2014年高考一轮复习数学教案:6.6 不等式的应用
- 格式:doc
- 大小:255.00 KB
- 文档页数:7
基本不等式【2014年高考会这样考】1.考查应用基本不等式求最值、证明不等式的问题. 2.考查应用基本不等式解决实际问题. 【复习指导】1.突出对基本不等式取等号的条件及运算能力的强化训练. 2.训练过程中注意对等价转化、分类讨论及逻辑推理能力的培养.基础梳理1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +ab ≥2(a ,b 同号); (3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)一个技巧运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 22⎛⎪⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形(1)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b这两个不等式链用处很大,注意掌握它们. 三个注意(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.双基自测1.(人教A 版教材习题改编)函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞)D .(2,+∞)解析 ∵x >0,∴y =x +1x ≥2, 当且仅当x =1时取等号. 答案 C2.下列不等式:①a 2+1>2a ;②a +b ab≤2;③x 2+1x 2+1≥1,其中正确的个数是( ).A .0B .1C .2D .3解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1-1≥2-1=1.答案 B3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.12 B .1 C .2 D .4 解析 ∵a >0,b >0,a +2b =2, ∴a +2b =2≥22ab ,即ab ≤12. 答案 A4.(2011·重庆)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 答案 C5.已知t >0,则函数y =t 2-4t +1t的最小值为________.解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,当且仅当t =1时取等号.答案 -2考向一 利用基本不等式求最值【例1】►(1)已知x >0,y >0,且2x +y =1,则1x +1y 的最小值为________; (2)当x >0时,则f (x )=2xx 2+1的最大值为________.[审题视点] 第(1)问把1x +1y 中的“1”代换为“2x +y ”,展开后利用基本不等式; 第(2)问把函数式中分子分母同除“x ”,再利用基本不等式. 解析 (1)∵x >0,y >0,且2x +y =1, ∴1x +1y =2x +y x +2x +y y =3+y x +2xy ≥3+2 2. 当且仅当y x =2xy 时,取等号. (2)∵x >0, ∴f (x )=2x x 2+1=2x +1x≤22=1, 当且仅当x =1x ,即x =1时取等号. 答案 (1)3+22 (2)1利用基本不等式求函数最值时,注意“一正、二定、三相等,和定积最大,积定和最小”.常用的方法为:拆、凑、代换、平方. 【训练1】 (1)已知x >1,则f (x )=x +1x -1的最小值为________. (2)已知0<x <25,则y =2x -5x 2的最大值为________.(3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 解析 (1)∵x >1,∴f (x )=(x -1)+1x -1+1≥2+1=3 当且仅当x =2时取等号. (2)y =2x -5x 2=x (2-5x )=15·5x ·(2-5x ), ∵0<x <25,∴5x <2,2-5x >0, ∴5x (2-5x )≤⎝⎛⎭⎪⎫5x +2-5x 22=1, ∴y ≤15,当且仅当5x =2-5x , 即x =15时,y max =15.(3)由2x +8y -xy =0,得2x +8y =xy , ∴2y +8x =1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫8x +2y =10+8y x +2x y=10+2⎝ ⎛⎭⎪⎫4y x +x y ≥10+2×2×4y x ·xy =18,当且仅当4y x =xy ,即x =2y 时取等号, 又2x +8y -xy =0,∴x =12,y =6, ∴当x =12,y =6时,x +y 取最小值18. 答案 (1)3 (2)15 (3)18考向二 利用基本不等式证明不等式【例2】►已知a >0,b >0,c >0,求证:bc a +ca b +abc ≥a +b +c . [审题视点] 先局部运用基本不等式,再利用不等式的性质相加得到. 证明 ∵a >0,b >0,c >0, ∴bc a +ca b ≥2 bc a ·ca b =2c ; bc a +ab c ≥2 bc a ·ab c =2b ; ca b +ab c ≥2ca b ·ab c =2a .以上三式相加得:2⎝ ⎛⎭⎪⎫bc a +ca b +ab c ≥2(a +b +c ),即bc a +ca b +abc ≥a +b +c .利用基本不等式证明不等式是综合法证明不等式的一种情况,证明思路是从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理最后转化为需证问题.【训练2】 已知a >0,b >0,c >0,且a +b +c =1.求证:1a +1b +1c ≥9.证明 ∵a >0,b >0,c >0,且a +b +c =1, ∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+b a +c a +a b +c b +a c +b c =3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c =13时,取等号.考向三 利用基本不等式解决恒成立问题【例3】►(2010·山东)若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________. [审题视点] 先求x x 2+3x +1(x >0)的最大值,要使得xx 2+3x +1≤a (x >0)恒成立,只要xx 2+3x +1(x >0)的最大值小于等于a 即可.解析 若对任意x >0,x x 2+3x +1≤a 恒成立,只需求得y =xx 2+3x +1的最大值即可,因为x >0,所以y =xx 2+3x +1=1x +1x +3≤12 x ·1x=15,当且仅当x =1时取等号,所以a 的取值范围是⎣⎢⎡⎭⎪⎫15,+∞答案 ⎣⎢⎡⎭⎪⎫15,+∞当不等式一边的函数(或代数式)的最值较易求出时,可直接求出这个最值(最值可能含有参数),然后建立关于参数的不等式求解.【训练3】 (2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________.解析 由x >0,y >0,xy =x +2y ≥2 2xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,m ≤10,故m 的最大值为10.答案 10考向三 利用基本不等式解实际问题【例3】►某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低? [审题视点] 用长度x 表示出造价,利用基本不等式求最值即可.还应注意定义域0<x ≤5;函数取最小值时的x 是否在定义域内,若不在定义域内,不能用基本不等式求最值,可以考虑单调性.解 由题意可得,造价y =3(2x ×150+12x ×400)+5 800=900⎝ ⎛⎭⎪⎫x +16x +5 800(0<x ≤5),则y =900⎝ ⎛⎭⎪⎫x +16x +5 800≥900×2x ×16x +5 800=13 000(元),当且仅当x =16x ,即x =4时取等号. 故当侧面的长度为4米时,总造价最低.解实际应用题要注意以下几点:(1)设变量时一般要把求最大值或最小值的变量定义为函数;(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值; (3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.【训练3】 (2011·广东六校第二次联考)东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本.并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g (n )与科技成本的投入次数n 的关系是g (n )=80n +1.若水晶产品的销售价格不变,第n 次投入后的年利润为f (n )万元.(1)求出f (n )的表达式;(2)求从今年算起第几年利润最高?最高利润为多少万元?解 (1)第n 次投入后,产量为(10+n )万件,销售价格为100元,固定成本为80n +1元,科技成本投入为100n 万元.所以,年利润为f (n )=(10+n )⎝⎛⎭⎪⎫100-80n +1-100n (n ∈N *). (2)由(1)知f (n )=(10+n )⎝ ⎛⎭⎪⎫100-80n +1-100n =1 000-80⎝ ⎛⎭⎪⎫n +1+9n +1≤520(万元). 当且仅当n +1=9n +1, 即n =8时,利润最高,最高利润为520万元.所以,从今年算起第8年利润最高,最高利润为520万元.阅卷报告8——忽视基本不等式成立的条件致误【问题诊断】 利用基本不等式求最值是高考的重点,其中使用的条件是“一正、二定、三相等”,在使用时一定要注意这个条件,而有的考生对基本不等式的使用条件理解不透彻,使用时出现多次使用不等式时等号成立的条件相矛盾.,【防范措施】 尽量不要连续两次以上使用基本不等式,若使用两次时应保证两次等号成立的条件同时相等.【示例】►已知a >0,b >0,且a +b =1,求1a +2b 的最小值. 错因 两次基本不等式成立的条件不一致. 实录 ∵a >0,b >0,且a +b =1, ∴ab ≤⎝⎛⎭⎪⎫a +b 22=14. 又1a +2b ≥22ab ,而ab ≤14,∴1ab ≥4,∴1a +2b ≥28=42,故1a +2b 的最小值为4 2. 正解 ∵a >0,b >0,且a +b =1, ∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (a +b )=1+2+b a +2ab ≥3+2b a ·2ab =3+2 2.当且仅当⎩⎪⎨⎪⎧a +b =1,b a =2ab,即⎩⎨⎧a =2-1,b =2-2时, 1a +2b 的最小值为3+2 2.【试一试】 (2010·四川)设a >b >0,则a 2+1ab +1a (a -b )的最小值是( ).A .1B .2C .3D .4 [尝试解答] a 2+1ab +1a (a -b )=a 2-ab +ab +1ab +1a (a -b )=a (a -b )+1a (a -b )+ab +1ab≥2a (a -b )·1a (a -b )+2ab ·1ab=2+2=4. 当且仅当a (a -b )=1a (a -b )且ab =1ab ,即a =2b 时,等号成立. 答案 D。
