列出方程组得35.4,20.4,21.4.x y z x z y x ++=⎧⎪+=⎨⎪+=⎩解得 6.41514.x y z =⎧⎪=⎨⎪=⎩,, 答:妈妈买回来的鱼、鸭、鸡分别花了6.4元,15元,14元.【点睛】此题主要考查三元一次方程的应用,解题的关键是根据题意找到等量关系列出方程.35.已知方程4360x y z --=与方程330x y z --=有相同的解,求::x y z .【答案】()3:2:3-【解析】【分析】联立两方程组成方程组,把z 看做已知数表示出x 与y ,即可求出x :y :z 的值.【详解】联立得:43633x y z x y z -=⎧⎨-=⎩①②, ①-①得:33x z =,即x z =,把x z =代入①得:23y z =-, 则()2::::3:2:33x y z z z z ⎛⎫=-=- ⎪⎝⎭.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.36.某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?【答案】应购买小笔记本50本,大笔记本8本,钢笔4支【解析】【分析】根据题意结合奖品的价格得出5x+7y+10z=346,y=2z,再利用共花费346元,分别得出x,y,z的取值范围,进而得出z的取值范围,分别分析得出所有的可能.【详解】解:设购买小笔记本x本,大笔记本y本,钢笔z支,则有5x+7y+10z=346,y=2z.易知0<x≤69,0<y≤49,0<z≤34,∴5x+14z+10z=346,5x+24z=346,即346245zx-= .∵x,y,z均为正整数,346-24z≥0,即0<z≤14 ∴z只能取14,9和4.①当z为14时,346242,228.445zx y z x y z-====++=。
第六章 第三节 三元一次不等式(组)与简单的线性规划问题 课下练兵场一、选择题1.满足条件202305350y x x y x y -⎧⎪++>⎨⎪+-<⎩≤的可行域中共有整点的个数为 ( )A.3B.4C.5D.6解析:画出可行域,由可行域知有4个整点,分别是(0,0),(0,-1), (1,-1),(2,-2). 答案:B2.点P (x ,y )在直线4x +3y =0上,且x ,y 满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是( ) A.[0,5] B.[0,10] C.[5,10] D.[5,15]解析:因x ,y 满足-14≤x -y ≤7, 则点P(x ,y)在14x y x y -⎧⎨--⎩≤7≥所确定的区域内, 且原点也在这个区域内. 又点0在直线4x +3y =0上,430,14x y x y -=⎧⎨-=-⎩解得430(6,8).,(3,4).14x y A B x y -=⎧-⎨-=-⎩解得P 到坐标原点的距离的最小值为0, 又|AO |=10,|BO |=5,故最大值为10.∴其取值范围是[0,10]. 答案:B3.设二元一次不等式组2190,80,2140x y x y x y +-⎧⎪-+⎨⎪+-⎩≥≥≤所表示的平面区域为M ,使函数y =a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是 ( ) A.[1,3] B.[2,10] C.[2,9] D.[10,9]解析:画出可行域如图由.80,2190,x y x y -+=⎧⎨+-=⎩得交点A(1,9),2140,2190,x y x y +-=⎧⎨+-=⎩由 得交点B (3,8),当y =a x 的图象过点A (1,9)时,a =9,当y =a x 的图象过点B (3,8)时,a =2,∴2≤a ≤9. 答案:C4.如果点P 在平面区域22021030x y x y x y ++⎧⎪-+⎨⎪+-⎩≥≤≤上,点Q 在曲线x 2+(y +2)2=1上,那么|PQ |的最 小值为 ( ) A .5-1 B .45-1 C .22-1 D .2-1解析:由图可知不等式组确定的区域为阴影部分包括边界,点P 到Q 的距离最小为到(0,-2)的最小值减去圆的半径1,由图可知圆心(0,-2)到直线x -2y +1=0的距离d =|0-2·(-2)+1|12+(-2)2=5,此时点P 恰好是(-1,0),符合题意. ∴|PQ |min =d -1=5-1. 答案:A5.(2009·湖北高考)在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为 ( ) A.2 000元 B.2 200元 C.2 400元 D.2 800元 解析:设需使用甲型货车x 辆,乙型货车y 辆,运输费用z 元,根据题意,得线性约束条件2010100,04,08,x y x y +⎧⎪⎨⎪⎩≥≤≤≤≤求线性目标函数z =400x +300y 的最小值. 解得当4,2x y =⎧⎨=⎩时,z min =2 200.答案:B6.(2010·海口模拟)已知约束条件340210,380x y x y x y -+⎧⎪+-⎨⎪+-⎩≥≥≤若目标函数z =x +ay (a ≥0)恰好在点(2,2)处取得最大值,则a 的取值范围为 ( ) A.0<a <13 B.a ≥13 C.a >13 D.0<a <12解析:画出已知约束条件的可行域为△ABC 内部(包括边 界),如图,易知当a =0时,不符合题意;当a >0时,由目 标函数z =x +ay 得y =-1a x +z a ,则由题意得-3=k AC <-1a<0,故a >13.综上所述,a >13.答案:C 二、填空题7.能表示图中阴影部分的二元一次不等式组是 .解析:由阴影部分知x≤0,0≤y≤1,又2×0-0+2>0,故2x-y+2≥0,∴所求二元一次不等式组为01. 220 xyx y⎧⎪⎨⎪-+⎩≤≤≤≥答案:01. 220 xyx y⎧⎪⎨⎪-+⎩≤≤≤≥8.(2009·上海高考)已知实数x、y满足2,2y xy xx⎧⎪⎨⎪⎩≤≥-,≤3则目标函数z=x-2y的最小值是.解析:如图作出阴影部分为可行域,由2,3,36,y x xx x==⎧⎧⎨⎨==⎩⎩得即A(3,6),经过分析可知直线z=x-2y经过A点时z取最小值为-9. 答案:-99.若线性目标函数z=x+y在线性约束条件3020x yx yy a+-⎧⎪-⎨⎪⎩≤≤≤下取得最大值时的最优解只有一个,则实数a的取值范围是.解析:作出可行域如图:由图可知直线y=-x与y=-x+3平行,若最大值只有一个,则直线y=a必须在直线y=2x与y=-x+3的交点(1,2)的下方,故a≤2.答案:a≤2三、解答题10.求由约束条件2600x y x y x +⎧⎪+⎨⎪⎩≤5≤≤≥确定的平面区域的面积S 和周长c.解:由约束条件作出其所确定的平面区域(阴影部分),其四个顶点为O (0,0),B (3,0),A (0,5),P (1,4).过P 点作y 轴的垂线,垂足为C . 则AC =|5-4|=1,PC =|1-0|=1, OC =4,OB =3,AP =2, PB =(4-0)2+(1-3)2=2 5. 得S △ACP =12AC ·PC =12,S 梯形COBP =12(CP +OB )·OC =8.所以S =S △ACP +S 梯形COBP =172, c =OA +AP +PB +OB =8+2+2 5.11.某班计划用少于100元的钱购买单价分别为2元和1元的大小彩球装点联欢晚会的会场,根据需要,大球数不少于10个,小球数不少于20个,请你给出几种不同的购买方案?解:设可购买大球x 个,小球y 个.依题意有21001020,x y x y x N x N**⎧+<⎪⎪⎪⎨⎪∈⎪⎪∈⎩≥≥其整数解为102030,,,203030x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩35,29x y =⎧⎨=⎩…都符合题目要求(满足2x +y -100<0即可). 12.某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品A 、B ,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?解:设搭载产品A x 件,产品B y 件, 预计总收益z =80x +60y.则2030300105110,x y x y x N y N +⎧⎪+⎨⎪∈∈⎩≤≤,作出可行域,如图.作出直线l 0:4x +3y =0并平移,由图象得,当直线经过M 点时z 能取得最大值,2330,222x y x y +=⎧⎨+=⎩解得9,4x y =⎧⎨=⎩,即M (9,4).所以z max =80×9+60×4=960(万元).答:搭载产品A 9件,产品B 4件,可使得总预计收益最大,为960万元.。
专题2.15 三元一次方程组及其解法(巩固篇)(专项练习)一、单选题1.已知三个实数a、b、c满足a+b+c=0,a﹣b+c=0,则下列结论一定成立的是()A.a+b≥0B.a+c>0C.b+c≥0D.b2﹣4ac≥02.三元一次方程的正整数解有()A.2组B.4组C.6组D.8组3.如果,其中,那么等于()A.1:2:3B.2:3:1C.4:3:1D.3:2:14.已知方程组的解,使成立,则的值是() A.0B.C.1D.25.在y=ax2+bx+c中,当x=1时,y=0;当x=﹣1时,y=6;当x=2时,y=3;则当x=﹣2时,y=()A.13B.14C.15D.166.已知实数x,y,z满足,则代数式3(x﹣z)+1的值是()A.﹣2B.﹣4C.﹣5D.﹣67.解方程组若要使运算简便,消元时应( )A.先消去x B.先消去zC.先消去y D.以上说法都对8.以为解建立三元一次方程组,不正确的是()A.B.C.D.9.已知是方程组的解,则的值为()A.3B.2C.1D.010.已知x=2,y=﹣1,z=﹣3是三元一次方程组的解,则m2﹣7n+3k的值为()A.125B.119C.113D.71二、填空题11.已知方程组那么的值为_______.12.已知x,y,z满足,且,则____________.13.在方程中,若,,则________.14.已知:a、b、c是三个非负数,并且满足3a+2b+c=6,2a+b﹣3c=1,设m=3a+b﹣7c,设s为m的最大值,则s的值为__.15.有甲、乙、丙三种商品,买甲3件,乙7件,丙1件,共需32元,买甲4件,乙10件,丙1件,共需43元,则甲、乙、丙各买1件需________元钱?16.某校用一笔钱来购买,两种奖品,若购买24个种奖品和14个种奖品则差30元,若购买20个种奖品和18个种奖品则余20元,那么用这笔钱购买28个种奖品和10个种奖品差_________元.17.重庆市举行了中学生足球联赛,共赛17轮(即每队均需比赛17场),记分办法是胜一场得3分,平一场得1分,负一场得0分.若文德中学足球队的积分为16分,且踢平场数是所负场数的整数倍,且胜、平、负的场数各不相同.则文德中学足球队共负____场.18.新世纪百货推出A,B,C三种零食大礼包,每种礼包都由一定数量的坚果、牛肉干和薄脆饼组合搭配构成.三种大礼包的成本分别为礼包中三种零食的成本之和,同种零食的单价相同.已知袋牛肉干和袋薄脆饼的价格相同,一份A礼包包含袋坚果、袋牛肉干和袋薄脆饼,一份B礼包包含袋坚果、袋牛肉干和袋薄脆饼.若一份B,C礼包的成本相同,均比一份A礼包的成本贵,一份C礼包中的零食袋数与一份A礼包中的零食袋数之比为:,且一份C礼包中坚果袋数比牛肉干袋数多,则一份C礼包中的薄脆饼袋数比牛肉干袋数少______袋.三、解答题19.解下列方程组:(1);(2).20.下面所示为教材中三元一次方程组的解题过程,请根据教材提供的做法和有关信息解决问题.例1解方程组:解由方程②,得.……步骤一④将④分别代入方程①和③,得……步骤二整理,得解这个二元一次方程组,得代入④,得.所以原方程组的解是(1) 其中的步骤二通过______法消去未知数,将三元一次方程组转化成了______.(2) 仿照以上思路解方程组,消去字母后得到的二元一次方程组为______.21.阅读材料:我们把多元方程(组)的非负整数解叫做这个方程(组)的“好解”.例如:就是方程3x+y=11的一组“好解”;是方程组的一组“好解”.(1) 求方程x+2y=5的所有“好解”;(2) 关于x,y,k的方程组有“好解”吗?若有,请求出对应的“好解”;若没有,请说明理由.22.某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共元;乙、丙两队合做10天完成,厂家需付乙、丙两队共元;甲、丙两队合做5天完成全部工程的,厂家需付甲、丙两队共(1) 求甲、乙、丙各队单独完成全部工程各需多少天?(2) 若工期要求不超过20天完成全部工程,问可由哪队单独完成此项工程花钱最少?请说明理由.23.在求值问题中,我们经常遇到利用整体思想来解决问题.例如1:已知:,,求:的值.解:令……①……②①+②得,所以,已知,求的值.解:①×2得:……③②-③得:.