6.2●知识梳理 1.均值定理:a+b≥2 ab ;不等式的证明(一)ab 2 ) (a、b∈R+) , 2 当且仅当 a=b 时取等号. 2.比较法:a-b>0 a>b,a-b<0 a<b.ab≤( 3.作商法:a>0,b>0,a >1 a>b. b特别提示1.比较法证明不等式是不等式证明的最基本的方法.作差后需要判断差的符号, 作差变形 的方向常常是因式分解后,把差写成积的形式或配成完全平方式. 2.比商法要注意使用条件,若 ●点击双基 1.若 a、b 是正数,则a2 b2 ab 2ab 、 ab 、 、 这四个数的大小顺序是 2 2 aba >1 不能推出 a>b.这里要注意 a、b 两数的符号. bA. ab ≤a2 b2 ab 2ab ≤ ≤ 2 2 abB.a2 b2 ab 2ab ≤ ab ≤ ≤ 2 2 ab a2 b2 2ab ab ≤ ab ≤ ≤ 2 ab 2 a2 b2 ab 2ab ≤ ≤ 2 2 abC.D. ab ≤解析:可设 a=1,b=2, 则ab 3 = , ab = 2 , 2 22ab 4 = , ab 31 4 5 a2 b2 = = = 2.5 . 2 2 2答案:C 2.设 0<x<1,则 a= 2 x,b=1+x,c= A.a 解析:∵0<x<1, B.b1 中最大的一个是 1 x C.cD.不能确定∴1+x>2 x = 4 x > 2 x . ∴只需比较 1+x 与 ∵1+x-1 的大小. 1 x1 x2 1 x2 1 = =- <0, 1 x 1 x 1 x 1 ∴1+x< . 1 x 答案:C 3.(2005 年春季上海,15)若 a、b、c 是常数,则“a>0 且 b2-4ac<0”是“对任意 x∈R,有 ax2+bx+c>0”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 必要条件 2 2 解析:当 a>0,b -4ac<0 时,ax +bx+c>0. 反之,ax2+bx+c>0 对 x∈R 成立不能推出 a>0,b2-4ac<0. 反例:a=b=0,c=2.故选 A. 答案:A 4.(理)已知|a+b|<-c(a、b、c∈R) ,给出下列不等式: ①a<-b-c;②a>-b+c;③a<b-c;④|a|<|b|-c;⑤|a|<-|b|-c. 其中一定成立的不等式是____________.(把成立的不等式的序号都填上) 解析:∵|a+b|<-c,∴c<a+b<-c. ∴-b+c<a<-b-c.故①②成立,③不成立. ∵|a+b|<-c,|a+b|≥|a|-|b|, ∴|a|-|b|<-c.∴|a|<|b|-c. 故④成立,⑤不成立. 答案:①②④ (文)若 a、b∈R,有下列不等式:①a2+3>2a;②a2+b2≥2(a-b-1) ;③a5+b5>a3b2+a2b3;④a+1 ≥2.其中一定成立的是__________. a 解析:①a2+3-2a=(a-1)2+2>0, ∴a2+3>2a; ②a2+b2-2a+2b+2=(a-1)2+(b+1)2≥0, ∴a2+b2≥2(a-b-1) ; 5 5 3 2 2 3 3 ③a +b -a b -a b =a (a2-b2)+b3(b2-a2) =(a2-b2) 3-b3)=(a+b) (a (a-b)2(a2+ab+b2). ∵(a-b)2≥0,a2+ab+b2≥0,但 a+b 符号不确定,∴a5+b5>a3b2+a2b3 不正确; ④a∈R 时,a+1 ≥2 不正确. a答案:①② 5.船在流水中在甲地和乙地间来回行驶一次的平均速度 v1 和在静水中的速度 v2 的大小 关系为____________. 解析:设甲地至乙地的距离为 s,船在静水中的速度为 v2,水流速度为 v(v2>v>0) , 则船在流水中在甲乙间来回行驶一次的时间 t=2v s s s + = 2 2 2 , v2 v v2 v v2 v2 2 2s v 2 v = . v2 t平均速度 v1=∵v1-v2=v2 2 v 2 v2 -v2=- <0, v2 v2∴v1<v2. 答案:v1<v2 ●典例剖析a2 b 【例 1】 设 a>0,b>0,求证: ( )2( ) 2 ≥a 2 +b 2 . b a1 1 1 1剖析:不等式两端都是多项式的形式,故可用比差法证明或比商法证明.3 3 ( a) b) ( 证法一:左边-右边= -( a + b ) ab( a b)(a ab b) ab a b) ( = ab2 ( a b)(a 2 ab b) ( a b)( a b) = = ≥0. ab ab∴原不等式成立. 证法二:左边>0,右边>0,2 ab ab 左边 ( a b)(a ab b) a ab b = = ≥ =1. 右边 ab a b) ( ab ab∴原不等式成立. 评述:用比较法证不等式,一般要经历作差(或商) 、变形、判断三个步骤.变形的主要 手段是通分、因式分解或配方.在变形过程中,也可利用基本不等式放缩,如证法二.下面的 例 3 则是公式法与配方法的综合应用. 【例 2】 已知 a、b、x、y∈R+且1 1 > ,x>y. a b求证:y x > . yb xa剖析:观察待证不等式的特征,用比较法或分析法较适合. 证法一: (作差比较法) y bx ay x ∵ - = , y b (x a)( y b) xa1 1 > 且 a、b∈R+, a b ∴b>a>0.又 x>y>0,∴bx>ay. bx ay y x ∴ >0,即 > . (x a)( y b) yb xa又 证法二: (分析法) ∵x、y、a、b∈R+,∴要证y x > , yb xa只需证明 x(y+b)>y(x+a) ,即证 xb>ya.1 1 > >0,∴b>a>0.又 x>y>0, a b 知 xb>ya 显然成立.故原不等式成立. 思考讨论而由 该例若用函数的单调性应如何构造函数? y x x 解法一:令 f(x)= ,易证 f(x)在(0,+∞)上为增函数,从而 > . yb xa xa 再令 g(x)= ∵m ,易证 g(x)在(0,+∞)上单调递减. m x1 1 > ,a、b∈R+.∴a<b. a b m m > ,命题得证. ma mbx a x 1 a>y b y 1 b∴g(a)>g(b) ,即解法二:原不等式即为,为此构造函数 f(x)=x ,x∈(0,+∞). x 1 y x > , a b易证 f(x)在(0,+∞)上为单调增函数,而∴x a x 1 a>y b y 1 b,即y x > . yb xa【例 3】 某食品厂定期购买面粉.已知该厂每天需用面粉 6 t,每吨面粉的价格为 1800 元,面粉的保管等其他费用为平均每吨每天 3 元,购面粉每次需支付运费 900 元. (1)求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少? (2)若提供面粉的公司规定:当一次购买面粉不少于 210 t 时,其价格可享受 9 折优惠(即原价的 90%) ,问该厂是否考虑利用此优惠条件?请说明理由. 解: (1)设该厂应每隔 x 天购买一次面粉,其购买量为 6x t,由题意知,面粉的保管等 其他费用为 3[6x+6(x-1)+„+6×2+6×1]=9x(x+1). 设平均每天所支付的总费用为 y1 元,则 y1=900 900 9 x +10809 +9x+10809≥2 x x1 [9x(x+1)+900]+6×1800 x==10989.900 ,即 x=10 时取等号, x 即该厂应每隔 10 天购买一次面粉,才能使平均每天所支付的总费用最少. (2)若厂家利用此优惠条件,则至少每隔 35 天,购买一次面粉,平均每天支付的总费 用为 y2 元,则当且仅当 9x= y2= =1 [9x(x+1)+900]+6×1800×0.90 x900 +9x+9729(x≥35). x100 (x≥35) , x x2>x1≥35,则 100 100 f(x1)-f(x2)=(x1+ )-(x2+ ) x1 x2令 f(x)=x+(x x1)(100 x1 x 2) = 2 x1 x 2∵x2>x1≥35, ∴x2-x1>0,x1x2>0,100-x1x2<0. ∴f(x1)-f(x2)<0,f(x1)<f(x2) ,100 ,当 x≥35 时为增函数. x ∴当 x=35 时,f(x)有最小值,此时 y2<10989.∴该厂应该接受此优惠条件. ●闯关训练 夯实基础 1.设 x>0,y>0,且 xy-(x+y)=1,则即 f(x)=x+ A.x+y≤2 2 +2 C.x+y≤( 2 +1)2 解析:∵x>0,y>0,∴xy≤( 由 xy-(x+y)=1 得( ∴x+y≥2+2 2 . B.x+y≥2 2 +2 D.x+y≥( 2 +1)2x y 2 ). 2x y 2 ) -(x+y)≥1. 2答案:B 2.已知 x、y∈R,M=x2+y2+1,N=x+y+xy,则 M 与 N 的大小关系是 A.M≥N B.M≤N C.M=N 2 2 解析:M-N=x +y +1-(x+y+xy) = =D.不能确定1 [ 2+y2-2xy)+(x2-2x+1)+(y2-2y+1) (x ] 21 [ (x-y)2+(x-1)2+(y-1)2]≥0. 2 答案:A3.设 a>0,b>0,a2+ 解析:a2+b2 =1,则 a 1 b 2 的最大值是____________. 2b2 1 3 b2 =1 a2+ = . 2 2 2∴a 1 b 2 = 2 ·a· 答案:3 2 4b 1 ≤ 2· 22a2 3 b2 1 2 = 2· 2 =3 2 . 4 2 2ab ,则两边 2 均含有运算符号“※”和“+” ,且对于任意 3 个实数 a、b、c 都能成立的一个等式可以是 ____________.4.若记号“※”表示求两个实数 a 和 b 的算术平均数的运算,即 a※b=ab ba ,b※a= , 2 2 ∴a※b+c=b※a+c. 答案:a※b+c=b※a+c. 思考:对于运算“※”分配律成立吗? 即 a※(b+c)=a※b+a※c. 答案:不成立 5.当 m>n 时,求证:m3-m2n-3mn2>2m2n-6mn2+n3. 证明:∵(m3-m2n-3mn2)-(2m2n-6mn2+n3)=m3-3m2n+3mn2-n3=(m-n)3, 又 m>n,∴m-n>0.∴(m-n)3>0, 即(m3-m2n-3mn2)-(2m2n-6mn2+n3)>0. 故 m3-m2n-3mn2>2m2n-6mn2+n3. 6.已知 a>1,λ >0,求证:loga(a+λ )>loga+λ (a+2λ ). 证明:loga(a+λ )-log(a+λ ) (a+2λ ) lg a ) lg a 2) ( ( = - lg a lg a ) (解析:∵a※b= =lg 2 a ) lg a lg a 2) ( ( lg a lg a ) (∵a>1,λ >0, ∴lga>0,lg(a+2λ )>0,且 lga≠lg(a+2λ ).∴lga·lg(a+2λ )<[ ( =[lg a lg a 2) 2 ( ) ] 22 lg a 2 2a) 2 ( lg a ) 2 2 ( ] <[ ] =lg (a+λ ). 2 2∴lg 2 a ) lg a lg a 2) ( ( >0. lg a lg a ) (∴loga(a+λ )>log(a+λ ) (a+2λ ). 培养能力 7.已知 x>0,y>0,若不等式 x + y ≤m x y 恒成立,求实数 m 的最小值. 分析:∵ x + y ≤m x y 恒成立,∴m≥xyx y恒成立.∴m 的最小值就是xyx y的最大值.解:∵ x + y ≤m x y 恒成立,∴m≥xyx y恒成立.∵x>0,y>0, ∴ x y≥2 ( x y)2x x 2 y y=x 2y.∴xyx y≤= 2.∴m 的最小值为 2 . 评述:分离参数法是求参数的范围问题常用的方法,化归是解这类问题常用的手段. 8.有点难度哟! 求证:在非 Rt△ABC 中,若 a>b,ha、hb 分别表示 a、b 边上的高,则必有 a+ha>b+hb. 证明:设 S 表示△ABC 的面积,则1 1 1 aha= bhb= absinC. 2 2 2 ∴ha=bsinC,hb=asinC. ∴(a+ha)-(b+hb)=a+bsinC-b-asinC =(a-b) (1-sinC).S=π ,∴1-sinC>0. 2 ∴(a-b) (1-sinC)>0. ∴a+ha>b+hb.∵C≠ 探究创新 9.设二次函数 f(x)=ax2+bx+c(a>0) ,方程 f(x)-x=0 的两根 x1、x2 满足 1<x1<x2 <1 . a (1)当 x∈(0,x1)时,证明 x<f(x)<x1;(2)设函数 f(x)的图象关于直线 x=x0 对称,求证 x0<x1 . 2证明: (1)令 F(x)=f(x)-x, ∵x1、x2 是方程 f(x)-x=0 的根, ∴F(x)=a(x-x1) (x-x2). 当 x∈(0,x1)时,由于 x1<x2, ∴(x-x1) (x-x2)>0. 又 a>0,得 F(x)=a(x-x1) (x-x2)>0, 即 x<f(x). 又 x1-f(x)=x1-[x+F(x) ]=x1-x+a(x1-x) (x-x2)=(x1-x) [1+a(x-x2), ]1 ,x1-x>0, a 1+a(x-x2)=1+ax-ax2>1-ax2>0, ∴x1-f(x)>0,即 f(x)<x1. 综上,可知 x<f(x)<x1.∵0<x<x1<x2<b . 2a ∵x1、x2 是方程 f(x)-x=0 的根, 即 x1、x2 是方程 ax2+(b-1)x+c=0 的根,(2)由题意知 x0=- ∴x1+x2=- ∴x0=-b 1 . a b a(x1 x2) 1 ax1 ax2 1 = = . 2a 2a 2a ax x 又∵ax2<1,∴x0< 1 = 1 . 2a 2 ●思悟小结 1.比较法有两种形式: 一是作差, 二是作商.用作差法证明不等式是证明不等式中最基本、 最常用的方法.它的依据是不等式的基本性质. 2.步骤是:作差(商)→变形→判断.变形的目的是为了判断.若是作差,就判断与 0 的 大小关系,为了便于判断,往往把形式变为积或完全平方式.若是作商,两边为正,就判断 与 1 的大小关系. 3.有时要先对不等式作等价变形再进行证明,有时几种证明方法综合使用. 4.在应用均值定理求最值时, 要把握定理成立的三个条件, 就是 “一正——各项均为正; 二定——积或和为定值;三相等——等号能否取得”.若忽略了某个条件,就会出现错误.●教师下载中心 教学点睛 1.在证明不等式的各种方法中,作差比较法是一种最基本、最重要的方法,它是利用不 等式两边的差是正数还是负数来证明不等式,其应用非常广泛,一定要熟练掌握.ab 2 ) 要讲清它们的作用和使用条件及内在联系, 2 两个公式也体现了 ab 和 a+b 的转化关系. 拓展题例 【例 1】设 a、b∈R,关于 x 的方程 x2+ax+b=0 的实根为α 、β .若|a|+|b|<1, 求证:|α |<1,|β |<1. 证法一:∵α +β =-a,α β =b, ∴|α +β |+|α β |=|a|+|b|<1. ∴|α |-|β |+|α ||β |<1, (|α |-1) (|β |+1)<0. ∴|α |<1.同理,|β |<1. 证法二:设 f(x)=x2+ax+b,则有 f(1)=1+a+b>1-(|a|+|b|)>1-1=0, f(-1)=1-a+b>1-(|a|+|b|)>0. ∵0≤|a|<1,∴-1<a<1.2.对于公式 a+b≥2 ab ,ab≤(1 a 1 <- < . 2 2 2 ∴方程 f(x)=0 的两实根在(-1,1)内,即|α |<1,|β |<1. 评述:证法一先利用韦达定理,再用绝对值不等式的性质恰好能分解因式;证法二考虑 根的分布,证两根在(-1,1)内. y y x x 【例 2】 是否存在常数 C,使得不等式 + ≤C≤ + 对任意正 2x y x 2 y x 2 y 2x y∴- 数 x、y 恒成立?试证明你的结论. 解:当 x=y 时,可由不等式得出 C=2 . 3下面分两个方面证明. y x 2 先证 + ≤ , 此不等式 3x (x+2y) (2x+y) (2x+y) +3y ≤2 (x+2y) x2+y2 2x y x 2 y 3 ≥2xy. 再证y x 2 + ≥ , x 2 y 2x y 3此不等式 3x(2x+y)+3y(x+2y)≥2(x+2y) (2x+y) 2xy≤x2+y2. 综上,可知存在常数 C=2 ,使对任何正数 x、y 不等式恒成立. 3。
课题一:不等式的应用一.复习目标:1.不等式的运用已渗透到函数、三角、数列、解析几何、立体几何等内容中,体现了不等式内容的重要性、思想方法的独特性,要熟悉这方面问题的类型和思考方法;2.应用题中有一类是寻找最优化结果,通常是把问题转化为不等式模型,再求出极值.二.知识要点:1.利用均值不等式求最值:常用公式:222a b ab +≥,2112a b a b+≤≤≤+,你知道这些公式的使用条件吗?等号成立的条件呢?使用2a b +≥求最值时要满足“一正、二定、三相等”. 2.关于有关函数、不等式的实际应用问题:这些问题大致分为两类:一是建立不等式解不等式;二是建立目标函数求最大、最小值.三.课前预习:1.数列{}n a 的通项公式是290n n a n =+,数列{}n a 中最大的项是 ( ) ()A 第9项 ()B 第10项 ()C 第8项和第9项 ()D 第9项和第10项2.已知,,x y z R +∈,且满足()1xyz x y z ++=,则()()x y y z ++的最小值为( )()A 2 ()B 3 ()C 4 ()D 1 3.若实数,,,m n x y 满足2222,m n a x y b +=+=()a b ≠,则mx ny +的最大值是( ) ()A 2a b + ()B ()C ()D ab a b+ 4.设,,a b c R ∈,2ab =且22c a b ≤+恒成立,则c 的最大值为 .5.若lg lg 2x y +=,则11x y+的最小值是 . 6.若正数,a b 满足3ab a b =++,则ab 的取值范围是 .四.例题分析:例1.(1)若,a b 是正实数,且3a b +=的最大值;(2)若a 是正实数,且222310a b +=,求的最大值及相应的实数,a b 的值.例2.商店经销某商品,年销售量为D 件,每件商品库存费用为I 元,每批进货量为Q 件,每次进货所需的费用为S 元,现假定商店在卖完该货物时立即进货,使库存存量平均为0.5Q ,问每批进货量Q 为多大时,整个费用最省?小结:例3.已知0a >且1a ≠,数列{}n a 是首项为a ,公比也为a 的等比数列,令lg n n n b a a = *()n N ∈,问是否存在实数a ,对任意正整数n ,数列{}n b 中的每一项总小于它后面的项?证明你的结论.小结:五.课后作业: 班级 学号 姓名1.设,x y R ∈,221x y +=,(1)(1)m xy xy =+-,则m 的取值范围是 ( )()A 1[,1]2 ()B (0,1] ()C 3[,1]4 ()D 3[,2]42.设0a b c >>>,x =,y =,z =,则222,,,,,xy yz zx x y z 中最小的是( C ) ()A xy ()B yz()C 2x ()D 2z 3.若设,x y R -∈,且224x y +=,4()10S x y x y =⋅-++,那么S 的最值情况为( A )()A有最大值2,最小值22(2 ()B 有最大值2,最小值0()C有最大值10,最小值22(2- ()D 最值不存在 4.已知,a b 是大于0的常数,则当x R +∈时,函数()()()x a x b f x x++=的最小值为 .51的直角三角形面积的最大值为 .6.光线每通过一块玻璃板,其强度要减少10%,把几块这样的玻璃板重叠起来,能使通过它们的光线强度在原强度的31以下.(lg 30.477)=7.k 为何实数时,方程220x kx k -+-=的两根都大于12.8.某种汽车,购买是费用为10万元,每年应交保险费、养路费及汽油费9千元,汽车的维修费第一年为2千元,第二年为4前元,第三年为6千元……,依等差数列逐年递增.问:这种汽车使用多少年报废最合算(即使用多少年时年平均费用最少)?9.设二次函数2()f x x bx c =++(,b c R ∈),已知不论,αβ为何实数,恒有(sin )0f α≥,且(2cos )0f β+≤,(1)求证:1b c +=-;(2)求证:3c ≥;(3)若函数(sin )f α的最大值为8,求,b c 的值.。
------!值得拥有!------精品文档)92页、(理)91~式 第4课时 不等式的综合应用(对应学生用书(文)第六章 不 等4 0)的值域是________.改编x)函数y =+(x ≠1. (必修5P 习题7 102x [4,+∞)答案:(-∞,-4]∪4444????-)+(-x =2时,y =x +-≤-x ·=4,当x<0y 解析:当x>0时,=x +≥ ????xxxx4??-·x )=-4. 2(-??x ,第二次提价p%改编)某种产品按下列三种方案两次提价.方案甲:第一次提价习题2. (必修5P9102q ++qpp ,p>q>0第二次提价%.其中;方案丙:第一次提价%,q%;方案乙:第一次提价q%,第二次提价p% 22 .上述三种方案中提价最多的是________ 方案丙答案:??qpqp +????pq ??+11+;方设原来价格为A ,方案甲:经两次提价后价格为A =A 解析:+1+????100100??100001002q +p ??qpqp +??????++11A +;方案丙:经两次提价后价格为案乙:经两次提价后价格为A =A[11+????100100100 ??200p +q ??qp +1?? ,所以方案丙提价最多.因为>+pq.2)· 2 ??10 0002|x|1??kR ∈恒成立,则实数xkf(2x)f(x),若不等式=,∈设海门联考3. (2013·)xRf(x)+≤对于任意的 ??2------值得收藏!!珍贵文档------ ------精品文档!值得拥有!------的取值范围是________. 答案:k ≥2|x||2x||x|111??????2.≥,所以k≥k+∈(0,,因为1]解析:不等式化为??????2224. (2013·苏州期中)设变量x,y满足|x|+|y|≤1,则x+2y的最大值为________.答案:2解析:作出可行域为正方形,4个顶点分别为(1,0),(0,1),(-1,0),(0,-1),则z=x+2y 过点(0,1)时最大值为2.[备课札记]题型1含参数的不等式问题2-x-2>0x,??的解集中所含整数解只有-2例1若不等式组,求k的取值范围.?20<x)+2x5k+(5+2k??2,>2x<-1或x解:由x--x2>0有20.k)<(2x+5)(x+(5++2k)x+5k<0有由2x<2.因为-2是原不等式组的解,所以k5<-k.<x有-+5)·(x+k)<0(2x由22,因为原不等式组的整数解只有-,k<2k<-≤3,即-3≤所以-2 .,2)3故k的取值范围是[-变式训练1n+)1(-*n aa<2+N的取值范围.恒成立,求实数∈对任意n不等式(-1)n11??+2a>-.<:当解n为奇数时,-a2+,即??nn1??+23-;a>3而-≤-,则??n------ 值得收藏!!珍贵文档------------精品文档!值得拥有!------3111-=,-,而2-≥2当n为偶数时,a<22nn23a<.所以23.综上可得:-3<a< 2 不等式在函数中的应用题型2a2x-1]上是增函数.=在区间[-1,例2已知函数f(x)22+x A;(1) 求实数a的值组成的集合12tm1]1,,不等式m+=的两个相异实根,若对任意a∈A及t∈[-是关于(2) 设x、xx的方程f(x)21x 的取值范围.-x|恒成立,求实数m+1≥|x2122ax4-2x+,解:(1) f′(x)=22)2+(x时,-1,1][-1,1]上是增函数,所以当x∈[因为f(x)在恒成立,′(x)≥0f222≤0-2,即x恒成立.-ax令φ(x)=x--ax?,-1≤0φ(1)=-a??a≤1.解得-1≤?,1≤0φ(-1)=a-?≤1}.={a|-1≤a所以A12=x0.-ax-2(2) 由f(x)=得x22x)x4x-从而2.|x-x|(=x+ax设x,x是方程的两个根,-ax-2=0所以x+x=,xx=-22111222112122,所以+8≤3,即|xa3,-x|=,∈=a+8,因为a[-11]max12不等式对任意a∈A及t∈[-1,1]不等式恒成立,2+tm-2m≥0恒成立.即22-2,则+m=m-+tm2=mt设g(t)2?g(1)=m+m-2≥0,??2?g (-1)=m-m-2≥0.?解得m≥2或m≤-2.------值得收藏!!珍贵文档------------!值得拥有!------精品文档).∪[2,+∞故m的取值范围是(-∞,-2]备选变式(教师专享)ba .恒成立,则λ的取值范围是________,且ab=1,不等式+≤λ设a,b>02211b +a+)[1,+∞答案:12baba1.