利用材料中提供的方法,解决下列问题:(1) 已知:关于,的二元一次方程组的解满足,求的值;(2) 某步行街摆放有甲、乙、丙三种造型的盆景分别,,盆.甲种盆景由15朵红花、8朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花、6朵黄花和20朵紫花搭配而成,丙种盆景由10朵红花、7朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,求黄花一共用了多少朵?24.某校开展校园科技节系列活动,校学生会代表小明到文具店购买文具作为奖品.(1) 小明第一次购买若干个文具袋作为奖品,这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话图,求小明原计划购买文具袋多少个?(2) 小明第二次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予8折优惠,钢笔和签字笔合计288元,问小明购买了钢笔和签字笔各多少支?(3) 如果小明用48元去购买单价为3元的铅笔,单价为8元的钢笔,单价为5元的笔记本若干(三样都要买,把48元恰好用完),问有哪几种购买方案?参考答案1.D【分析】由a+b+c=0,a﹣b+c=0可以得出:b=0,a+c=0,即:b=0,a、c互为相反数,然后判断各个选项正确与否.解:由a+b+c=0,a﹣b+c=0得,b=0,a+c=0,即:b=0,a、c互为相反数,于是,选项A不正确,选项B不正确,选项C不正确,∵a、c互为相反数,∴ac≤0,﹣4ac≥0,又b=0,∴b2﹣4ac≥0,因此选项D正确,故选:D.【点拨】此题考查解三元一次方程,互为相反数的应用,根据已知方程判定代数式的值,正确计算是解此题的关键.2.C【分析】最小的正整数是1,当x=1时,y+z=4,y分别取1,2,,3,此时z分别对应3,2,1;当x=2时,y+z=3,y分别取1,2,此时z分别对应2,1;当x=3时,y+z=2,y 分别取1,此时z分别对应1;依此类推,然后把个数加起来即可.解:当x=1时,y+z=4,y分别取1,2,,3,此时z分别对应3,2,1,有3组正整数解;当x=2时,y+z=3,y分别取1,2,此时z分别对应2,1,有2组正整数解;当x=3时,y+z=2,y分别取1,此时z分别对应1,有1组正整数解;所以正整数解的组数共:3+2+1=6(组).故选:C.【点拨】本题考查三元一次不定方程的解,解题关键是确定x、y、z的值,分类讨论.3.B【分析】把z当作已知数求出x、y的值,再代入求出即可.解:整理得:∵①×2−②得:7y=21z,∴y=3z,把y=3z代入①得:x+6z=8z,解得:x=2z,∴x:y:z=2z:3z:z=2:3:1,故选B.【点拨】此题考查解三元一次方程组,解题关键在于掌握运算法则.4.D【分析】先利用方程组得出用含m的代数式表示x、y,再把x、y的值代入到,解方程即可得到m的值.解:由题意可知,①,②,由①+②并化简,可得,由②×2-①并化简,可得,将,的值代入,可解得.故选:D.【点拨】本题主要考查了解三元一次方程组的知识,解题关键是熟练掌握加减消元法和代入消元法.5.C【分析】根据题意得到三元一次方程组得,再解方程组得,则y=2x2-3x+1,然后把x=-2代入计算.解:根据题意得,解方程组得,所以y=2x2-3x+1,当x=-2时,y=2×4-3×(-2)+1=15.故选C.【点拨】本题考查了解三元一次方程组:利用加减消元或代入消元把解三元一次方程组的问题转化为解二元一次方程组的问题.6.B【分析】将方程组②-①得:3x-3z=-5,整理得:3(x-z)=-5,把3(x-z)=-5代入代数式3(x-z)+1,即可得到答案.解:方程组,②﹣①得:3x﹣3z=﹣5,整理得:3(x﹣z)=﹣5,把3(x﹣z)=﹣5代入代数式3(x﹣z)+1得:﹣5+1=﹣4,即代数式3(x﹣z)+1的值是﹣4,故选B.【点拨】本题考查解三元一次方程组,正确掌握加减消元法消去未知数是解决本题的关键.7.C【分析】经观察发现,3个方程中先消去y,即可得到一个关于x、z的二元一次方程组,再用加减消元法和代入法解方程即可.解:方程①+②可直接消去未知数y,②-③也可直接消去y,那么即可得到一个关于x、z的二元一次方程组,∴要使运算简便,消元的方法应选取先消去y,故选C.【点拨】本题的实质是考查三元一次方程组的解法.先把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”,把复杂问题转化为简单问题的思想方法.8.C【分析】将未知数的值分别代入方程中验算即可得解.解:因为将未知数的值分别代入A、B、D选项中,左边=右边,代入C项中为,所以选择C.9.A【分析】把代入方程组,然后把三个方程相加,即可求出答案解:根据题意,把代入方程组,得,由①+②+③,得,∴;故选:A【点拨】本题考查了方程组的解,加减消元法解方程组,解题的关键是掌握解方程组的方法进行计算10.C【分析】把x、y、z的值代入方程组,求出m、n、k的值,最后代入求出代数式的值即可.解:∵x=2,y=﹣1,z=﹣3是三元一次方程组的解,∴代入得:,解得:k=﹣2,m=7,n=﹣10,∴m2﹣7n+3k=49+70﹣6=113.故选C.【点拨】本题考查了方程组的解、解三元一次方程组、求代数式的值等知识点,能求出m、n、k的值是解答此题的关键.11.-3【分析】把三个方程相加得到新的方程,再用新的方程分别减去三个方程得到x,y,z 的值最后进行计算即可.解:,将①+②+③,得x+y+z=6④,由④-①得z=5,由④-②得x=1,由④-③得y=0,∴=-3.故答案为:-3.【点拨】本题考查了三元一次方程组的计算,解决此题的关键是掌握一些基本的三元一次方程组的解法.12.14【分析】设,则整理得出,,,代入求得t,进一步代入求得x的值.解:设,则,,,代入得:解得:,,故答案为:14.【点拨】此题考查三元一次方程组的解法,设出参数,利用参数表示其它未知数,是解题的关键.13.6【分析】将已知的x、y的值代入方程中,即可求出z的值.解:将x=−1,y=−2代入方程5x−2y+z=5中,得−5+4+z=5,z=6.即z的值为6.故答案为:6【点拨】此题主要考查的是三元一次方程的解法以及方程解的定义.所谓方程的解,即能够使方程左右两边相等的未知数的值.14.【分析】先把c看作已知数,分别用c表示出a和b,让a≥0,b≥0列式求出c的取值范围,再求得m用c表示的形式,结合c的取值范围即可求得s的值.解:3a+2b+c=6,2a+b﹣3c=1,解得a=7c﹣4,b=9﹣11c;∵a≥0、b≥0,∴7c﹣4≥0,9﹣11c≥0,∴≤c≤.∵m=3a+b﹣7c=3c﹣3,∴m随c的增大而增大,∵c≤.∴当c取最大值,m有最大值,∴m的最大值为s=3×﹣3=.故答案为.【点拨】本题考查了三元一次方程组、解不等式组,解题的关键是:把看作已知数,分别用表示出.15.10【分析】设购买甲、乙、丙各一件分别需要元,根据题意列出方程组,利用整理思想进行解题即可.解:设购买甲、乙、丙各一件分别需要元,由题意得:,②-①得:,代入①得:,∴;∴甲、乙、丙各买1件需10元钱;故答案为:10.【点拨】本题考查三元一次方程组的应用.根据题意正确的列出方程组,利用整体思想进行计算是解题的关键.16.80【分析】设A种奖品的单价为a元,B种奖品的单价为b元,学校拿来购买奖品的钱数为c元,根据“购买24个A种奖品和14个B种奖品则差30元,购买20个A种奖品和18个B种奖品则余20元”,即可得出关于a,b,c的三元一次方程组,用①×2-②,即可求出用这笔钱购买28个A种奖品和10个B种奖品差80元.解:设A种奖品的单价为a元,B种奖品的单价为b元,学校拿来购买奖品的钱数为c 元,依题意得:,①×2-②得:28a+10b=c+80,∴用这笔钱购买28个A种奖品和10个B种奖品差80元.故答案为:80.【点拨】本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.17.1或5##5或1【分析】设该校足球队胜了x场,平了y场,负了z场,依题意建立方程组,解方程组从而用k(整数)表示负场数y=kz,根据z为整数,分别求出k的取值,然后求出x、y的值,继而可得出该校足球队负几场即可.解:设文德中学足球队胜了x场,平了y场,负了z场,由题意得,,把③代入①②得:,解得:(k为整数).又∵z为正整数,∴当k=1时,z=7,y=7,x=3,(因为胜、平、负的场数各不相同,所以,不符合题意,舍去)当k=2时,z=5,y=10,x=2;当k=16时,z=1,y=16,x=0,所以,文德中学足球队负了1或5场.故答案为:1或5.【点拨】本题考查了三元一次组的应用,解答本题的关键是设出未知数列出方程组,用k表示出z的值,根据z为整数,即可分类讨论出z的值.18.1【分析】设牛肉干、薄脆饼价格分别为,,坚果价格为元,根据给出的已知条件找出等量关系进行求解,可得每种零食的价格,令C礼包中牛肉干袋数为,薄脆饼袋数为,坚果袋数为,根据给出的已知条件找出等量关系,再根据、、为正整数,即可得出结果.解:设牛肉干、薄脆饼价格分别为,,坚果价格为元,由题意得,解得,则B、C礼包的成本为,A礼包中零食袋数为袋,C礼包中零食袋数为袋,令C礼包中牛肉干袋数为,薄脆饼袋数为,坚果袋数为,则,解得,由知,,由知,又、、为正整数,,,,,故答案为:.【点拨】本题主要考查了三元方程组的应用,解本题要理解题意,通过找出三组等量关系进行求解.19.(1);(2).【分析】根据三元一次方程组的基本思路,通过“代入”或“加减生”进行消元,把“三元”化“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程,计算即可.解:⑴①+②得:5x-2z=14④①+③得:4x+2z=15⑤④+⑤得:9x=29解得:x=将x=代入④,得:5×-2z=14解得:z=将x=,z=代入③得:+y+=12解得:y=∴原方程组的解是⑵①+③×4得:17x+4y=85④②+③×(-3)得:-7x+y=-35⑤④-⑤×4得:45x=225解得:x=5将x=5代入⑤得:-7×5+y=-35解得:y=0将x=5,y=0代入③得:3×5+2×0-z=18解得:z=-3∴原方程组的解是【点拨】本题考查了三元一次方程组的解法,做题的关键是熟练的掌握三元一次方程组的解法思路,认真计算即可.20.(1) 代入消元(代入),二元一次方程组(2) ①或或等,答案不唯一【分析】(1)根据解三元一次方程组的解法进行分析即可;(2)利用加减消元法进行求解即可.解:(1)解方程组:由方程②,得将④分别代入方程①和③,得整理,得故答案为:代入消元(代入)二元一次方程组(2)解方程组:由方程②+①,得3x+3y=9由方程①+③,得4x+6y=14由方程③-②得x+3y=5由x+y=3 (3x+3y=9),2x+3y=7(4x+6y=14),x+3y=5中任意两个组合得到均可故答案为:或或等,答案不唯一【点拨】此题考查了一次方程组的解法,解三元一次方程组,解本题的关键是消元.21.(1) 或或(2) 有,或或或【分析】(1)“好解”就是方程的非负整数解,使y=0,y=1,y=2分别去求的值,由于时,的值为负,不符合要求,不需要再求;(2)通过消元的方法得出k=6﹣2y和x=9+y,因为“好解”就是方程的非负整数解,所以x、y、k为非负整数,解不等式可得出满足条件的解.(1)解:当y=0时,x=5;当y=1时,x+2=5,解得x=3;当y=2时,x+4=5,解得x=1,所以方程x+2y=5的所有“好解”为或或;(2)解:有.,②﹣①得4y+2k=12,则k=6﹣2y,①×3﹣②得2x﹣2y=18,则x=9+y,∵x、y、k为非负整数,∴6﹣2y≥0,解得y≤3,∴y=0、1、2,3,当y=0时,x=9,k=6;当y=1,x=10,k=4;当y=2时,x=11,k=2,当y=3时,x=12,k=0,∴关于x,y,k的方程组的“好解”为或或或.【点拨】本题主要考查了二元一次方程的解和三元一次方程组的解法,准确理解题意并正确解出方程组是做出本题的关键.22.(1) (2) 由甲队单独完成此项工程花钱最少.【分析】(1)设甲、乙、丙各队单独完成全部工程各天,根据题意列出方程组,解方程组即可求解;(2)设每天应支付甲、乙、丙分别为元,根据题意列出方程组,解方程组,进而求得答案.(1)解:设甲、乙、丙各队单独完成全部工程各天,根据题意可知解得:(2)设每天应支付甲、乙、丙分别为元..解之得∶.因为工期要求不超过20天完成全部工程,由(1)知可选甲或乙.甲的费用为,乙的费用为.答∶由甲队单独完成此项工程花钱最少.【点拨】本题考查了三元一次方程组的应用,根据题意列出方程组是解题的关键.23.(1) m=﹣16(2) 黄花一共用了1330朵【分析】(1)由②﹣①得:3x﹣3y=2﹣m.