λ1,所以≥+=+=≤=ab解析:因为=1,所以2222abbaabb+a++1b+ab1a+不等式在实际问题中的应用题型32消防站接到报警立即派消防队员前去,分钟的速度顺风蔓延,/例3某森林出现火灾,火势正以100 m2分钟,所消耗的灭火材料,50 m/在火灾发生后5分钟到达救火现场,已知消防队员在现场平均每人灭火而烧元,器械和装备等费用人均100元/分钟,另附加每次救火所耗损的车辆、125劳务津贴等费用为人均2 /m,应该派多少消防队员前去救火才能使总损失最少?毁森林的损失费60元1005×10=,y,则t=解:设派x名消防队员前去救火,用t分钟将火扑灭,总损失为2x-100-50x y=灭火劳务津贴+车辆、器械装备费+森林损失费100t)+100x60(500+=125xt+60 00010+100x+30 000=125x×+2-2xx-62 500 31 450++=100(x-2)2x-62 5002≥36 450=,x(-2)·+31 4501002x-62 500当且仅当100(x-2)=,即x=27时,y有最小值36 450,故应派27人前去救火才能使总损失x-2最少,最少损失36 450元.备选变式(教师专享)某学校拟建一块周长为400 m的操场,如图所示,操场的两头是半圆形,中间区域是矩形,学生做操一般安排在矩形区域,为了能让学生的做操区域尽可能大,试问如何设计矩形的长和宽?------值得收藏!!珍贵文档------------!值得拥有!------精品文档y m,解:设中间矩形区域的长,宽分别为x m,yπ2m.中间的矩形区域面积为S m,则半圆的周长为2yπ,∵操场周长为400 m,所以2x+2×=4002400??<y0<x0<<200,??400=.即2x+πyπ??1y)(π=xy=·(2x)·∴Sπ22??20 000+π1y2x??=.?,100x=?,=πy2x???由解得200.y=?,4002x+π≤·??2ππ2?π?,100x=?当且仅当时等号成立.∴200=y?π200 m时,矩形区域面y=?积最大.即把矩形的长和宽分别设计为100 m和π2中恰有两个整数,则实数,若集合的不等式xA-ax+2a<0的解集为Ax1. (2013·连云港模拟)关于.的取值范围是a________251????9,-1,-答案:∪????3322a<417<a1≤≤|-x9=a≤-8a3,解得4或-+1<|xx的两根为x解析:设方程+-ax2a=0x、,则2211174+9a,中恰有两个整数即A4和因为9时,考虑抛物线的对称轴,54<<≤,集合4-17.当≤+17<a 2222178a4a--aa125a<因为-≤考虑抛物线的对称轴,-当-;1≤a<417<5所以-时,≤解得3≤-,<a92232222------值得收藏!!珍贵文档------------!值得拥有!------精品文档28a-a1aa. 和0,所以1)<a<--,解得-1-(-≤≤1<0,集合A中恰有两个整数即-1322211??,-若a)<f(x)的解集为A,天津)已知函数f(x)=x(1+a|x|).A,设关于x的不等式f(x+2. (2013·??22 .则实数a的取值范围是________??5-1??答案:0,??2x(1=1<a<0,函数f(x)a<0∈A,所以f(0+a)<f(0),即a(1+a|a|)<0,显然,解得-解析:由题意得011+f(x,而-1<a<0,所以+a|x|)是奇函数且图象中两条抛物线的对称轴x=,x=-之间的距离大于12a2a5+-51111a1a1a1a1????,-,---,1<a<0<a<.-(,--),解得,所以a)<f(x)的解集为又-????222a2a222222a22a51-<a<0.所以211 .+2b的最小值为b>0,且+=________1,则a,3. (2013·宿迁模拟)若a>0 1+bb+2a123+答案:21111b2a+????++????+1+3(b+1)]·=3+4b+=(2a+4b+3)·=[(2a+b)+解析:2a1+b2a2a+bb+1+b????1b+123b+1+)3(.≥+2+32b,所以a+3≥42b+2a||a1+取得最小值.时,b=2,b>0,则当a=________设4. (2013·天津)a+2|a|b2-答案:b+a||ab|a||a|ab|a|1|a|13b取等号,且2a<0·=,当且仅当=++=解析:++=+≥-b4|a|b444|a|bb2|a|4|a|4|a|4|a|b4.b=,=-即a22-a(x+y)+y)1≥0恒成+,、的任意>,>=++若对满足条件徐州模拟1. (2013·)xy3xy(x0y0)xy(x立,则实数a的取值范围是________.------值得收藏!!珍贵文档------------!值得拥有!------精品文档37??,-∞答案:??62??1x+y??++ya≤x,所以x+y≥解析:x+y+3=xy≤6,因为上述不等式右边的的最小值为,则??2y+x37137≤.=,故a6+666,0-y≥2x??33y2x+?,0-4≥x+y .2. (2013苏州模拟)已知实数x、y满足不等式则的取值范围是________yx??3≤x55??,3答案:??933y2x+1112y2y??????221,,2,2上递在+t=∈t,则=+解析:作出可行域,求得∈t,求导可得,令2??????333ttxyxx33y+2x552??2,3∈t2)上递增,故=+.减,在(1,2??9txy73y--5x+3x+y2>3)图象上一动点,记m=y=x+-1(x,则3. (2013·南通模拟)设P(x,y)为函数2--y1x当m最小时,点P的坐标为________.答案:(2,3)222-3x-3x1-103x+xx-6x+解析:m=+=6++.223-13xx--1x-x2-3xx-1当且仅当=,即x=2时m取得最小,此时点P的坐标为(2,3).23-1xx-xy4. (2013·镇江模拟)已知x、y为正数,则+的最大值为________.2y+y+2xx2答案:3yxy1t解析:设t=∈(0,+∞),则令f(t)=+=+,求导得f(t)在(0,1)上递增,在(1,x12tt+++2x +yx22y2. =上递减,故所求的最大值为f(1)∞+)3另不等式应用大致可分为两类:一类是建立不等式求参数的取值范围,或解决一些实际应用问题;1.------值得收藏!!珍贵文档------------精品文档!值得拥有!------一类是建立函数关系,利用基本不等式求最值问题.不等式的综合题主要是不等式与函数、解析几何、数列、三角函数等知识的综合.解决这些问题的关键是找出综合题的各部分知识及联系,充分利用数学思想和数学方法解题.2. 建立不等式的主要途径有:利用基本不等式;利用问题的几何意义;利用判别式;利用函数的有界性;利用函数的单调性等.3. 解答不等式的实际应用问题一般分四步,即审题、建模、求解、检验.请使用课时训练(B)第4课时(见活页). [备课札记]------值得收藏!!珍贵文档------。
第一节不等关系与不等式[知识能否忆起]1.实数大小顺序与运算性质之间的关系a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b . 2.不等式的基本性质[小题能否全取]1.(教材习题改编)下列命题正确的是( ) A .若ac >bc ⇒a >b B .若a 2>b 2⇒a >b C .若1a >1b ⇒a <bD .若a <b ⇒a <b答案:D2.若x +y >0,a <0,ay >0,则x -y 的值( ) A .大于0B .等于0C .小于0D .不确定解析:选A 由a <0,ay >0知y <0,又x +y >0,所以x >0.故x -y >0. 3.已知a ,b ,c ,d 均为实数,且c >d ,则“a >b ”是“a -c >b -d ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 若a -c >b -d ,c >d , 则a >b .但c >d ,a >b ⇒/ a -c >b -d .如a =2,b =1,c =-1,d =-3时,a -c <b -d . 4.12-1________3+1(填“>”或“<”). 解析:12-1=2+1<3+1. 答案:<5.已知a ,b ,c ∈R ,有以下命题:①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ; ③若a >b ,则a ·2c >b ·2c .其中正确的是____________(请把正确命题的序号都填上). 解析:①若c =0则命题不成立.②正确.③中由2c >0知成立. 答案:②③1.使用不等式性质时应注意的问题:在使用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.如“同向不等式”才可相加,“同向且两边同正的不等式”才可相乘;可乘性中“c 的符号”等也需要注意.2.作差法是比较两数(式)大小的常用方法,也是证明不等式的基本方法.要注意强化化归意识,同时注意函数性质在比较大小中的作用.典题导入[例1] 已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,试比较S 3a 3与S 5a 5的大小.[自主解答] 当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5;当q >0且q ≠1时,S 3a 3-S 5a 5=a 1(1-q 3)a 1q 2(1-q )-a 1(1-q 5)a 1q 4(1-q )=q 2(1-q 3)-(1-q 5)q 4(1-q )=-q -1q 4<0,所以S 3a 3<S 5a 5. 综上可知S 3a 3<S 5a 5.若本例中“q >0”改为“q <0”,试比较它们的大小. 解:由例题解法知当 q ≠1时,S 3a 3-S 5a 5=-q -1q 4.当-1<q <0时,S 3a 3-S 5a 5<0,即S 3a 3<S 5a 5;当q =-1时,S 3a 3-S 5a 5=0, 即S 3a 3=S 5a 5;当q <-1时,S 3a 3-S 5a 5>0,即S 3a 3>S 5a 5.由题悟法比较大小的常用方法 (1)作差法:一般步骤是:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:一般步骤是:①作商;②变形;③判断商与1的大小;④结论. (3)特值法:若是选择题、填空题可以用特值法比较大小;若是解答题,可先用特值探究思路,再用作差或作商法判断.[注意] 用作商法时要注意商式中分母的正负,否则极易得出相反的结论.以题试法1.(2012·吉林联考)已知实数a 、b 、c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a 、b 、c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >b解析:选A c -b =4-4a +a 2=(2-a )2≥0, ∴c ≥b .将题中两式作差得2b =2+2a 2,即b =1+a 2. ∵1+a 2-a =⎝⎛⎭⎫a -122+34>0,∴1+a 2>a . ∴b =1+a 2>a .∴c ≥b >a .典题导入[例2] (1)(2011·大纲全国卷)下面四个条件中,使a >b 成立的充分而不必要的条件是( )A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 3(2)(2012·包头模拟)若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc <0;③a -c >b -d ;④a ·(d -c )>b (d -c )中成立的个数是( )A .1B .2C .3D .4[自主解答] (1)由a >b +1得a >b +1>b ,即a >b ;且由a >b 不能得出a >b +1.因此,使a >b 成立的充分不必要条件是a >b +1.(2)∵a >0>b ,c <d <0,∴ad <0,bc >0, ∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd <0,故②正确.