再根据x﹣y=6,可得到关于m的方程,即可求解;(2)根据“甲种盆景由15朵红花、8朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花、6朵黄花和20朵紫花搭配而成,丙种盆景由10朵红花、7朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,”列出方程组,再由由①+②得:,从而得到,即可求解.(1)解:,由②﹣①得:3x﹣3y=2﹣m.∵x﹣y=6,∴2﹣m=18,∴m=﹣16.(2)解:根据题意得:黄花一共用朵,∵一共用了2900朵红花,3750朵紫花,∴,由①+②得:③,由③÷5得:,答:黄花一共用了1330朵.【点拨】本题主要考查了解二元一次方程组以及三元一次方程组的应用,利用整体思想来解决问题是解题的关键.24.(1) 小明原计划购买文具袋13个(2) 小明购买了30支钢笔,20支签字笔(3) 一共有7种购买方案,见解析【分析】(1)设小明原计划购买文具袋x个,利用总价单价数量,结合多买一个反而省11元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设小明购买了m支钢笔,n支签字笔,利用总价单价数量,结合购买两种笔共50支且共花费288元,即可得出关于m,n的二元一次方程组,解之即可得出结论;(3)设小明购买了a支铅笔,b支钢笔,c本笔记本,根据单价可列方程为,最后结合题意进行讨论即可.解:(1)设小明原计划购买文具袋x个,依题意得:,解得:.答:小明原计划购买文具袋13个.(2)设小明购买了m支钢笔,n支签字笔,依题意得:,解得:.答:小明购买了30支钢笔,20支签字笔.(3)设小明购买了a支铅笔,b支钢笔,c本笔记本,由题意得,∵三样都要买,且把48元恰好用完,∴有如下方案:①当时,把48元恰好用完;②当时,把48元恰好用完;③当时,把48元恰好用完;④当时,把48元恰好用完;⑤当时,把48元恰好用完;⑥当时,把48元恰好用完;⑦当时,把48元恰好用完,综上所述,一共有7种购买方案.【点拨】本题考查了一元一次方程与二元一次方程组的实际应用,灵活运用所学知识求解是解决本题的关键.。
三元一次方程组(1)解三元一次方程组的思想方法是:(2)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求其较简单的解法.要点三、三元一次方程组的应用列三元一次方程组解应用题的一般步骤1.弄清题意和题目中的数量关系,用字母(如x ,y ,z)表示题目中的两个(或三个) ;2.找出能够表达应用题全部含义的 关系;3.根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;4.解这个方程组,求出未知数的值;5.写出答案(包括单位名称).要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义, 求得的结果是否合理,不符合题意的应该舍去.(2)“设”、“答”两步,都要写清单位名称,应注意单位是否 .(3)一般来说,设几个未知数,就应列出几个方程并组成方程组.类型二、三元一次方程组的解法例1. 解方程组23520x yzx y z ⎧==⎪⎨⎪++=⎩①②【总结升华】例2. 解三元一次方程组1234234253x y x y z yz--⎧=⎪⎪++=⎨⎪⎪=⎩①②③【思路点拨】特点:①,③是比例形式,策略:引入参数k .举一反三:【变式1】解方程组:2:3,:4:5,2329x yy zx y z=⎧⎪=⎨⎪-+=⎩①②③【变式2】若303340x y zx y z-+=⎧⎨--=⎩①②,则x:y:z= .类型三、三元一次方程组的应用例3.黄冈市在国庆节前夕举办了庆祝建国六十一周年足球联赛活动,这次足球联赛共赛11 轮,胜一场记3分,平一场记一分,负一场记0分.某校队所负场数是胜的场数的12,结果共得20分.问该校队胜、平、负各多少场?【思路点拨】该题中的已知量有比赛总场数、总得分数、胜的场数与负的场数之间的关系,等量关系有:①胜场数+负场数+平场数=11;②胜得分+平得分+负得分=总得分;③胜场数=负场数×2.将以上相等关系转化成方程(组)可得解.【总结升华】例4.(凉山)甲、乙、丙三块地,草长得一样密,一样快,甲地133公顷可供12头牛吃4周;乙地10公顷可供21头牛吃9周,求丙地24公顷可供几头牛吃18周?【思路点拨】本题草地上原有一些草,其数量不知,草地上的草还在不停地生长,但生长的速度不知道,因此解题时应把原有的草量、草的生长速度及每头牛每周的食草量用字母表示,设成辅助未知数,再根据题意便可列出方程组.【总结升华】举一反三:【变式】某车间每天可以生产甲种零件600个或乙种零件300个或丙种零件500个,这三种零件各一个可以配成一套,现要在63天的生产中,使生产的三种零件全部配套,这个车间应该对这三种零件的生产各用几天才能使生产出来的零件配套?一元一次不等式的解法(基础)一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●理解一元一次不等式的概念; ● 会解一元一次不等式.学习策略:● 将一元一次不等式的解集在数轴上表示出来,是数学中数形结合思想的重要体现,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.二、学习与应用1.如果a 2x >a 2y(a ≠0),那么x_______y.2. 如果ax >b 的解集为x>b a,则a_____0. “凡事预则立,不预则废”.科学地预习才能使我们上课听讲更有目的性和针对知识回顾——复习学习新知识之前,看看你的知识贮备过关了吗?3.a是任意实数,下列判断一定正确的是( ).A、a>-aB、2a<a C、a3>a2D、a2≥04.如果a<b<0,那么( ).A、11a b<B、ab<0 C、ab>1 D、ab<1要点一、相交线要点一、一元一次不等式的概念只含有未知数,未知数的次数是的不等式,叫做一元一次不等式,例如,2503x>是一个一元一次不等式.要点诠释:(1)一元一次不等式满足的条件:①左右两边都是 (单项式或多项式);②只含有未知数;③未知数的最高次数为 .(2) 一元一次不等式与一元一次方程既有区别又有联系:相同点:二者都是只含有未知数,未知数的次数都是1,“左边”和“右边”都是.不同点:一元一次不等式表示关系,由不等号“<”或“>”连接,不等号有方向;一元一次方程表示关系,由等号“=”连接,等号没有方向.要点二、一元一次不等式的解法1.解不等式:求不等式解的叫做解不等式.2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为:ax<(或ax>)的形式.解一元一次不等式的一般步骤为:(1) ;(2) ;(3) ;(4)化为的形式(其中0a≠);(5)两边同除以未知数的系数,得到不等式的解集.要点诠释:(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用.(2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘;②移项时不要忘记;③去括号时,若括号前面是,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要.3.不等式的解集在数轴上表示:要点梳理——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习.课堂笔记或者其它补充填在右栏.预习和课堂学习更多知识点解析请学习网校资源ID:#50106#406464它对以后正确确定一元一次不等式组的解集有很大帮助.要点诠释:在用数轴表示不等式的解集时,要确定和:(1)边界:有的是实心圆点,无等号的是空心圆圈;(2)方向:大向右,小向左.类型一、一元一次不等式的概念例1.下列不等式是一元一次不等式的有哪些?(1)3x+5=0 (2)2x+3>5 (3)384x< (4)1x≥2 (5)2x+y≤8【思路点拨】根据一元一次不等式的定义判断,(1)是等式;(4)不等式的左边不是整式;(5)含有两个未知数.【总结升华】__________________________________________________________________.类型二、解一元一次不等式例2.解不等式:2)1x(3)1x(2-+<-,并把解集在数轴上表示出来.【思路点拨】解不等式时去括号法则与解一元一次方程的去括号法则是一样的.【总结升华】________________________________________________________.举一反三:【变式】不等式2(x+1)<3x+1的解集在数轴上表示出来应为( ).例3.解不等式:2121312+-≤-xx,并把它的解集在数轴上表示出来.【思路点拨】按基本步骤进行,注意避免漏乘、移项变号,特别注意当不等式两边同时乘以或除以一个负数时,不等号的方向要改变..典型例题——自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三.课堂笔记或者其它补充填在右栏.更多精彩内容请学习网校资源ID:#50109#406464举一反三:【变式】若3511+-=x y ,14522--=x y ,问x 取何值时,21y y >.例4.关于x 的不等式2x-a ≤-1的解集为x ≤-1,则a 的值是_________.【思路点拨】首先把a 作为已知数求出不等式的解集,然后根据不等式的解集为x≤-1即 可得到关于a 的方程,解方程即可求解.【总结升华】________________________________________________________. 举一反三:【变式1】如果关于x 的不等式(a+1)x <a+1的解集是x >l ,则a 的取值范围是________.【变式2】已知关于x 的方程2233x m xx ---=的解是非负数,m 是正整数,求m 的值.。
8.4三元一次方程组解法举例(一)、基础练习1.在方程5x-2y+z=3中,若x=-1,y=-2,则z=_______.2.已知单项式-8a3x+y-z b12 c x+y+z与2a4b2x-y+3z c6,则x=____,y=____,z=_____.3.解方程组x=_____,y=______,z=_______.4.已知代数式ax2+bx+c,当x=-1时,其值为4;当x=1时,其值为8;当x=2时,其值为25;则当x=3时,其值为_______. 5.已知,则x∶y∶z=___________.6.解方程组)A、先消去xB、先消去y C、先消去z D、以上说法都不对7.方程组A8.若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值为()A、2B、3C、4D、59.若方程组的解x与y相等,则a的值等于()A、4B、10C、11D、1210.已知∣x-8y∣+2(4y-1)2+3∣8z-3x∣=0,求x+y+z的值. 11.解方程组(1(2)4x+3y=1ax+(a-1)y=3x-3y+2z=03x-3y-4z=012.一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共有多少个子女?(二)拓展训练 13、解下列方程组:(1)323231112x y z x y z x y z -+=+-=++= (2)|23|(2)2011x y z x y z x y z -+++-=++=(三)达标测试 14、已知方程组1620224ax by cx y +=-+=-的解应该是810x y ==-,一个学生解题时,把c 看错了,因此得到解为1213x y ==-,求a 、b 、c 的值。
三、课后巩固15.小明手里有12张面额分别为1元、2元、5元的纸币,共计22元,其中,1元纸币的张数是2元纸币张数的4倍,求1元、2元、5元的纸币各多少张?例1 一个口袋装有5只同样大小的球,编号分别为1,2,3,4,5,从中同时取出3只,以ξ表示取出最小的号码,求ξ的分布列。
三元一次方程组的解法(较易)1、已知方程组,则x+y+z的值为()A.6 B.﹣6 C.5 D.﹣52、下列四组数值中,为方程组的解是()A. B. C. D.3、若,则.4、由方程组,可以得到x+y+z的值是_____.5、如图1,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图2,在第二个天平上,砝码A 加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A与__________个砝码C的质量相等.6、已知3x+4y﹣5z=3,4x+5y﹣4z=5,则x+y+z的值为____.7、有甲、乙、丙3种商品,某人若购甲3件、乙7件、丙1件共需24元;若购甲4件、乙10件、丙1件共需33元,则此人购甲、乙、丙各一件共需_____元。