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ), a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ), 故④正确,故选C. [答案] (1)A (2)C由题悟法1.判断一个关于不等式的命题的真假时,先把要判断的命题与不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题的真假,当然判断的同时可能还要用到其他知识,比如对数函数、指数函数的性质.2.特殊值法是判断命题真假时常用到的一个方法,在命题真假未定时,先用特殊值试试,可以得到一些对命题的感性认识,如正好找到一组特殊值使命题不成立,则该命题为假命题.以题试法2.若a 、b 、c 为实数,则下列命题正确的是( ) A .若a >b ,c >d ,则ac >bd B .若a <b <0,则a 2>ab >b 2 C .若a <b <0,则1a <1bD .若a <b <0,则b a >ab解析:选B A 中,只有a >b >0,c >d >0时,才成立;B 中,由a <b <0,得a 2>ab >b 2成立;C ,D 通过取a =-2,b =-1验证均不正确.典题导入[例3] 已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.求f (-2)的取值范围. [自主解答] f (-1)=a -b ,f (1)=a +b . f (-2)=4a -2b .设m (a +b )+n (a -b )=4a -2b .则⎩⎪⎨⎪⎧ m +n =4,m -n =-2,解得⎩⎪⎨⎪⎧m =1,n =3. ∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤f (-2)≤10.即f (-2)的取值范围为[5,10].由题悟法利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.以题试法3.若α,β满足⎩⎪⎨⎪⎧-1≤α+β ≤1,1≤α+2β ≤3,试求α+3β的取值范围.解:设α+3β=x (α+β)+y (α+2β)=(x +y )α+(x +2y )β.则⎩⎪⎨⎪⎧ x +y =1,x +2y =3,解得⎩⎪⎨⎪⎧x =-1,y =2. ∵-1≤-(α+β)≤1,2≤2(α+2β)≤6, 两式相加,得1≤α+3β≤7. ∴α+3β的取值范围为[1,7].1.已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .不确定解析:选B 由题意得M -N =a 1a 2-a 1-a 2+1=(a 1-1)·(a 2-1)>0,故M >N . 2.若m <0,n >0且m +n <0,则下列不等式中成立的是( ) A .-n <m <n <-m B .-n <m <-m <n C .m <-n <-m <nD .m <-n <n <-m解析:选D 法一:(取特殊值法)令m =-3,n =2分别代入各选项检验即可. 法二:m +n <0⇒m <-n ⇒n <-m ,又由于m <0<n ,故m <-n <n <-m 成立. 3.“1≤x ≤4”是“1≤x 2≤16”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 由1≤x ≤4可得1≤x 2≤16,但由1≤x 2≤16可得1≤x ≤4或-4≤x ≤-1,所以“1≤x ≤4”是“1≤x 2≤16”的充分不必要条件.4.已知0<a <1b ,且M =11+a +11+b ,N =a 1+a +b 1+b ,则M 、N 的大小关系是( )A .M >NB .M <NC .M =ND .不能确定解析:选A ∵0<a <1b ,∴1+a >0,1+b >0,1-ab >0,∴M -N =1-a 1+a +1-b 1+b =2-2ab(1+a )(1+b )>0.5.若1a <1b <0,则下列结论不.正确的是( ) A .a 2<b 2 B .ab <b 2 C .a +b <0D .|a |+|b |>|a +b |解析:选D ∵1a <1b <0,∴0>a >b .∴a 2<b 2,ab <b 2,a +b <0,|a |+|b |=|a +b |.6.设a ,b 是非零实数,若a <b ,则下列不等式成立的是( ) A .a 2<b 2 B .ab 2<a 2b C.1ab 2<1a 2bD.b a <a b解析:选C 当a <0时,a 2<b 2不一定成立,故A 错. 因为ab 2-a 2b =ab (b -a ),b -a >0,ab 符号不确定, 所以ab 2与a 2b 的大小不能确定,故B 错. 因为1ab 2-1a 2b =a -b a 2b 2<0,所以1ab 2<1a 2b ,故C 正确.D 项中b a 与ab的大小不能确定.7.若1<α<3,-4<β <2,则α-|β|的取值范围是________. 解析:∵-4<β <2,∴0≤|β|<4. ∴-4<-|β|≤0.∴-3<α-|β|<3. 答案:(-3,3)8.(2012·深圳模拟)定义a *b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b . 已知a =30.3,b =0.33,c =log 30.3,则(a *b )*c=________.(结果用a ,b ,c 表示)解析:∵log 30.3<0<0.33<1<30.3,∴c <b <a , ∴(a *b )*c =b *c =c . 答案:c9.已知a +b >0,则a b 2+b a 2与1a +1b 的大小关系是________.解析:a b 2+ba 2-⎝⎛⎭⎫1a +1b =a -b b 2+b -a a 2 =(a -b )⎝⎛⎭⎫1b 2-1a 2 =(a +b )(a -b )2a 2b 2.∵a +b >0,(a -b )2≥0, ∴(a +b )(a -b )2a 2b 2≥0.∴a b 2+b a 2≥1a +1b . 答案:a b 2+b a 2≥1a +1b10.若a >b >0,c <d <0,e <0.求证:e (a -c )2>e(b -d )2. 证明:∵c <d <0,∴-c >-d >0. 又∵a >b >0,∴a -c >b -d >0. ∴(a -c )2>(b -d )2>0. ∴0<1(a -c )2<1(b -d )2. 又∵e <0,∴e (a -c )2>e (b -d )2. 11.已知b >a >0,x >y >0,求证:x x +a >y y +b .证明:x x +a -yy +b =x (y +b )-y (x +a )(x +a )(y +b )=bx -ay(x +a )(y +b ).∵b >a >0,x >y >0, ∴bx >ay ,x +a >0,y +b >0, ∴bx -ay(x +a )(y +b )>0,∴x x +a >y y +b. 12.已知函数f (x )=ax 2+bx +c 满足f (1)=0,且a >b >c ,求ca 的取值范围.解:∵f (1)=0,∴a +b +c =0, ∴b =-(a +c ).又a >b >c , ∴a >-(a +c )>c ,且a >0,c <0, ∴1>-a +c a >c a ,即1>-1-c a >ca.∴⎩⎨⎧2ca<-1,ca >-2,解得-2<c a <-12.1.已知a 、b 为实数,则“a >b >1”是“1a -1<1b -1”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A 由a >b >1⇒a -1>b -1>0⇒1a -1<1b -1,当a =0,b =2时,1a -1<1b -1,∴1a -1<1b -1⇒/ a >b >1,故选A. 2.(2012·洛阳模拟)若-1<a <b <1,-2<c <3则(a -b )·c 的取值范围是________. 解析:∵-1<a <b <1,∴-2<a -b <0,∴2>-(a -b )>0. 当-2<c <0时,2>-c >0, ∴4>(-c )[-(a -b )]>0, 即4>c ·(a -b )>0; 当c =0时,(a -b )·c =0;当0<c <3时,0<c ·[-(a -b )]<6, ∴-6<(a -b )·c <0.综上得,当-2<c <3时,-6<(a -b )·c <4. 答案:(-6,4)3.某企业去年年底给全部的800名员工共发放2 000万元年终奖,该企业计划从今年起,10年内每年发放的年终奖都比上一年增加60万元,企业员工每年净增a 人.(1)若a =10,在计划时间内,该企业的人均年终奖是否会超过3万元? (2)为使人均年终奖年年有增长,该企业每年员工的净增量不能超过多少人? 解:(1)设从今年起的第x 年(今年为第1年)该企业人均发放年终奖为y 万元. 则y =2 000+60x 800+ax (a ∈N *,1≤x ≤10).假设会超过3万元,则2 000+60x800+10x >3,解得x >403>10.所以,10年内该企业的人均年终奖不会超过3万元. (2)设1≤x 1<x 2≤10, 则f (x 2)-f (x 1)=2 000+60x 2800+ax 2-2 000+60x 1800+ax 1=(60×800-2 000a )(x 2-x 1)(800+ax 2)(800+ax 1)>0,所以60×800-2 000a >0,得a <24.所以,为使人均年终奖年年有增长,该企业每年员工的净增量不能超过23人.1.已知0<a <b ,且a +b =1,下列不等式成立的是( ) A .log 2a >0 B .2a -b >1C .2ab >2D .log 2(ab )<-2解析:选D 由已知,0<a <1,0<b <1,a -b <0,0<ab <14,log 2(ab )<-2.2.若a >b >0,则下列不等式中一定成立的是( ) A .a +1b >b +1aB.b a >b +1a +1 C .a -1b >b -1aD.2a +b a +2b >a b解析:选A 取a =2,b =1,排除B 与D ;另外,函数f (x )=x -1x 是(0,+∞)上的增函数,但函数g (x )=x +1x 在(0,1]上递减,在[1,+∞)上递增,所以,当a >b >0时,f (a )>f (b )必定成立,但g (a )>g (b )未必成立,可得,a -1a >b -1b ⇒a +1b >b +1a.3.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则 ( )A .甲先到教室B .乙先到教室C .两人同时到教室D .谁先到教室不确定解析:选B 设甲用时间为T ,乙用时间为2t ,步行速度为a ,跑步速度为b ,距离为s ,则T =s 2a +s2b =s 2a +s 2b =s (a +b )2ab ,ta +tb =s ⇒2t =2s a +b,T -2t =s (a +b )2ab -2s a +b =s ×(a +b )2-4ab 2ab (a +b )=s (a -b )22ab (a +b )>0,即乙先到教室.4.若x >y, a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤ay >bx这五个式子中,恒成立的所有不等式的序号是________. 解析:令x =-2,y =-3,a =3,b =2,符合题设条件x >y ,a >b ,∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y ,因此 ①不成立.又∵ax =-6,by =-6,∴ax =by ,因此③也不正确.又∵a y =3-3=-1,b x =2-2=-1, ∴a y =b x,因此⑤不正确. 由不等式的性质可推出 ②④成立.答案:②④。
课题 课 型 新 授高考要求 (1)不等式的基本性质、含有绝对值的不等式、利用不等式求最大(小)值。
(2)通过本专题的教学,使学生理解在自然界中存在着大量的不等量关系和等量关系,不等关系和相等关系都是基本的数学关系,它们在数学研究和数学应用中起着重要的作用;(3)使学生了解不等式及其证明的几何意义与背景,以加深对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析问题解决问题的能力.教学重难点不等式的应用 学法指导不等式历来是高考的重点内容。