8、设a,b,c都是非负数,且满足a+b+c=3,3a+b-c=5,则5a+4b+2c的最大值是.9、.有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需630元;若购甲4件、乙10件、丙1件共需840元,现购甲、乙、丙各一件共需元.10、方程组的解是 .11、有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需630元;若购甲4件、乙10件、丙1件共需840元,现购甲、乙、丙各一件共需元.12、已知方程组,则x+y+z=______________13、为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文对应密文.例如:明文1,2,3对应密文8,11,9.当接收方收到密文12,17,27时,则解密得到的明文为.14、在式子中,当x=0时,y=1;,当x=1时,y=0;,当x=-1时,y=4;则a,b,c的值分别为__________.15、购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支、作业本5本圆珠笔2支共需元。
16、方程组的解是________.17、在等式y=ax2+bx+c中,当x=1时,y=-2;当x=-1时,y=20;当与时,y的值相等,则a=________,b=________,c=________.18、若甲、乙两数的和为a,乙、丙两数的和为b,甲、丙两数的和为c,则甲、乙、丙三个数的和为________.19、甲、乙、丙三数之和为25,甲数的2倍比乙数大5,乙数的等于丙数的,则甲数为________,乙数为________,丙数为________.20、今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有_________________种。
2021 备战中考数学基础必练-三元一次方程组的解法(含解析)一、单选题1.若方程组的解x 与y 的和为O,则m 等于()A. ﹣2B. -1C. 1D. 22.一个三位数,各个数位上数字之和为10,百位数字比十位数字大1.如果百位数字与个位数字对调,则所得新数比原数的3 倍还大61,那么原来的三位数是()A. 235B. 216C. 217D. 2083.一宾馆有二人间,三人间,四人间三种客房供游客居住,某旅行团24 人准备同时租用这三间客房共8 间,且每个客房都住满,那么租房方案有()A. 4 种B. 3 种C. 2 种D. 1 种4.有甲,乙,丙三种商品,如果购甲3 件,乙2 件,丙1 件共需315 元钱,购甲1 件,乙2 件,丙3 件共需285 元钱,那么购甲,乙,丙三种商品各一件共需()A. 50B. 100C. 150D. 2005.某单位在一快餐店订了22 盒盒饭,共花费183 元,盒饭共有甲、乙、丙三种,它们的单价分别为10 元、8 元、5 元.那么可能的不同订餐方案有()A. 1 个B. 2 个C. 3 个D. 4 个6.在“六•一”儿童节那天,某商场推出A、B、C 三种特价玩具.若购买A 种2 件、B 种1 件、C 种3 件,共需23 元;若购买A 种1 件、B 种4 件、C 种5 件,共需36 元.那么小明购买A 种1 件、B 种2 件、C 种3 件,共需付款()A. 21 元B. 22 元C. 23 元D. 不能确定7.关于x、y、z 的方程组中,已知a1>a2>a3,那么将x、y、z 从大到小排起来应该是()A. x>y>zB. y>x>zC. z>x>yD. 无法确定8.若方程组中的x 是y 的2 倍,则a 等于()A. -9B. 8C. -7D. -6二、填空题9.方程组的解是10.若,则x+y+z= .11.为确保信息安全,信息需加密传输,发送方由明文→密文(加密);接收方由密文→明文(解密).已知加密规则为:明文a,b,c,d对应的密文为a+b,b+c,c+d,d+2a.例如:明文1,2,3,4 对应的密文为3,5,7,6.当接收方收到密文8,11,15,15 时,则解密得到的明文应为12.有甲、乙、丙3 种商品,某人若购甲3 件、乙7 件、丙1 件共需24 元;若购甲4 件、乙10 件、丙1 件共需33 元,则此人购甲、乙、丙各一件共需元。
中考总复习:方程与不等式综合复习—知识讲解及经典例题解析【考纲要求】1.会从定义上判断方程(组)的类型,并能根据定义的双重性解方程(组)和研究分式方程的增根情况;2.掌握解方程(组)的方法,明确解方程组的实质是“消元降次”、“化分式方程为整式方程”、“化无理式为有理式”;3.理解不等式的性质,一元一次不等式(组)的解法,在数轴上表示解集,以及求特殊解集;4.列方程(组)、列不等式(组)解决社会关注的热点问题;5. 解方程或不等式是中考的必考点,运用方程思想与不等式(组)解决实际问题是中考的难点和热点.【知识网络】【考点梳理】考点一、一元一次方程1.方程含有未知数的等式叫做方程.2.方程的解能使方程两边相等的未知数的值叫做方程的解.3.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项. 5.一元一次方程解法的一般步骤整理方程 —— 去分母—— 去括号—— 移项—— 合并同类项——系数化为1——(检验方程的解).6.列一元一次方程解应用题(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看作已知量),填入有关的代数式是获得方程的基础. 要点诠释:列方程解应用题的常用公式:(1)行程问题: 距离=速度×时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效×工时 工时工作量工效=工效工作量工时=; (3)比率问题: 部分=全体×比率 全体部分比率= 比率部分全体=;(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; (5)商品价格问题: 售价=定价·折·101,利润=售价-成本, %100⨯-=成本成本售价利润率;(6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abh ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.考点二、一元二次方程 1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 2.一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项. 3.一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.直接开平方法适用于解形如b a x =+2)(的一元二次方程.根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根.(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式2222()a ab b a b ±+=±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±.(3)公式法公式法是用求根公式求一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程)0(02≠=++a c bx ax 的求根公式:21,240)2b x b ac a-±=-≥ (4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.4.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆. 5.一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,a cx x =21.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商. 要点诠释:一元二次方程的解法中直接开平方法和因式分解法是特殊方法,比较简单,但不是所有的一元二次方程都能用这两种方法去解,配方法和公式法是普通方法,一元二次方程都可以用这两种方法去解.(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .(2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.考点三、分式方程 1.分式方程分母里含有未知数的方程叫做分式方程. 2.解分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是:①去分母,方程两边都乘以最简公分母;②解所得的整式方程;③验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.口诀:“一化二解三检验”.3.分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.考点四、二元一次方程(组)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a≠0,b≠0).2.二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次方程组的解法①代入消元法;②加减消元法.6.三元一次方程(组)(1)三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.(2)三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:二元一次方程组的解法:消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.(1)代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.(3)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况,对于其他情况,可根据学生的接受能力给予渗透.考点五、不等式(组)1.不等式的概念(1)不等式用不等号表示不等关系的式子,叫做不等式.(2)不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.2.不等式基本性质(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变.3.一元一次不等式(1)一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.(2)一元一次不等式的解法解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将x项的系数化为1.4.一元一次不等式组(1)一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集.(2)一元一次不等式组的解法①分别求出不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示.要点诠释:用符号“<”“>”“≤ ”“≥”“≠”表示不等关系的式子,叫做不等式.(1)不等式的其他性质:①若a >b ,则b <a ;②若a >b ,b >c ,则a >c ;③若a ≥b ,且b ≥a ,•则a=b ;④若a 2≤0,则a=0;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号. (2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c .【典型例题】类型一、方程的综合运用1.如图所示,是在同一坐标系内作出的一次函数y 1、y 2的图象1l 、2l ,设111y k x b =+,222y k x b =+,则方程组111222,y k x b y k x b =+⎧⎨=+⎩的解是( )不等式组 (其中a >b )图示 解集 口诀x ax b >⎧⎨>⎩ bax a > (同大取大)x ax b <⎧⎨<⎩ b ax b <(同小取小) x ax b <⎧⎨>⎩ bab x a << (大小取中间)x ax b >⎧⎨<⎩ba无解 (空集) (大大、小小找不到)A .2,2x y =-⎧⎨=⎩ B .2,3x y =-⎧⎨=⎩ C .3,3x y =-⎧⎨=⎩ D .3,4x y =-⎧⎨=⎩【思路点拨】图象1l 、2l 的交点的坐标就是方程组的解. 【答案】B ;【解析】由图可知图象1l 、2l 的交点的坐标为(-2,3),所以方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,3.x y =-⎧⎨=⎩【总结升华】方程组与函数图象结合体现了数形结合的数学思想,这也是中考所考知识点的综合与相互渗透.2.近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份汽油的价格.如图所示.【思路点拨】根据“用150元给汽车加油今年比去年少18.75升”列方程. 【答案与解析】解:设今年5月份汽油价格为x 元/升,则去年5月份的汽油价格为(x-1.8)元/升.根据题意,得15015018.751.8x x-=-,整理,得21.814.40x x --=.解这个方程,得x 1=4.8,x 2=-3.经检验两根都为原方程的根,但x 2=-3不符合实际意义,故舍去. 【总结升华】解题的关键是从对话中挖掘出有效的数学信息,构造数学模型,从而解决问题,让同学们更进一步地体会到数学就在我们身边.类型二、解不等式(组)3.已知A =a+2,B =a 2-a+5,C =a 2+5a-19,其中a >2. (1)求证:B-A >0,并指出A 与B 的大小关系; (2)指出A 与C 哪个大?说明理由. 【思路点拨】计算B-A 结果和0比大小,从而判断A 与B 的大小;同理计算C-A ,根据结果来比较A 与C 的大小. 【答案与解析】(1)证明:B-A =a 2-2a+3=(a-1)2+2.∵ a >2,∴ (a-1)2>0,∴ (a-1)2+2>0.∴ a 2-2a+3>0,即B-A >0. 由此可得B >A .(2)解:C-A =a 2+4a-21=(a+7)(a-3). ∵ a >2,∴ a+7>0.当2<a <3时,a-3<0, ∴ (a+7)(a-3)<0.∴ 当2<a <3时,A 比C 大;当a =3时,a-3=0, ∴ (a+7)(a-3)=0.∴ 当a =3时,A 与C 一样大;当a >3时,a-3>0, ∴ (a+7)(a-3)>0.∴ 当a >3时,C 比A 大. 【总结升华】比较大小通常用作差法,结果和0比大小,此时常常用到因式分解或配方法. 本题考查了整式的减法、十字相乘法分解因式,渗透了求差比较大小的思路及分类讨论的思想. 举一反三:【变式1】已知:A=222+-a a ,B=2, C=422+-a a ,其中1>a .(1)求证:A-B>0; (2)试比较A 、B 、C 的大小关系,并说明理由. 【答案】(1)A-B=222222(21)a a a a a a -+-=-=- ∵1>a ,∴0,210a a >-> ∴A-B>0(2) ∵C-B=22224222(1)10a a a a a -+-=-+=-+> ∴C>B∵A-C=22222242(2)(1)a a a a a a a a -+-+-=+-=+- ∵1>a ,∴20,10a a +>-> ∴A>C>B【变式2】如图,要使输出值y 大于100,则输入的最小正整数x 是______.【答案】解:设n 为正整数,由题意得 ⎩⎨⎧>+⨯>-.1001342,100)12(5n n 解得⋅>887n 则n 可取的最小正整数为11.若x 为奇数,即x =21时,y =105; 若x 为偶数,即x =22时,y =101. ∴满足条件的最小正整数x 是21.类型三、方程(组)与不等式(组)的综合应用4.宏志高中高一年级近几年来招生人数逐年增加,去年达到550名,其中有面向全省招收的“宏志班”学生,也有一般普通班的学生.由于场地、师资等限制,今年招生最多比去年增加100人,其中普通班学生可多招20%,“宏志班”学生可多招10%,问今年最少可招收“宏志班”学生多少名? 【思路点拨】根据招生人数列等式,根据今年招生最多比去年增加100人列不等式. 【答案与解析】设去年招收“宏志班”学生x 名,普通班学生y 名,由条件得550,10%20%100.x y x y +=⎧⎨+≤⎩将y =550-x 代入不等式,可解得x ≥100,于是(1+10%)x ≥110. 故今年最少可招收“宏志班”学生110名. 【总结升华】本题属于列方程与不等式组综合题. 举一反三:【变式】为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维持交通秩序,若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?共有多少个交通路口安排值勤?【答案】设这个学校选派值勤学生x 人,共到y 个交通路口值勤.根据题意得478,48(1)8.x y x y -=⎧⎨≤--<⎩①②由①可得x =4y+78,代入②,得4≤78+4y-8(y-1)<8,解得19.5<y ≤20.5.根据题意y 取20,这时x 为158,即学校派出的是158名学生,分到了20个交通路口安排值勤.5.已知关于x 的一元二次方程 2(2)(1)0m x m x m ---+=.(其中m 为实数) (1)若此方程的一个非零实数根为k , ① 当k = m 时,求m 的值;② 若记1()25m k k k+-+为y ,求y 与m 的关系式;(2)当14<m <2时,判断此方程的实数根的个数并说明理由. 【思路点拨】(1)由于k 为此方程的一个实数根,故把k 代入原方程,即可得到关于k 的一元二次方程,①把k=m 代入关于k 的方程,即可求出m 的值;②由于k 为原方程的非零实数根,故把方程两边同时除以k ,便可得到关于y 与m 的关系式; (2)先求出根的判别式,再根据m 的取值范围讨论△的取值即可. 【答案与解析】(1)∵ k 为2(2)(1)0m x m x m ---+=的实数根,∴ 2(2)(1)0m k m k m ---+=.※① 当k = m 时,∵ k 为非零实数根,∴ m ≠ 0,方程※两边都除以m ,得(2)(1)10m m m ---+=.整理,得 2320m m -+=.解得 11m =,22m =.∵ 2(2)(1)0m x m x m ---+=是关于x 的一元二次方程, ∴ m ≠ 2. ∴ m= 1.② ∵ k 为原方程的非零实数根,∴ 将方程※两边都除以k ,得(2)(1)0mm k m k---+=. 整理,得 1()21m k k m k +-=-.∴ 1()254y m k k m k=+-+=+.(2)解法一:22[(1)]4(2)3613(2)1m m m m m m m ∆=----=-++=--+ .当14<m <2时,m >0,2m -<0.∴ 3(2)m m -->0,3(2)1m m --+>1>0,Δ>0.∴ 当14<m <2时,此方程有两个不相等的实数根.解法二:直接分析14<m <2时,函数2(2)(1)y m x m x m =---+的图象,∵ 该函数的图象为抛物线,开口向下,与y 轴正半轴相交,∴ 该抛物线必与x 轴有两个不同交点.∴ 当14<m <2时,此方程有两个不相等的实数根.解法三:222[(1)]4(2)3613(1)4m m m m m m ∆=----=-++=--+.结合23(1)4m ∆=--+关于m 的图象可知,(如图)当14<m ≤1时,3716<∆≤4; 当1<m <2时,1<∆<4.∴ 当14<m <2时,∆>0.∴ 当14<m <2时,此方程有两个不相等的实数根. 【总结升华】和一元二次方程的根有关的问题往往可以借助于二次函数图象解决,数形结合使问题简化. 举一反三:【变式1】已知关于x 的一元二次方程2x 2+4x+k ﹣1=0有实数根,k 为正整数.(1)求k 的值(2)当此方程有两个非零的整数根时,将关于x 的二次函数y=2x 2+4x+k ﹣1的图象向右平移1个单位,向下平移2个单位,求平移后的图象的解析式.【答案】解:(1)∵方程2x 2+4x+k ﹣1=0有实数根,∴△=42﹣4×2×(k ﹣1)≥0,∴k≤3.又∵k 为正整数,∴k=1或2或3.(2)当此方程有两个非零的整数根时,当k=1时,方程为2x 2+4x=0,解得x 1=0,x 2=﹣2;不合题意,舍去.当k=2时,方程为2x 2+4x+1=0,解得x 1=﹣1+,x 2=﹣1﹣;不合题意,舍去. 当k=3时,方程为2x 2+4x+2=0,解得x 1=x 2=﹣1;符合题意.因此y=2x 2+4x+2的图象向右平移1个单位,向下平移2个单位,得出y=2x 2﹣2.【变式2】已知:关于x 的方程()0322=-+-+k x k x (1)求证:方程()0322=-+-+k x k x 总有实数根;(2)若方程()0322=-+-+k x k x 有一根大于5且小于7,求k 的整数值; (3)在⑵的条件下,对于一次函数b x y +=1和二次函数2y =()322-+-+k x k x ,当71<<-x 时,有21y y >,求b 的取值范围.【答案】⑴证明:∵△=(k -2)2-4(k -3)=k 2-4k +4-4k +12= k 2-8k +16=(k -4)2≥0∴此方程总有实根。
北京市朝阳区普通中学2019届初三中考数学复习三元一次方程组的解法 专题复习练习1.下列方程组是三元一次方程组的是( )A.⎩⎪⎨⎪⎧2x =5x 2+y =7x +y +z =6 B.⎩⎪⎨⎪⎧3x -y +z =-2x -2y +z =9y =-3 C.⎩⎪⎨⎪⎧x +y -z =7xyz =1x -3y =4 D.⎩⎪⎨⎪⎧x +y =2y +z =1x +z =9 2. 解方程组⎩⎪⎨⎪⎧3x -y +3z =3,2x +y -4z =11,7x +y -5z =1时,若要使运算简便,消元的方法应选( )A .消去xB .消去yC .消去zD .以上说法都不对3. 下列四组数值中,是方程组⎩⎪⎨⎪⎧x +2y +z =0,2x -y -z =1,3x -y -z =2的解的是( )A.⎩⎪⎨⎪⎧x =0y =1z =-2B.⎩⎪⎨⎪⎧x =1y =0z =1C.⎩⎪⎨⎪⎧x =1y =-1z =0D.⎩⎪⎨⎪⎧x =1y =-2z =34. 有甲、乙、丙三种货物,若购甲3件、乙2件、丙1件共需315元;若购甲1件、乙2件、丙3件共需285元;若购甲2件、乙1件、丙2件共需235元,则甲、乙、丙三种货物每件( )A .50元,65元,35元B .35元,50元,65元C .50元,35元,65元D .35元,65元,50元5. 已知⎩⎪⎨⎪⎧x =1,y =2,z =3是三元一次方程组⎩⎪⎨⎪⎧ax +by =2,by +cz =3,cx +az =7的解,则a +b +c 的值是( )A .1B .2C .3D .无法确定6. 有甲、乙、丙三种布料,已知每米甲种布料比乙种贵2元,每米乙种布料比丙种贵3元,且3米长的甲种布料、2米长的乙种布料与4米长的丙种布料的总价为156元,则甲、乙、丙三种布料的售价分别是每米( )A .20元,18元,15元B .22元,20元,12元C .19元,17元,14元D .25元,23元,14元7. 下列方程是三元一次方程的是____.(填序号)①x +y -z =1; ②4xy+3z =7; ③2x+y -7z =0; ④6x +4y -2=0; ⑤x+1y+z =4. 8. 已知关于x ,y ,z 的三元一次方程组⎩⎪⎨⎪⎧x +y =7,x +z =8,y +z =9,则它的解是_______.9. 在等式y =ax 2+bx +c 中,当x =0时,y =2;当x =-1时,y =0;当x =2时,y =12,则a =____,b =____,c =____. 10. 单项式12a x +y -z b 5c x +z -y 与-12a 11b y +z -xc 的和等于0,则x =____,y =____,z =____. 11. 解方程组:⎩⎪⎨⎪⎧2x +y =3,3x -z =7,x -y +3z =0;12. 为确保信息安全,在传输时往往需加密,发送方发出一组密码a ,b ,c 时,则接收方对应收到的密码为A ,B ,C.双方约定:A =2a -b ,B =2b ,C =b +c ,例如发出1,2,3,则收到0,4,5.(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码为2,8,11时,则发送方发出的密码是多少?13. 如果方程组⎩⎪⎨⎪⎧x +y -z =3,y +z -x =5,z +x -y =7的解使kx +2y -z =7成立,求k 的值.14. 某专卖店有A ,B ,C 三种袜子,若买A 种4双、B 种7双、C 种1双共需26元;若买A 种5双、B 种9双,C 种1双共需32元.问A ,B ,C 三种袜子各买1双共需多少元?答案:1---6 DBDAC A7. ①8. ⎩⎪⎨⎪⎧x =3y =4z =59. 1 3 210. 6 8 311. ⎩⎪⎨⎪⎧x =2,y =-1,z =-1.12. 解:(1)由题意,得A =2×2-3=1,B =2×3=6,C =3+5=8,则接收方收到的密码是1,6,8.(2)由题意,得⎩⎪⎨⎪⎧2a -b =2,2b =8,b +c =11,解得⎩⎪⎨⎪⎧a =3,b =4,c =7,则发送方发出的密码是3,4,7.13. 解:解方程组⎩⎪⎨⎪⎧x +y -z =3,y +z -x =5,z +x -y =7,得⎩⎪⎨⎪⎧x =5,y =4,z =6.∴5k+2×4-6=7,∴k =1.14. 