对于本章来讲,考察有关不等式性质的基础知识、基本方法,而且还考察逻辑推理能力、分析问题、解决问题的能力。
本章内容在复习时,要在思想方法上下功夫。
预测2011年的高考命题趋势:1、从题型上来看,填空题可能考察,把不等式的性质与函数、三角结合起来综合考察不等式的性质、函数单调性等,多以填空题的形式出现,解答题以含参数的不等式的证明、求解为主;2、利用基本不等式解决像函数)0(,)(>+=a xa x x f 的单调性或解决有关最值问题是考察的重点和热点,应加强训练。
基础训练1、设点(,)m n 在直线1x y +=位于第一象限内的图像上运动,则22log log nm +的最大值是2、已知12320061x x x x ⋅⋅⋅⋅⋅=且122006,,...x x x 都是正数,则122006(1)(1)...(1)x x x +++的最小值是3、已知6084,2833x y <<<<则x y -的取值范围为 ,x y的取值范围为 4、已知0,0,a b >>给出下列四个不等式:① 122a b ab ++≥ ② 11()()4a b a b ++≥ ③ 22a b a b ab+≥+ ④ 124a a +≥-+其中正确的不等式有__________________例2、若不等式221(1)x m x ->-对满足||2m ≤的所有m 都成立,求x 的取值范围。
6.6 不等式的应用●知识梳理1.运用不等式求一些最值问题.用a +b ≥2ab 求最小值;用ab ≤(2b a +)2≤222b a +求最大值.2.某些函数的单调性的判定或证明也就是不等式的证明.3.求函数的定义域,往往直接归纳为解不等式(组).4.三角、数列、立体几何和解析几何中的最值都与不等式有密切联系.5.利用不等式可以解决一些实际应用题. ●点击双基1.已知函数f (x )=log 21(x 2-ax +3a )在[2,+∞)上是减函数,则实数a 的范围是A.(-∞,4]B.(-4,4]C.(0,12)D.(0,4]解析:∵f (x )=log 21(x 2-ax +3a )在[2,+∞)上是减函数, ∴u =x 2-ax +3a 在[2,+∞)上为增函数,且在[2,+∞)上恒大于0.∴⎪⎩⎪⎨⎧>+-≤.032422a a a, ∴-4<a ≤4. 答案:B2.把长为12 cm 的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是A.233 cm 2B.4 cm 2C.32 cm 2D.23 cm 2解析:设两段长分别为x cm ,(12-x ) cm ,则S =43(3x )2+43(312x -)2=183(x 2-12x +72)=183[(x -6)2+36]≥23. 答案:D3.(理)如果0<a <1,0<x ≤y <1,且log a x log a y =1,那么xy A.无最大值也无最小值 B.有最大值无最小值 C.无最大值有最小值 D.有最大值也有最小值解析:∵log a x +log a y ≥2y x a a log log =2, ∴log a xy ≥2.∴0<xy ≤a 2. 答案:B(文)已知a >b >c >0,若P =a cb -,Q =bca -,则 A.P ≥Q B.P ≤Q C.P >Q D.P <Q解析:特殊值检验.a =3,b =2,c =1. P =31,Q =1,P <Q . 答案:D4.已知实数x 、y 满足yx=x -y ,则x 的取值范围是_______. 解析:由yx=x -y ,得y 2-xy +x =0. ∵y ∈R ,∴Δ=x 2-4x ≥0.∴0≤x ≤4. ∵x =0时y =0不符合题意,∴0<x ≤4. 答案:0<x ≤45.已知不等式组⎪⎩⎪⎨⎧<+-<+-08603422x x x x ,的解集是不等式2x 2-9x +a <0的解集的子集,则实数a的取值范围是____________.解析:由⎪⎩⎪⎨⎧<+-<+-,,08603422x x x x 得2<x <3.则⇒⎩⎨⎧≤≤0302)()(f f a ≤9. 答案:(-∞,9] ●典例剖析【例1】 函数y =122++x bax 的最大值为4,最小值为-1,求常数a 、b 的值.剖析:由于函数是分式函数,且定义域为R ,故可用判别式法求最值.解:由y =122++x bax 去分母整理得yx 2-2ax +y -b =0. ①对于①,有实根的条件是Δ≥0, 即(-2a )2-4y (y -b )≥0. ∴y 2-by -a 2≤0.又-1≤y ≤4, ∴y 2-by -a 2=0的两根为-1和4. ∴⎩⎨⎧-=⨯-=+-.41412a b ,解得⎩⎨⎧==32b a ,或⎩⎨⎧=-=.32b a , 评述:这是关于函数最大值、最小值的逆向题.深化拓展已知x 、y ∈R +且x 2+y8=1,求x +y 的最小值.本题不难求解(读者不妨求解). 由本题的启发,你能解下列问题吗?已知a 、b 是正常数,a +b =10,又x 、y ∈R +, 且x a +y b=1,x +y 的最小值为18. 求a 、b 的值. 略解:x +y =(x +y )(y x 82+)=10+xy 2+y x8≥10+2y x x y 82⋅=18. 当且仅当yxx y 82=时取等号. 由⎪⎩⎪⎨⎧==+224182x y y x ,解得⎩⎨⎧==.126y x ,∴当x =6,y =12时,x +y 的最小值为18.同上题,x +y =(x +y )(x a +y b)=a +b +y bx x ay +≥a +b +2ab . 由⎪⎩⎪⎨⎧=+=++,,10182b a ab b a 得⎩⎨⎧==,,82b a 或⎩⎨⎧==.28b a ,【例2】 已知a >0,求函数y =ax a x +++221的最小值.解:y =a x +2+ax +21,当0<a ≤1时,y =a x +2+ax +21≥2,当且仅当x =±a -1时取等号,y min =2. 当a >1时,令t =a x +2(t ≥a ).y =f (t )=t +t 1.f '(t )=1-21t>0.∴f (t )在[a ,+∞)上为增函数. ∴y ≥f (a )=aa 1+,等号当t =a 即x =0时成立,y min =aa 1+.综上,0<a ≤1时,y min =2;a >1时,y min =aa 1+.【例3】 已知函数f (x )=ax 2+bx +c (a >0且bc ≠0).(1)若| f (0)|=| f (1)|=| f (-1)|=1,试求f (x )的解析式;(2)令g (x )=2ax +b ,若g (1)=0,又f (x )的图象在x 轴上截得的弦的长度为l ,且0<l ≤2,试确定c -b 的符号.解:(1)由已知| f (1)|=| f (-1)|,有|a +b +c |=|a -b +c |,(a +b +c )2=(a -b +c )2,可得4b (a +c )=0.∵bc ≠0,∴b ≠0.∴a +c =0. 又由a >0有c <0.∵|c |=1,于是c =-1,则a =1,|b |=1. ∴f (x )=x 2±x -1.(2)g (x )=2ax +b ,由g (1)=0有2a +b =0,b <0. 设方程f (x )=0的两根为x 1、x 2.∴x 1+x 2=-a b =2,x 1x 2=ac . 则|x 1-x 2|=212214x x x x -+)(=ac44-. 由已知0<|x 1-x 2|≤2,∴0≤ac<1. 又∵a >0,bc ≠0,∴c >0.∴c -b >0. ●闯关训练 夯实基础1.已知方程sin 2x -4sin x +1-a =0有解,则实数a 的取值范围是 A.[-3,6] B.[-2,6] C.[-3,2] D.[-2,2] 解析:∵a =(sin x -2)2-3,|sin x |≤1, ∴-2≤a ≤6. 答案:B2.当x ∈[-1,2]时,不等式a ≥x 2-2x -1恒成立,则实数a 的取值范围是 A.a ≥2 B.a ≥1 C.a ≥0 D.a ≥-2 解析:当x ∈[-1,2]时,x 2-2x -1=(x -1)2-2∈[-2,2]. ∵a ≥x 2-2x -1恒成立,∴a ≥2. 答案:A3.b g 糖水中有a g 糖(b >a >0),若再添m g 糖(m >0),则糖水变甜了.试根据这一事实,提炼出一个不等式____________.解析:b a <mb m a ++. 答案:b a <mb m a ++ 4.若a >0,b >0,ab ≥1+a +b ,则a +b 的最小值为____________.解析:1+a +b ≤ab ≤(2b a +)2, ∴(a +b )2-4(a +b )-4≥0.∴a +b ≤2244-或a +b ≥2244+. ∵a >0,b >0,∴a +b ≥2+22. 答案:2+225.已知正数x 、y 满足x +2y =1,求x 1+y1的最小值. 解:∵x 、y 为正数,且x +2y =1,∴x 1+y 1=(x +2y )(x 1+y 1) =3+x y 2+yx≥3+22, 当且仅当x y 2=yx,即当x =2-1,y =1-22时等号成立.∴x 1+y1的最小值为3+22. 6.(2004年春季上海)已知实数p 满足不等式212++x x <0,试判断方程z 2-2z +5-p 2=0有无实根,并给出证明.解:由212++x x <0,解得-2<x <-21.∴-2<p <-21. ∴方程z 2-2z +5-p 2=0的判别式Δ=4(p 2-4). ∵-2<p <-21,41<p 2<4, ∴Δ<0.由此得方程z 2-2z +5-p 2=0无实根. 培养能力7.(2003年全国)已知c >0,设P :函数y =c x 在R 上单调递减,Q :不等式x +|x -2c |>1的解集为R .如果P 和Q 有且仅有一个正确,求c 的取值范围.解:函数y =c x 在R 上单调递减⇔0<c <1.不等式x +|x -2c |>1的解集为R ⇔函数y =x +|x -2c |在R 上恒大于1.∵x +|x -2c |=⎩⎨⎧>≥-,,c x cc x cx 22222 ∴函数y =x +|x -2c |在R 上的最小值为2c . ∴不等式x +|x -2c |>1的解集为R ⇔2c >1⇔c >21. 如果P 正确,且Q 不正确,则0<c ≤21. 如果P 不正确,且Q 正确,则c ≥1.∴c 的取值范围为(0,21]∪[1,+∞). 8.已知函数f (x )=x 2+bx +c (b 、c ∈R )且当x ≤1时,f (x )≥0,当1≤x ≤3时,f (x )≤0恒成立.(1)求b 、c 之间的关系式;(2)当c ≥3时,是否存在实数m 使得g (x )=f (x )-m 2x 在区间(0,+∞)上是单调函数?若存在,求出m 的取值范围;若不存在,请说明理由.解:(1)由已知f (1)≥0与f (1)≤0同时成立,则必有f (1)=0,故b +c +1=0. (2)假设存在实数m ,使满足题设的g (x )存在.∵g (x )=f (x )-m 2x =x 2+(b -m 2)x +c 开口向上,且在[22bm -,+∞)上单调递增,∴22b m -≤0.∴b ≥m 2≥0.∵c ≥3,∴b =-(c +1)≤-4.这与上式矛盾,从而能满足题设的实数m 不存在. 探究创新9.有点难度哟!已知a >b >0,求a 2+)(b a b -16的最小值.解:∵b (a -b )≤(2b a b -+)2=42a ,∴a 2+)(b a b -16≥a 2+264a ≥16.当且仅当⎩⎨⎧=-=82a b a b ,,即⎪⎩⎪⎨⎧==222b a ,时取等号.深化拓展a >b >0,求b (a -b )·216a 的最大值.提示:b (a -b )≤42a .答案:4●思悟小结1.不等式的应用大致可分为两类:一类是建立不等式求参数的取值范围或解决一些实际应用问题;另一类是建立函数关系,利用均值不等式求最值问题.2.建立不等式的主要途径有:(1)利用问题的几何意义;(2)利用判别式;(3)利用函数的有界性;(4)利用函数的单调性.3.解不等式应用问题的三个步骤: (1)审题,必要时画出示意图;(2)建立不等式模型,即根据题意找出常量与变量的不等关系;(3)利用不等式的有关知识解题,即将数学模型转化为数学符号或图形符号.4.利用重要不等式求最值时,要注意条件:一正、二定、三相等,即在x +y ≥2xy 中,x 和y 要大于零,要有定积或定和出现;同时要求“等号”成立.5.化归思想在本节占有重要位置,等式和不等式之间的转化、不等式和不等式之间的转化、函数与不等式之间的转化等,对于这些转化,一定要注意条件.●教师下载中心 教学点睛1.应用不等式解决数学问题时,关键在于要善于把等量关系转化为不等量关系,以及不等关系的转化等,把问题转化为不等式的问题求解.2.应用不等式解决应用问题时,应先弄清题意,根据题意列出不等式或函数式,再利用不等式的知识求解.3.与不等式相关联的知识较多,如函数与不等式、方程与不等式、数列与不等式、解析几何与不等式,要善于寻找它们之间的联系,从而达到综合应用的目的.拓展例题【例1】 (2003年福建质量检测题)已知函数f (x )=|log 2(x +1)|,实数m 、n 在其定义域内,且m <n ,f (m )=f (n ).求证:(1)m +n >0;(2)f (m 2)<f (m +n )<f (n 2). (1)证法一:由f (m )=f (n ),得|log 2(m +1)|=|log 2(n +1)|,即log 2(m +1)=±log 2(n +1),log 2(m +1)=log 2(n +1), ①或log 2(m +1)=log 211+n .②由①得m +1=n +1,与m <n 矛盾,舍去. 由②得m +1=11+n ,即(m +1)(n +1)=1.③∴m +1<1<n +1.∴m <0<n .∴mn <0. 由③得mn +m +n =0,m +n =-mn >0. 证法二:(同证法一得)(m +1)(n +1)=1.∵0<m +1<n +1,∴211)()(+++n m >))((11++n m =1.∴m +n +2>2.∴m +n >0.(2)证明:当x >0时,f (x )=|log 2(x +1)|=log 2(x +1)在(0,+∞)上为增函数. 由(1)知m 2-(m +n )=m 2+mn =m (m +n ),且m <0,m +n >0,∴m (m +n )<0. ∴m 2-(m +n )<0,0<m 2<m +n . ∴f (m 2)<f (m +n ). 同理,(m +n )-n 2=-mn -n 2=-n (m +n )<0, ∴0<m +n <n 2.∴f (m +n )<f (n 2). ∴f (m 2)<f (m +n )<f (n 2). 【例2】 求证:对任意x 、y ∈R ,都有497721++x x ≤5-3y +21y 2,并说明等号何时成立. 证明:72x +49≥2·7x ·7=2·7x +1, ∴497721++x x ≤21. 又∵5-3y +21y 2=21(y -3)2+21≥21,∴497721++x x ≤5-3y +21y 2.当且仅当x =1,y =3时取等号.。
第六章不等式知识结构高考能力要求1.理解不等式的性质及其证明.2.掌握两个(注意不扩展到三个)正数的算术平均数不小于它们的几何平均数定理,并会简单应用.3.掌握分析法、综合法、比较法证明简单的不等式.4.掌握简单不等式的解法.5.理解不等式| a |-| b| ≤| a+b |≤| a |+| b |.高考热点分析不等式部分的内容是高考较为稳定的一个热点,考查的重点是不等式的性质、证明、解法及最值方面的应用.高考试题中有以下几个明显的特点:1.不等式与函数、方程、三角、数列、几何、导数、实际应用等有关内容综合在一起的综合试题多,单独考查不等式的问题很少,尤其是不等式的证明题.2.选择题,填空题和解答题三种题型中均有各种类型不等式题,特别是应用题和综合题几乎都与不等式有关.3.不等式的证明考得比较频繁,所涉及的方法主要是比较法、综合法和分析法,而放缩法作为一种辅助方法不容忽视.高考复习建议1.复习不等式的性质时,要克服“想当然”和“显然成立”的思维定势,要以比较准则和实数的运算法则为依据.2.不等式的证明方法除比较法、分析法、综合法外,还有反证法、换元法、放缩法、判别式法、构造法、几何法,这些方法可作了解,但要控制量和度.3.解(证)某些不等式时,要把函数的定义域、值域和单调性结合起来.4.注意重要不等式和常用思想方法在解题中的作用.5.利用平均值定理解决问题时,要注意满足定理成立的三个条件:“一正、二定、三相等”.6.对于含有绝对值的不等式(问题),要紧紧抓住绝对值的定义实质,充分利用绝对值的几何意义.7.要强化不等式的应用意识,同时要注意到不等式与函数方程的对比与联系.6.1 不等式的概念和性质知识要点1、实数的大小比较法则:设a,b∈R,则a>b⇔;a=b⇔;a<b⇔ .实数的大小比较法则,它是比较两个实数大小的依据,要比较两个实数的大小,只要考察它们的就可以了.实数的大小比较法则与实数运算的符号法则一起构成了证明其它不等式性质的基础.2、不等式的5个性质定理及其3条推论定理1(对称性)a>b ⇔定理2(同向传递性)a>b,b>c定理3 a>b⇔a+c > b+c推论a>b,c>d⇒定理4 a>b,c>0⇒a>b,c<0⇒推论1 (非负数同向相乘法)a>b≥0,c>d≥0⇒推论2 a>b>0⇒nn ba>(n∈N且n>1)定理5 a>b>0⇒>n a n b(n∈N且n>1)例题讲练【例1】(1) 若x<y<0. 试比较(x2-y2)(x+y)与(x2+y2)(x-y)的大小.(2) 设a>0,b>0,且a≠b,试比较a a b b与a b b a的大小.【例2】 设f (x )=1+log x 3,g(x )=2log x 2,其中x >0,x ≠1.比较f (x )与g(x )的大小. .【例3】 函数)(x f =ax 2+bx 满足:1≤)1(-f ≤2,2≤)1(f ≤4,求)2(-f 的取值范围.【例4】 已知函数f (x )=x 2+ax +b ,当p 、q 满足p +q =1时,试证明:pf (x )+qf (y )≥f (px +qy )对于任意实数x 、y 都成立的充要条件是o ≤p ≤1.小结归纳 1.不等式的性质是证明不等式与解不等式的重要而又基本的依据,必须要正确、熟练地掌握,要弄清每一性质的条件和结论.注意条件的放宽和加强,条件和结论之间的相互联系.2.使用“作差”比较,其变形之一是将差式因式分解,然后根据各个因式的符号判断差式的符号;变形之二是将差式变成非负数(或非正数)之和,然后判断差式的符号.3.关于数(式)比较大小,应该将“相等”与“不等”分开加以说明,不要笼统地写成“A ≥B(或B ≤A)”.基础训练题 一、选择题1. 设a 、b ∈+R 且a ≠b ,x =a 3+b 3,y =a 2b +ab 2;则x与y 的大小关系为 ( ) A .x >y B .x =y C .x < y D .不能确定 2. 如果-1<a <b <0,则有 ( )A .a b 11<<b 2<a 2B .a b 11<<a 2<b 2 C .ba 11<<b 2<a 2D .ba 11<<a 2<b 23. 下列判断:① a 1>b ,a 2>b ,则a 1>a 2;② 若ac >bc ,则c >0;③ 由lg 41>lg 51,2>1;有2lg 41>lg 51;④ a >b ,则a 1<b1,其中不能成立的个数是 ( )A .1个B .2个C .3个D .4个4. 若p =a +21-a (a >2),q =2242-+-a a ,则 ( )A .p >qB .p <qC .p ≥qD .p ≤q5. 已知三个不等式:ab >0,bc -ad >0,a c-bd >0(其中a 、b 、c 、d 均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个数是( )A .0B .1C .2D .36. 若a ,b ∈R ,a >b ,则下列不等式成立的是 ( )A .a 1<b 1B .a 2>b 2C .12+c a >12+c bD .a | c |>b | c |二、填空题7. 若1<α<3,-4<β<2,则α-|β|的取值范围是 .8. a >b >0,m >0,n >0,则a b ,ba ,m a mb ++,n b na ++的由大到小的顺序是 .9.使不等式a 2>b 2,ba >1,lg(a -b )>0,2a >2b -1都成立的a 与b 的关系式是 .10.若不等式(-1)na <2+nn 1)1(+-对于任意正整数n 恒成立,则实数a 的取值范围是 .三、解答题11.已知a >2,b >2,试比较a +b 与ab 的大小. .12.设a 1≈2,令a 2=1+111a +. (1) 证明2介于a 1、a 2之间; (2) 求a 1、a 2中哪一个更接近于2;(3) 你能设计一个比a 2更接近于2的一个a 3吗?并说明理由.13.某家庭准备利用假期到某地旅游,有甲、乙两家旅行社提供两种优惠方案,甲旅行社的方案是:如果户主买全票一张,其余人可享受五五折优惠;乙旅行社的方案是:家庭旅游算集体票,可按七五折优惠.如果甲、乙两家旅行社的原价(一张票)相同,请问该家庭选择哪家旅行社外出旅游合算?提高训练题14.已知a >b >c ,a +b +c =0,方程ax 2+bx +c =0的两个实数根为x 1、x 2.(1)证明:-21<a b<1;(2)若x 21+x 1x 2+x 22=1,求x 21-x 1x 2+x 22; (3)求| x 21-x 22|.15.函数f (x )=x 2+(b -1)x +c 的图象与x 轴交于(x 1,0)、(x 2,0),且x 2-x 1>1. 当t <x 1时,比较t 2+bt +c 与x 1的大小.6.2 算术平均数与几何平均数知识要点1.a >0,b >0时,称 为a ,b 的算术平均数;称 为a ,b 的几何平均数.2.定理1 如果a 、b ∈R ,那么a 2+b 2 2ab (当且仅当 时 取“=”号)3.定理2 如果a 、b ∈+R ,那么2ba +≥ (当且仅当a =b 时取“=”号)即两个数的算术平均数不小于它们的几何平均数.4.已知x 、y ∈+R ,x +y =P ,xy =S. 有下列命题: (1) 如果S 是定值,那么当且仅当x =y 时,x +y 有最小值 .(2) 如果P 是定值,那么当且仅当x =y 时,xy 有最大值 .例题讲练【例1】 设a 、b ∈R +,试比较2ba +,ab ,222b a +,ba 112+的大小.【例2】 已知a ,b ,x ,y ∈R +(a ,b 为常数),1=+y b x a ,求x +y 的最小值.【例3】 在某两个正数x 、y 之间,若插入一个正数a ,使x ,a ,y 成等比数列,若插入两个正数b 、c ,使x 、b 、c 、y 成等差数列,求证:(a +1)2≤(b +1)(c +1).【例4】 甲、乙两地相距S (千米),汽车从甲地匀速行驶到乙地,速度最大不得超过c (千米/小时).已知汽车每小时的运输成本(元)由可变部分与固定部分组成.可变部分与速度v (千米/小时)的平方成正比,且比例系数为正常数b ;固定部分为a 元.(1) 试将全程运输成本Y (元)表示成速度V(千米/小时)的函数.(2) 为使全程运输成本最省,汽车应以多大速度行驶?小结归纳1.在应用两个定理时,必须熟悉它们的常用变形,同时注意它们成立的条件.2.在使用“和为常数、积有最大值”和“积为常数、和有最小值”这两个结论时,必须注意三点:“一正”——变量为正数,“二定”——和或积为定值,“三相等”——等号应能取到,简记为“一正二定三相等”.基础训练题一、选择题1.设,b ,a 00>>则以下不等式中不恒成立....的是 ( ) A .4)11)((≥++ba b aB .2332ab b a ≥+C .b a b a 22222+≥++D .b a |b a |-≥- 2. 若x 2log+y 2log≥4,则x +y 的最小值为( )A .8B .42C .2D .43. 设a 、b ∈R ,已知命题p :a =b ;命题q :(2b a +)2≤222b a +( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 4. 给出四个命题:(1)1222++x x 的最小值为2;(2)xx 432--的最大值为342- (3) x x lg 10log +的最小值为2;(4) xx 22sin 4sin +的最小值为4. 