解:设A ,B ,C 三种袜子各买1双分别需要x 元,y 元,z 元,根据题意,得⎩⎪⎨⎪⎧4x +7y +z =26,①5x +9y +z =32,② 由②-①,得x +2y =6,③由③×3,得3x +6y =18,④由①-④,得x +y +z =8.答:A ,B ,C 三种袜子各买1双共需8元.2019-2020学年数学中考模拟试卷一、选择题1.已知抛物线y=x2+2x﹣m﹣1与x轴没有交点,则函数y=的大致图象是()A. B.C. D.2.函数kyx与y=﹣kx2﹣k(k≠0)在同一直角坐标系中的大致图象可能是()A.B.C.D.3.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h4.若函数,则当函数值y=8时,自变量x的值是()A.±B.4C.±或4D.4或-5.如图,已知四边形ABCO 的边AO 在x 轴上,//,BC AO AB AO ⊥,过点C 的双曲线()0k y k x=≠交OB 于D ,且:1:2OD DB =,若OBC ∆的面积等于3,则k 的值等于( )A .2B .34C .65D .2456.如图,直线,a b 都与直线m 垂直,垂足分别为M N 、,1MN =.等腰直角ABC △的斜边AB 在直线m 上,2AB =,且点B 位于点M 处.将等腰直角ABC △沿直线m 向右平移,直到点A 与点N 重合为止.记点B 平移的距离为x ,等腰直角ABC △的边位于直线,a b 之间部分的长度和为y ,则y 关于x 的函数图像大致为( )A. B. C. D.7.如图,在锐角ABC 中,延长BC 到点D ,点O 是AC 边上的一个动点,过点O 作直线MN BC ,MN 分别交ACB ∠、ACD ∠的平分线于E ,F 两点,连接AE 、AF .在下列结论中.①OE OF =;②CE CF =;③若12CE =,5CF =,则OC 的长为6;④当AO CO =时,四边形AECF 是矩形.其中正确的是( )A .①④B .①②C .①②③D .②③④8.y =x 2+(1﹣a )x+1是关于x 的二次函数,当x 的取值范围是1≤x≤3时,y 在x =1时取得最大值,则实数a 的取值范围是( )A .a≤﹣5B .a≥5C .a =3D .a≥39.下列命题中哪一个是假命题( )A .8的立方根是2B.在函数y=3x的图象中,y随x增大而增大C.菱形的对角线相等且平分D.在同圆中,相等的圆心角所对的弧相等10.如图,是等边三角形,是边上的高,点E是边的中点,点P是上的一个动点,当最小时,的度数是()A. B. C. D.11.下列各式计算正确的是()A B.(﹣a2b)3=a6b3C.a3﹒a=a4D.(b﹢2a)(2a﹣b)=b2﹣4a212.若一个多边形的内角和等于1620°,则这个多边形的边数为()A.9 B.10 C.11 D.12二、填空题13.如图,反比例函数y=﹣3x的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥CD,则▱ABCD的面积是_____.14.为了测量某建筑物BE的高度(如图),小明在离建筑物15米(即DE=15米)的A处,用测角仪测得建筑物顶部B的仰角为45°,已知测角仪高AD=1.8米,则BE=_____米.15.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为度.16.若2236x ax ++是完全平方式,则a =_________.17.一元二次方程23210x x -+=的根的判别式∆_______0.(填“>”,“=”或“<”)18.若多项式A 满足,2(1)1A a a ⋅-+=-,则A=________________.三、解答题19.计算:(1221(1)()3-⨯---(2)a (a ﹣8)﹣(a ﹣2)220.如图,把一张长方形纸片ABCD 折叠起来,使其对角顶点A 、C 重合,若其长BC 为8,宽AB 为4.(1)求证:△AEF 是等腰三角形.(2)EF = .21.解不等组533(1)131922x x x x ->+⎧⎪⎨-<-⎪⎩并求出其整数解. 22.已知,平面直角坐标系中,关于x 的二次函数y =x 2﹣2mx+m 2﹣2(1)若此二次函数的图象过点A(﹣1,﹣2),求函数的表达式;(2)若(x 1,y 1),(x 2,y 2)为此二次函数图象上两个不同点,且x 1+x 2=4时y 1=y 2,试求m 的值;(3)点P(﹣2,y 3)在抛物线上,求y 3的最小值.23.某汽车专卖店销售甲,乙两种型号的新能源汽车,上周售出甲型汽车和乙型汽车各2辆,销售额为88万元;本周售出3辆甲型汽车和1辆乙型汽车,两周的销售额为184万元.(1)求每辆甲型汽车和乙型汽车的售价;(2)某公司拟向该店购买甲,乙两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?24.为顺利通过“国家文明城市”验收,市政府拟对城区部分路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?25.如图,在矩形OABC 中,OA =3,OC =2,点F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数y =k x的图象与BC 边交于点E . (1)当F 为AB 的中点时,求该函数的解析式;(2)当k 为何值时,△EFA 的面积最大,最大面积是多少?【参考答案】***一、选择题二、填空题13.614.815.50°.16.6±17.<18.-(a+1)三、解答题19.(1)0;(2)﹣4a ﹣4.【解析】【分析】根据实数运算法则和整式运算法则分别计算即可,要注意负指数幂的意义.【详解】解:(1221(1)()3-⨯---=4+5×1﹣9=4+5﹣9=0;(2)a (a ﹣8)﹣(a ﹣2)2=a 2﹣8a ﹣a 2+4a ﹣4=﹣4a﹣4.【点睛】本题考查实数运算和整式运算,负指数幂的意义,熟练掌握运算顺序和运算法则是解题关键.20.(1)详见解析;(2)【解析】【分析】(1)由矩形的性质以及翻折的性质证明∠AEF=∠AFE即可;(2)设AF=AE=FC=x,在Rt△ABF中,利用勾股定理求出x,作FH⊥AE于H,在Rt△AHF中,利用勾股定理求出AH长,继而求出HE的长,然后在Rt△EFH中,利用勾股定理即可求得EF的长.【详解】(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF=∠EFC,由翻折不变性可知:∠AFE=∠EFC,∴∠AEF=∠AFE,∴AE=AF,∴△AEF是等腰三角形.(2)设AF=AE=FC=x,在Rt△ABF中,∵AF2=AB2+BF2,∴x2=42+(8﹣x)2,∴x=5,作FH⊥AE于H.在Rt△AHF中,AH3,∴HE=AE﹣AH=2,在Rt△EFH中,EF故答案为:【点睛】本题考查了矩形的性质,折叠的性质,熟练掌握相关知识是解题的关键.注意数形结合思想的运用. 21.4【解析】【分析】先分别求出各不等式的解集,再找到他们的公共解集.【详解】解:533(1)131922x xx x->+⎧⎪⎨-<-⎪⎩①②,由①得:x>3,由②得:x<5,∴不等式的解集为:3<x<5,∴整数解是:4.【点睛】此题主要考查不等式组的解集,解题的关键是熟知不等式的性质.22.(1)y=x2+2x﹣1;(2)m=2;(3)当m=﹣2时,y3有最小值是﹣2.【解析】【分析】(1)将点(﹣1,﹣2)直接代入二次函数,解出m即可;(2)因为y1=y2,所以x12﹣2mx1+m2﹣2=x22﹣2mx2+m2﹣2,得到(x1+x2)(x1﹣x2)=2m(x1﹣x2),又因x1+x2=4,所以m=2;(3)点P(﹣2,y3)在抛物线上,得到y3=4+4m+m2﹣2=(m+2)2﹣2,所以当m=﹣2时,y3有最小值是﹣2.【详解】解:(1)∵函数图象过点(﹣1,﹣2),∴将点代入y=x2﹣2mx+m2﹣2,解得m=﹣1,∴函数的表达式为y=x2+2x﹣1;(2)∵(x1,y1)(x2,y2)为此二次函数图象上两个不同点,∴x1≠x2,∵y1=y2,∴x12﹣2mx1+m2﹣2=x22﹣2mx2+m2﹣2,∴(x1+x2)(x1﹣x2)=2m(x1﹣x2),∵x1+x2=4,∴m=2;(3)∵点P(﹣2,y3)在抛物线上,∴y3=4+4m+m2﹣2=(m+2)2﹣2,∴当m=﹣2时,y3有最小值是﹣2.【点睛】本题考查二次函数的简单应用,第二问的关键在于能够把y1=y2得到的方程进行变形,整体代入x1+x2=4.23.(1)每辆甲型汽车的售价为26万元,每辆乙型汽车的售价为18万元;(2)共有两种方案:方案一:购买3辆甲型汽车和3辆乙型汽车;方案二:购买4辆甲型汽车和2辆乙型汽车. 【解析】 【分析】(1)每辆甲型汽车和乙型汽车的售价分别是x 万元、y 万元.由题意,得2288318488x y x y +=⎧⎨+=-⎩,解方程组可得;(2)设购买甲型汽车m 辆,则购买乙型汽车(6)m -辆,依题意,得1302618(6)140m m ≤+-≤,求整数解可得. 【详解】(1)每辆甲型汽车和乙型汽车的售价分别是x 万元、y 万元.由题意,得2288318488x y x y +=⎧⎨+=-⎩, 解得:2618x y =⎧⎨=⎩经检验,2618x y =⎧⎨=⎩符合题意.答:每辆甲型汽车的售价为26万元,每辆乙型汽车的售价为18万元; (2)设购买甲型汽车m 辆,则购买乙型汽车(6)m -辆,依题意,得1302618(6)140m m ≤+-≤,解得3244m ≤≤.∵m 是正整数,∴3m =或4m =. ∴共有两种方案:方案一:购买3辆甲型汽车和3辆乙型汽车; 方案二:购买4辆甲型汽车和2辆乙型汽车. 【点睛】考核知识点:不等式组的运用. 24.15,30. 【解析】 【分析】等量关系为:甲工效+乙工效=110,甲(乙)的工效×甲(乙)的工作时间=甲(乙)的工作量; 【详解】设甲工程队单独完成此项工程需x 天,则乙工程队单独完成此工程需2x 天. 由题意,得10×(112x x+)=1解得:x =15.经检验,x =15是原方程的根. ∴2x =30.答:甲、乙两个工程队单独完成此项工程分别需15天和30天. 【点睛】考查了工程问题,题目相对复杂.分析题意,找到合适的等量关系是解决本题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间. 25.(1)3y x ;(2)当k =3时,S 有最大值. S 最大值=34. 【解析】 【分析】(1)当F 为AB 的中点时,点F 的坐标为(3,1),由此代入求得函数解析式即可;(2)根据图中的点的坐标表示出三角形的面积,得到关于k 的二次函数,利用二次函数求出最值即可. 【详解】(1)∵在矩形OABC 中,OA =3,OC =2, ∴B (3,2), ∵F 为AB 的中点, ∴F (3,1),∵点F 在反比例函数y =kx的图象上, ∴k =3,∴该函数的解析式为y =3x; (2)由题意知E ,F 两点坐标分别为E (2k ,2),F (3,3k ), ∴S △EFA =12 AF•BE=12×13k (3﹣12k ), =12k ﹣112 k 2 =﹣112(k 2﹣6k+9﹣9)=﹣112(k ﹣3)2+34当k =3时,S 有最大值.S 最大值=34.【点睛】此题考查反比例函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定反比例解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.2019-2020学年数学中考模拟试卷一、选择题1.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A 、B ,下列结论中不一定成立的是( )A .PA PB = B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP2.用配方法把一元二次方程2x +6x+1=0,配成2()x p +=q 的形式,其结果是( ) A.2(3)x +=8B.2(3)x -=1C.2(3)x -=10D.2(3)x +=43.下列运算正确的是( ) A .(a 2)3=a 6B .(a+2)2=a 2+4C .a 6÷a 3=a 2D =4.如图,直线AD ∥BC ,若∠1=40°,∠BAC =80°,则∠2的度数为( )A.70°B.60°C.50°D.40°5.设函数ky x=(0k ≠,0x >)的图象如图所示,若1z y =,则z 关于x 的函数图象可能为( )A .B .C .D .6.已知点A (a ,b )是一次函数y=-x+4和反比例函数y=1x的一个交点,则代数式a 2+b 2的值为( ) A .8B .10C .12D .147.如图,在正六边形ABCDEF 中,若△ACD 的面积为12cm 2,则该正六边形的面积为( )A .24cm 2B .36cm 2C .48cm 2D .72cm 28.如图,点I 和O 分别是△ABC 的内心和外心,则∠AIB 和∠AOB 的关系为( )A.∠AIB =∠AOBB.∠AIB≠∠AOBC.2∠AIB ﹣12∠AOB =180° D.2∠AOB ﹣12∠AIB =180° 9.已知抛物线2(0)y ax bx c a =++≠的对称轴为1x =-,与x 轴的一个交点在(3,0)-和(2,0)-之间,其部分图像如图所示,则下列结论:①点17(,)2y -,23(,)2y -,35(,)4y 是该抛物线上的点,则123y y y <<;②320b c +<;③()t at b a b +≤-(t 为任意实数).其中正确结论的个数是( )A .0B .1C .2D .310.下列运算正确的是( ) A .a 2•a 3=a 6B .(a 2)3=a 5C .a 6÷a 2=a 4D .(2b 2)3=8b 511.如图,四边形OABC 为矩形,点A ,C 分别在x 轴和y 轴上,连接AC ,点B 的坐标为(8,6),以A 为圆心,任意长为半径画弧,分别交AC 、AO 于点M 、N ,再分别以M 、N 为圆心,大于12MN 长为半径画弧两弧交于点Q ,作射线AQ 交y 轴于点D ,则点D 的坐标为( )A .()0,1B .80,3⎛⎫ ⎪⎝⎭C .50,3⎛⎫ ⎪⎝⎭D .()0,212.如图,函数y =2x(x >0)、y =6x (x >0)的图象将第一象限分成了A 、B 、C 三个部分.下列各点中,在B 部分的是( )A.(1,1)B.(2,4)C.(3,1)D.(4,3)二、填空题13.如图(图1),在△ABC 中,∠B =45°,点P 从△ABC 的顶点出发,沿A→B→C 匀速运动到点C ,(图2)是点P 运动时,线段AP 的长度y 随时间x 变化的关系图象,其中M ,N 为曲线部分的两个端点,则△ABC 的周长是_____.14.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线y =﹣13x+4上,设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…依据图形所反映的规律,S 2019=_____.15.如图,在平行四边形ABCD中,AD=10cm,CD=6cm,E为AD上一点,且BE=BC,CE=CD,则DE=_____cm16.函数y=x的取值范围是________.17.抛物线 y= -x2 + bx + c 的部分图象如图所示,则关于 x 的一元二次方程-x2+ bx + c= 0 的解为____________18.如图,已知Rt△AOB,∠OBA=90°,双曲线kyx=与OA,BA分别交于C,D两点,且OC=2AC,S四边形OBDC=11,则k=_____.三、解答题19.如图,点D在△ABC的AB边上.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若直线DE与直线AC平行,则∠ACD=∠A吗?为什么?20.已知二次函数y=x2-2(m+1)x+2m+1(m为常数),函数图像的顶点为C.(1)若该函数的图像恰好经过坐标原点,求点C的坐标;(2)该函数的图像与x轴分别交于点A、B,若以A、B、C为顶点的三角形是直角三角形,求m的值.21.如图1是第七届国际数学教育大会(简称ICME﹣7)的会徽,会徽的主体图案是由如图2的一连串直角三角形演化而成的.其中OA1=A1A2=A2A3=…=A7A8=1,所以OA2=342,OA OA======⋯把△OA 1A 2的面积记为111122S =⨯⨯=,△OA 2A 3的面积21122S ==,△OA 3A 4的面积31122S ==,…如果把图2中的直角三角形继续作下去,请解答下列问题:(1)请直接写出OA n = ,S n = ; (2)求出S 12+S 22+S 32+…+S 882的值.22.如图,一次函数y=kx+b 与反比例函数y k x'=(x>0)的图象交于点A(a ,3)和B(3,1).(1)求一次函数的解析式.(2)观察图象,写出反比例函数值小于一次函数值时x 的取值范围.(3)点P 是线段AB 上一点,过点P 作PD ⊥x 轴于点D ,交反比例函数图象于点Q ,连接OP 、OQ ,若△POQ 的面积为12,求P 点的坐标。
人教版七年级下第八章二元一次方程组(三元一次方程组解法举例)同步练习题学校:___________姓名:___________班级:___________考号:___________一、填空题1.解三元一次方程组的思路是_____________,目的是把三元一次方程组先转化为_______________,再转化为__________________.2.已知3203340x y z x y z -+=⎧⎨--=⎩,则::x y z =___________. 3.一笔奖金总额为1092元,分为一等奖、二等奖和三等奖,奖金金额均为整数,每个一等奖的奖金是每个二等奖奖金的2倍,每个二等奖的奖金是每个三等奖奖金的2倍,若把这笔奖金发给6个人,并且要求一等奖的人数不能超过二等奖人数,二等奖人数不能超过三等奖人数,那么三等奖的奖金金额是___________元.4.方程组2620x ay x y +=⎧⎨-=⎩有正整数解,则正整数a 的值为________. 5.若,,x y z 为实数,且2421x y z x y z +-=⎧⎨-+=⎩,则代数式2223x y z -+的最大值是_____. 6.课外活动中,80名学生自由组合分成12组,各组人数分别有5人、7人和8人三种情况,设5人一组的有x 组,7人一组的有y 组,8人一组的有z 组,有下列结论: ①1257880x y z x y z ++=⎧⎨++=⎩;①122x z =+;①3102y z =-+;①5人一组的最多有5组. 其中正确的有_____________.(把正确结论的序号都填上)二、单选题7.一个三位数,各位数上数字之和为10,百位数字比十位数字大1,如果把百位数字与个位数字对调,所得的新数比原数的3倍还多61,那么原来的三位数是( ) A .215 B .216 C .217 D .2188.解三元一次方程组3210x y z x y z x y -+=-⎧⎪+-=⎨⎪+=⎩①②③要使解法较为简便,首先应进行的变形为( )A .①+①B .①﹣①C .①+①D .①﹣①9.已知273320x yy zx z+=⎧⎪+=⎨⎪+=⎩,则x+y+z的值是()A.80B.40C.30D.不能确定10.三元一次方程组354x yy zx z+=⎧⎪+=⎨⎪+=⎩,的解为()A.132xyz=⎧⎪=⎨⎪=⎩B.213xyz=⎧⎪=⎨⎪=⎩C.321xyz=⎧⎪=⎨⎪=⎩D.123xyz=⎧⎪=⎨⎪=⎩11.一个三位数各位数字的和是14,个位数字与十位数字的和比百位数字大2,若把百位数字与十位数字对调,所得新数比原数小270,则这个三位数是()A.635B.653C.563D.53612.在“六•一”儿童节那天,某商场推出A、B、C三种特价玩具.若购买A种2件、B 种1件、C种3件,共需23元;若购买A种1件、B种4件、C种5件,共需36元.那么小明购买A种1件、B种2件、C种3件,共需付款()A.21元B.22元C.23元D.不能确定三、解答题13.阅读材料:我们把多元方程(组)的非负整数解叫做这个方程(组)的“好解”.例如:18xy=⎧⎨=⎩就是方程3x+y=11的一组“好解”;123xyz=⎧⎪=⎨⎪=⎩是方程组206x y zx y z-+=⎧⎨++=⎩的一组“好解”.(1)求方程x+2y=5的所有“好解”;(2)关于x,y,k的方程组155327x y kx y k++=⎧⎨++=⎩有“好解”吗?若有,请求出对应的“好解”;若没有,请说明理由.14.有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需315元,若购甲4件,乙10件,丙1件,共需420元.现在购甲、乙、丙各一件共需多少元?15.若a,b,c表示三角形的三边,此三角形的周长是18,且a+b=2c,b=2a,求三边长.参考答案:1. 消元 二元一次方程组 一元一次方程【分析】解三元一次方程组的基本思路是:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.这与解二元一次方程组的思路是一样的.【详解】解:解三元一次方程组的思路是消元,目的是把三元一次方程组先转化为二元一次方程组,再转化为一元一次方程.故答案为:消元;二元一次方程组;一元一次方程.【点睛】本题考查利用解三元一次方程组的基本思想-消元的思想,判断即可得到结果. 2.9:5:3【分析】先用①-①,得出3x z =,再把将3x z =代入①,得出53y z =,然后代入::x y z 中计算即可得出答案. 【详解】解:3203340x y z x y z -+=⎧⎨--=⎩①②, ①-①,得: 260x z -=,则3x z =,将3x z =代入①得:3320z y z -+=,则53y z =; 因此5::3::9:5:33x y z z z z ==. 故答案为:9:5:3.【点睛】此题考查了解三元一次方程组,利用加减消元或代入消元法把三元一次方程转化为二元一次方程是解题的关键.3.78【分析】获一等奖a 人,获二等奖b 人,获三等奖c ,由,,a b c 之间的关系结合,,a b c 均为整数,即可得出,,a b c 的值,设三等奖的奖金金额为x 元,则二等奖的奖金金额为2x 元,一等奖的奖金金额为4x 元,根据奖金的总额为1092元,即可得出关于x 的一元一次方程,解之即可得出结论(取其为整数的值).【详解】解:获一等奖a 人,获二等奖b 人,获三等奖c ,根据题意=6a b c ++0a b c <≤≤且,,a b c 均为整数,①114a b c =⎧⎪=⎨⎪=⎩,123a b c =⎧⎪=⎨⎪=⎩,222a b c =⎧⎪=⎨⎪=⎩.设三等奖的奖金金额为x 元,则二等奖的奖金金额为2x 元,一等奖的奖金金额为4x 元, 依题意,得:4x+2x+4x=1092,4x+2×2x+3x=1092,2×4x+2×2x+2x=1092,解得:x=109.2(不合题意,舍去),x=99311(不合题意,舍去) ,x=78. 故答案为: 78.【点睛】本题考查了三元一次方程整数解和一元一次方程的应用,掌握三元一次方程的整数解的求法,和一元一次方程解应用题的方法与步骤,找准等量关系,正确列出一元一次方程是解题的关键.4.2【分析】先消去,x 求解6,4y a 再由y 为正整数,分类求解,a 结合a 为正整数求解,a 再检验此时的a 是否满足x 也为正整数,从而可得答案.【详解】解:2620x ay x y ①②+=⎧⎨-=⎩ ①2⨯得:240x y ③①-①得:46,a y当4a =-时,方程无解,当4a ≠-时,方程的解为:6,4y ay 为正整数,41a 或42a +=或43a +=或46,a解得:3a =-或2a =-或1a =-或2,a =a 为正整数,2,a ∴=当y 为正整数,由①得:2x y =也为正整数,所以 2.a =故答案为:2【点睛】本题考查的是二元一次方程的正整数解,掌握“解二元一次方程组的方法及分类讨论”是解本题的关键.5.26.【分析】先利用加减消元法求出y,x 的值,再把x,y 代入代数式2223x y z -+,求出z 的值,即可解答【详解】()()241212x y z x y z ⎧+-=⎪⎨-+=⎪⎩, (1)﹣(2)得,1y z =+,把1y z =+代入(1)得,2x z =-,则()()()222222223*********x y z z z z z z z -+=--++=--+=-++,当5z =-时,2223x y z -+的最大值是26,故答案为26.【点睛】此题考查解三元一次方程,解题关键在于掌握运算法则6.①①①①【分析】根据80名学生自由组合分成12组,即可得出关于x ,y ,z 的三元一次方程组,结论①正确;利用7()(578)71280x y z x y z ++-++=⨯-,化简后可得出122x z =+,结论①正确;利用(578)5()80512x y z x y z ++-++=-⨯,化简后可得出3102y z =-+,结论①正确;由结论①①结合x ,y ,z 均为正整数,可得出z 为2的倍数,分别代入2z =,4z =和6z =即可得出5人一组的最多有5组,结论①正确. 【详解】解:依题意,得:1257880x y z x y z ++=⎧⎨++=⎩, ∴结论①正确;7()(578)71280x y z x y z ++-++=⨯-,即24x z -=,122x z ∴=+, ∴结论①正确;(578)5()80512x y z x y z ++-++=-⨯,即2320y z +=,3102y z ∴=-+, ∴结论①正确; 122x z =+,3102y z =-+,且x ,y ,z 均为正整数,z ∴为2的倍数,∴当2z =时,3x =,7y =;当4z =时,4x =,4y =;当6z =时,5x =,1y =, 5∴人一组的最多有5组,∴结论①正确.故答案为:①①①①.【点睛】本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.7.C【分析】设原来三位数的个位、十位、百位上的数字分别为x 、y 、z ,则原来的三位数表示为:100z +10y +x ,新三位数表示为:100x +10y +z ,故根据题意列三元一次方程组再求解即得.【详解】解:设原来三位数的个位、十位、百位上的数字分别为x 、y 、z ,根据题意得:1013(10010)6110010x y z z y z y x x y z ++=⎧⎪-=⎨⎪+++=++⎩, 解得:712x y z =⎧⎪=⎨⎪=⎩,所以,原来的三位数字是217. 故选C .【点睛】本题考查了三位数的表示方法和三元一次方程组的解法,解题的关键是掌握三位数的表示方法,根据题意列出方程组.8.A【分析】观察发现,第三个方程不含z ,故前两个方程相加小区z ,可将三元方程转化为二元一次方程组来求解.【详解】解:解三元一次方程组3210x y z x y z x y -+=-⎧⎪+-=⎨⎪+=⎩①②③要使解法较为简便,首先应进行的变形为①+①.故选:A .【点睛】本题考查了解三元一次方程组,利用消元的思想,消元的方法有:代入消元法和加减消元法.9.B【分析】由①+①+①得:2x ++2y +2z =80,再化简可得.【详解】273320x y y z x z +=⎧⎪+=⎨⎪+=⎩①②③,①+①+①得:2x ++2y +2z =80,①x +y +z =40;故选B .【点睛】考核知识点:等式性质.10.D【分析】用加减消元法解.【详解】 3......5......4......x y y z x z +=⎧⎪+=⎨⎪+=⎩①②③,-①②得2x z -=-……①,③+④得22x =,解得1x =.把1x =代入①,得13y +=,解得2y =,把1x =代入①,得14z +=,解得3z =,所以原方程组的解为123x y z =⎧⎪=⎨⎪=⎩. 故选:D.【点睛】考查了解三元一次方程组,解题关键是利用了消元的思想,消元的方法有:代入消元法与加减消元法.11.A【分析】设个位、十位、百位上的数字分别为x 、y 、z ,则原来的三位数为:100z +10y +x ,新数表示为:100y +10z +x ,根据题意列三元一次方程组求解即可.【详解】解:设个位、十位、百位上的数字分别为x 、y 、z ,由题意得:1421001027010010x y z x y z z y x y z x ++=⎧⎪+=+⎨⎪++-=++⎩, 解得:536x y z =⎧⎪=⎨⎪=⎩,①原三位数为:635.故选:A .【点睛】本题考查了数字问题在三元一次方程组中的应用,正确理解题意、列出相应的三元一次方程组是解题的关键.12.B【分析】设A 、B 、C 三种特价玩具单价分别为x 、y 、z 元,列方程组,用待定系数法求解.【详解】解:设A 、B 、C 三种特价玩具单价分别为x 、y 、z 元,由题意,得 23234536x y z x y z ++=⎧⎨++=⎩, 设23(23)(45)x y z m x y z n x y z ++=+++++比较系数,得2142353m n m n m n +=⎧⎪+=⎨⎪+=⎩, 解得2737m n ⎧=⎪⎪⎨⎪=⎪⎩ 2323(23)(45)77x y z x y z x y z ∴++=⨯+++⨯++ 2323362277=⨯+⨯=. 故选:B .【点睛】本题考查了三元一次方程组,解题的关键找准量与量之间的关系,需要设待定系数,比较系数进行求解.13.(1)50x y =⎧⎨=⎩或31x y =⎧⎨=⎩或12x y =⎧⎨=⎩ (2)有,906x y k =⎧⎪=⎨⎪=⎩或1014x y k =⎧⎪=⎨⎪=⎩或1122x y k =⎧⎪=⎨⎪=⎩或1230x y z =⎧⎪=⎨⎪=⎩【分析】(1)“好解”就是方程的非负整数解,使y =0,y =1,y =2分别去求x 的值,由于3y ≥时,x 的值为负,不符合要求,不需要再求;(2)通过消元的方法得出k =6﹣2y 和x =9+y ,因为“好解”就是方程的非负整数解,所以x 、y 、k 为非负整数,解不等式可得出满足条件的解.(1)解:当y =0时,x =5;当y =1时,x +2=5,解得x =3;当y =2时,x +4=5,解得x =1,所以方程x +2y =5的所有“好解”为50x y =⎧⎨=⎩或31x y =⎧⎨=⎩或12x y =⎧⎨=⎩; (2)解:有.155327x y k x y k ++=⎧⎨++=⎩①②, ①﹣①得4y +2k =12,则k =6﹣2y ,①×3﹣①得2x ﹣2y =18,则x =9+y ,①x 、y 、k 为非负整数,①6﹣2y ≥0,解得y ≤3,①y =0、1、2,3,当y =0时,x =9,k =6;当y =1,x =10,k =4;当y =2时,x =11,k =2,当y =3时,x =12,k =0,①关于x ,y ,k 的方程组155327x y k x y k ++=⎧⎨++=⎩的“好解”为906x y k =⎧⎪=⎨⎪=⎩或1014x y k =⎧⎪=⎨⎪=⎩或1122x y k =⎧⎪=⎨⎪=⎩或1230x y z =⎧⎪=⎨⎪=⎩. 【点睛】本题主要考查了二元一次方程的解和三元一次方程组的解法,准确理解题意并正确解出方程组是做出本题的关键.14.105元【分析】先设甲、乙、丙各一件分别需要x ,y ,z 元,根据购甲3件,乙7件,丙1件,共需315元,购甲4件,乙10件,丙1件,共需420元,列出方程组求出x y z ++的值即可.【详解】解:设购甲、乙、丙各一件分别需要x ,y ,z 元,根据题意得:37315410420x y z x y z ++=⎧⎨++=⎩①②①×3-①×2得105x y z ++=.则现在购甲、乙、丙各一件共需105元【点睛】此题考查了三元一次方程组的应用,关键是根据题意设出未知数,列出方程组,注意要把x,y,z以整体形式出现.15.4,8,6.【分析】由三角形的周长是18,可得a+b+c=18,结合a+b=2c,b=2a,列出三元一次方程组求解即可.【详解】由题意得:1822a b ca b cb a++=⎧⎪+=⎨⎪=⎩解得:a=4,b=8,c=6.经检验符合题意.①三边长分别是4,8,6.【点睛】本题考查了三元一次方程组的应用及三角形周长的计算,正确列出三元一次方程组是解答本题的关键.涉及三角形边长的计算要检验是否符合三角形三条边的关系.。
高中数学解三元一次不等式的方法及相关题目解析在高中数学中,解三元一次不等式是一个重要的知识点。
它不仅在解决实际问题中有着广泛的应用,而且在考试中也经常出现。
本文将介绍解三元一次不等式的方法,并通过具体题目的解析,帮助读者更好地理解和掌握这一知识点。
一、解三元一次不等式的基本方法解三元一次不等式的基本方法是利用数轴和区间的概念进行分析。
具体步骤如下:1. 将不等式中的三元变量分别提取出来,得到三个关于单个变量的不等式。
2. 分别解这三个不等式,并将解集表示在数轴上。
3. 根据数轴上的解集,确定原不等式的解集。
下面通过一个具体的例子来说明这个方法。
例题1:解不等式组{x+y+z≥10, 2x+y≤8, x-2y+z≤5}。
解:首先,将不等式组中的三个不等式分别提取出来,得到:x+y+z≥10 (1)2x+y≤8 (2)x-2y+z≤5 (3)然后,我们分别解这三个不等式。
对于不等式(1),我们可以将其表示在数轴上:10────对于不等式(2),我们可以将其表示在数轴上:──── 8对于不等式(3),我们可以将其表示在数轴上:5────接下来,我们根据数轴上的解集,确定原不等式的解集。
根据不等式(1),我们知道x+y+z≥10,即(x,y,z)在数轴上的解集在10的右侧。
根据不等式(2),我们知道2x+y≤8,即(x,y)在数轴上的解集在8的左侧。
根据不等式(3),我们知道x-2y+z≤5,即(x,y,z)在数轴上的解集在5的右侧。
综上所述,原不等式的解集为:{x+y+z≥10, 2x+y≤8, x-2y+z≤5}的解集在数轴上的交集。
二、解三元一次不等式的相关题目解析下面我们通过几个相关题目的解析,进一步说明解三元一次不等式的方法和技巧。
例题2:解不等式组{3x+y+z≥12, x+2y+z≤10, 2x+y+3z≥15}。
解:首先,将不等式组中的三个不等式分别提取出来,得到:3x+y+z≥12 (1)x+2y+z≤10 (2)2x+y+3z≥15 (3)然后,我们分别解这三个不等式。
python求解三元一次不等式组Python是一种功能强大的编程语言,可以用来解决各种数学问题。
在本文中,我们将使用Python来求解三元一次不等式组。
三元一次不等式组是由三个一次不等式构成的方程组。
一次不等式是指形如ax + by + cz > d的不等式,其中a、b、c、d为常数,x、y、z为变量。
我们的目标是找到满足这个不等式组的变量x、y、z 的取值范围。
要解决这个问题,我们可以使用Python中的数学库和线性规划算法。
首先,我们需要导入相应的库:```pythonimport numpy as npfrom scipy.optimize import linprog```接下来,我们定义三个一次不等式,并将其转化为线性规划的标准形式。
标准形式是指将不等式转化为等式的形式,通过引入松弛变量来实现。
例如,将不等式ax + by + cz > d转化为ax + by + cz - s = d,其中s为松弛变量。
```pythonc = [0, 0, 0, -1] # 目标函数系数A = [[1, 2, 3, -1], [4, 5, 6, -1], [7, 8, 9, -1]] # 系数矩阵b = [10, 11, 12] # 右侧常数```然后,我们使用linprog函数来求解线性规划问题。
该函数的参数包括目标函数系数、约束条件的系数矩阵、约束条件的右侧常数。
```pythonresult = linprog(c, A_ub=A, b_ub=b)```我们可以打印出求解结果,即变量x、y、z的取值范围。
```pythonprint("x的取值范围:", (result.x[0], result.x[1]))print("y的取值范围:", (result.x[2], result.x[3]))print("z的取值范围:", (result.x[4], result.x[5]))```通过以上代码,我们可以得到三元一次不等式组的解。
三元一次不等式的几何意义的初等解释
陈德华
【期刊名称】《郴州师专学报》
【年(卷),期】1996(017)002
【摘要】设平面π的一般方程为Ax+By+Cz+D=0,我们已经知道,平面π把空间划分为两个部分,对于某一部分的点的坐标适合Ax+By+Cz+DO,对于平面π上的点则适合Ax+By+Cz+D=0.本文利用线段的定比分点坐标给出上述结论的一个初等解释.
【总页数】2页(P22,25)
【作者】陈德华
【作者单位】无
【正文语种】中文
【中图分类】O182
【相关文献】
1.基本初等矩阵的几何意义及其在教学中的运用 [J], 吕世虎;李军
2.复数几何意义在初等数学中的应用 [J], 赵秀
3.二元一次不等式几何意义的应用 [J], 潘晓春
4.三元一次不等式表征的工程问题的线性图解法 [J], 黄满良; 赵涛; 黄华宁; 齐月魁; 王虹宇
5.合乎学生实际的情与理的解释——兼与《三元均值不等式的几何解释》作者商榷[J], 吕爱生
因版权原因,仅展示原文概要,查看原文内容请购买。
三元一次不等式的解法
三元一次不等式的解法是指在三元一次不等式中,找到符合不等式的解集合。
一般情况下,我们可以通过代数或者图像的方式来解决这种不等式。
首先,我们需要了解三元一次不等式的基本形式。
它通常是这样的:ax + by + cz > d,其中 a、b、c、d 是常数,而 x、y、z 是未知数。
当然,还有其他的形式,但是它们都可以转化为这种基本形式。
我们可以通过以下方式来解决三元一次不等式:
1. 代数方法:将不等式进行变形,使其变为关于一个变量的一元二次不等式或者二元一次不等式。
然后,我们可以用求解这些一元二次或者二元一次不等式的方法来求解原来的三元一次不等式。
2. 图像方法:将不等式中的 x、y、z 分别看作立体坐标系中的x、y、z 坐标。
然后,我们可以将不等式转化为一个立体空间中的不等式,然后找到符合条件的解集合。
这种方法适用于不等式图像比较简单的情况。
不论是哪种方法,我们都需要注意以下几点:
1. 在变形的过程中一定要保证变形后的不等式与原来的不等式等价。
2. 在求解一元二次或者二元一次不等式时,要注意判别式的正负与值的大小关系。
3. 在图像解法中要注意画出立体图像,以便更好地理解不等式
的解集合。
综上所述,三元一次不等式可以用代数方法和图像方法来解决。
我们需要注意变形过程中的等价性和解的正确性,才能找到符合条件的解集合。