其中正确命题的个数是 ( ) A .0 B .1 C .2 D .35.设x ,y ∈R +,且xy -(x +y )=1,则 ( )A .x +y ≥2(2+1)B .xy ≤2+1C .x +y ≤(2+1)2D .xy ≥2(2+1) 6. 某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x 等于( )A .20吨B .15吨C .25吨D .40吨二、填空题7. 设0<x <2,则x (8-3x )的最大值为____________,相应的x 为____________. 8. 要使不等式x +y ≤k y x +对所有正数x ,y 都成立,试问k 的最小值是 .9. 若a >b >0,则a 2+)(16b a b -的最小值是________.10.已知0,0>>b a 且1222=+b a ,则21b a +的最大值________.三、解答题11.设实数x ,y ,m ,n 满足条件122=+n m ,922=+y x ,求ny mx +的最大值.12.若a ,b ,c 是互不相等的正数,求证:a 4+b 4+c 4)(222222c b a abc a c c b b a ++>++>13.已知a ,b ,x ,y ∈R +(a ,b 为常数),a +b =10,1=+y bx a ,若 x +y 的最小值为18,求a ,b 的值.提高训练题 14.已知a 、b 、c ∈R ,求证:)(2222222c b a a c c b b a ++≥+++++15. 某单位决定投资3200元建一长方体状仓库,高度恒定,它的后墙利用旧墙不花钱,正面用铁珊,每米造价40元,两侧墙砌砖,每米造价45元,顶部每平方米造价20元,计算:(1)仓库面积S 的最大允许值是多少?(2)为了使仓库面积S 达到最大,而实际投资又不超过预算,那么正面用铁珊应设计为多长?6.3 不等式证明(一)知识要点 1.比较法是证明不等式的一个最基本的方法,分比差、比商两种形式.(1)作差比较法,它的依据是: ⎪⎩⎪⎨⎧<⇔<-=⇔=->⇔>-b a b a b a b a b a b a 000它的基本步骤:作差——变形——判断,差的变形的主要方法有配方法,分解因式法,分子有理化等.(2) 作商比较法,它的依据是:若a >0,b >0,则⎪⎪⎪⎩⎪⎪⎪⎨⎧<⇔<=⇔=>⇔>b a b ab a b ab a b a111 它的基本步骤是:作商——变形——判断商与1的大小.它在证明幂、指数不等式中经常用到.2.综合法:综合法证题的指导思想是“由因导果”,即从已知条件或基本不等式出发,利用不等式的性质,推出要证明的结论.3.分析法:分析法证题的指导思想是“由果索因”,即从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如果能够确定这些充分条件都已具备,那么就可以判定所要证的不等式成立. 例题讲练【例1】 已知0,0>>b a ,求证:b a ab b a +≥+【例2】 已知a 、b ∈R +,求证:)(22)1)((a b b a b a b a +≥+++【例3】 已知△ABC 的外接圆半径R =1,41=∆ABC S ,a 、b 、c 是三角形的三边,令c b a s ++=,cb a t 111++=.求证:s t >【例4】 设二次函数)0()(2>++=a c bx ax x f ,方程0)(=-x x f 的两个根1x 、2x 满足ax x 1021<<<. (1) 当x ∈(0,x 1)时,证明:x <f (x )<x 1(2) 设函数f (x )的图象关于直线x =x 0对称,证明:x 0<21x .小结归纳 1.比较法是证明不等式的一个最基本的方法,而又以作差比较最为常见.作差比较的关键在于作差后如何变形来达到判断差值符号之目的,变形的方向主要是因式分解和配方.2.综合法证明不等式要找出条件和结论之间的内在联系,为此要着力分析已知与求证之间,不等式左右两端的差异和联系,合理进行变换,去异存同,恰当选择已知不等式,找到证题的突破口.3.分析法是“执果索因”重在对命题成立条件的探索,寻求不等式成立的充分条件,因此有时须先对原不等式化简.常用的方法有:平方,合并,有理化去分母等.但要注意所有这些变形必须能够逆推,书写格式要严谨规范.4.分析法和综合法是对立统一的两个方法.在不等式的证明中,我们常用分析法探索证明的途径后,用综合法的形式写出证明过程.这种先分析后综合的思路具有一般性,是解决数学问题的一种重要数学思想.基础训练题 一、选择题1. 已知∈b a 、+R 则下列各式中不成立的是( )A .221≥++ab b aB .4)11)((≥++ba b aC .ab ab b a 222≥+ D .ab ba ab≥+2 2. 设0<2a <1,M =1-a 2,N =1+a 2,P =a-11,Q =a+11,那么 ( ) A .Q <P <M <N B .M <N <Q <P C .Q <M <N <P D .M <Q <P <N3. 设a >0,且 a ≠1,P =log a (a 3+1),Q =log a (a 2+1),则P ,Q 的大小关系是 ( ) A .P >Q B .P =Q C .P <Q D .P 与Q 的大小与a 有关4. 设a 、b 、c 是△ABC 的三边,且S =a 2+b 2+c 2,P =ca bc ab ++,则( ) A .S ≥2P B .P <S <2P C .S >P D .P ≤S <2P 5. 已知∈b a 、+R ,那么“122<+b a ”是“b a ab +>+1”的 ( ) A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件6.已知p 、q 是两个正数,且关于x 的方程022=++q px x 和022=++p qx x 都有实根,则q p +的最小可能值是( ) A .5 B .6 C .8 D .16二、填空题7. 若1>a ,10<<b ,则abb a l o g l o g +的范围是 .8. 若1=++c b a ,则222c b a ++的最小值为 .9. 已知a <b <c 且a +b +c =0,则方程ax 2+bx +c =0有_______个实根.10.若x 、y 满足2x y =,则代数式87)22(log 2-+y x 的符号是 .三、解答题11.已知a 、b 、x 、y ∈R +且a 1>b1,x >y .求证:a x x +>by y+.12.已知a 、b 、c ∈R ,求证:c b ab c b a 234222++≥+++13.已知a +b +c =0,求证:ab +bc +ca ≤0提高训练题14.已知正数a 、b 、c 满足c b a 2<+,求证:(1) ab c >2 (2) ab c c a ab c c -+<<--2215.是否存在常数C ,使得不等式y x x +2+yx y2+≤C ≤y x x 2++y x y+2对任意正数x 、y 恒成立?试证明你的结论.6.4 不等式证明(二)知识要点证明不等式的其它方法:反证法、换元法、放缩法、判别式法等.反证法:从否定结论出发,经过逻辑推理导出矛盾,证实结论的否定是错误的,从而肯定原命题是正确的证明方法.换元法:对结构较为复杂,量与量之间关系不甚明了的命题,通过恰当引入新变量,代换原命题中的部分式子,简化原有结构,使其转化为便于研究的形式的证明方法.放缩法:为证明不等式的需要,有时需舍去或添加一些代数项,使不等式的一边放大或缩小,利用不等式的传递性,达到证题的目的,这种方法叫放缩法.判别式法:根据已知的式子或构造出来的一元二次方程的根,一元二次不等式的解集,二次函数的性质等特征,确定其判别式所应满足的不等式,从而推出所证的不等式成立.例题讲练【例1】 已知f (x )=x 2+px +q , (1) 求证:f (1)+f (3)-2f (2)=2;(2) 求证:|f (1)|、|f (2)|、|f (3)|中至少有一个不小于21.【例2】 (1) 已知x 2+y 2=1,求证:2211a ax y a +≤-≤+-. (2) 已知a 、b ∈R ,且a 2+b 2≤1, 求证:2222≤-+b ab a .【例3】 若2≥∈n N n ,且,求证:1131211121222<+⋅⋅⋅++<+-n n【例4】 证明:23112122≤+++≤x x x .小结归纳 1.凡是含有“至少”,“至多”,“唯一”,“不存在”或其它否定词的命题适宜用反证法.2.在已知式子中,如果出现两变量之和为正常数或变量的绝对值不大于一个正常数,可进行三角变换,换元法证明不等式时,要注意换元的等价性.3.放缩法证题中,放缩必须有目标,放缩的途径很多,如用均值不等式,增减项、放缩因式等.4.含有字母的不等式,如果可以化成一边为零,另一边是关于某字母的二次三项式时,可用判别式法证明不等式成立,但要注意根的范围和题设条件的限制.基础训练题 一、选择题1. 设∈c b a 、、+R ,那么三个数b a 1+、c b 1+、ac 1+ ( )A .都不大于2B .都不小于2C .至少有一个不大于2D .至少有一个不小于2 2. 已知∈d c b a 、、、+R ,S =c b a a +++db a b+++a d c c +++b dc d++,则有( )A .20<<sB .21<<sC .32<<sD .43<<s3. 若122=++y xy x 且R y x ∈、,则22y x n +=的取值范围是 ( ) A.10≤<n B.32≤≤nC.2≥nD.232≤≤n4. 已知函数f (x )=(21)x ,a 、b +∈R ,A =f (2b a +),B=f (ab ),C =f (ba ab+2),则A 、B 、C 的大小关系是( )A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A 5. 设x >0,y >0,x +y =1,则a y x ≤+恒成立的a的最小值是( )A .22B .2C .2D .226. 设实数x ,y 满足x 2+(y -1)2=1,当x +y +c ≥0时,c 的取值范围是( )A .)12[∞+-,,B . ]12(--∞,,C .)12[∞++,, D .]12(+-∞,,二、填空题 7. 设00>>y x 、,y x y x A +++=1,yyx x B +++=11,则A 、B 大小关系为 .8. 实数y x yx-=,则x 的取值范围是 . 9. 若f (n )=12+n -n ,g (n )=n -12-n ,ϕ(n )=n21,则f (n ),g (n ),ϕ(n )的大小顺序为____________. 10.设a ,b 是两个实数,给出下列条件:①a +b >1; ②a +b =2;③a +b >2;④ a 2+b 2 >2;⑤ab >1,其中能推出:“a 、b 中至少有一个实数大于1”的条件是____.三、解答题11.设二次函数)0()(2≠∈++=a R c b a c bx ax x f 且、、,若函数)(x f y =的图象与直线x y =和x y -=均无公共点.(1) 求证:142>-b ac(2) 求证:对于一切实数x 恒有||41||2a c bx ax >++12.已知二次函数c bx ax x f ++=2)(且0)1(=-f ,问是否存在实数c b a 、、使不等式)1(21)(2x x f x +≤≤对一切实数都成立,并证明你的结论.13.已知f (x ) =12+x , 且a ≠b 求证: | f (a )-f (b ) | <| a -b |.提高训练题14.设f (x )=| x 3-1|,实数a 、b 满足f (a )=f (b )且a <b ,① 求证:a +b <2② 若3f (a )=4f (2ba +),求a 、b 的值15.已知a 、b 为正数,求证:(1) 若a +1>b ,则对于任何大于1的正数x ,恒有ax +1-x x>b 成立;(2) 若对于任何大于1的正数x ,恒有ax +1-x x>b成立,则a +1>b .6.5 绝对值不等式的应用知识要点1、有关绝对值不等式的主要性质:① | x |= ⎪⎩⎪⎨⎧<-=>)0()0(0)0(x x x x x② | x |≥0③ | |a |-|b ||≤|a ±b |≤| a |+| b |④| ab |= ,ba= (b ≠0)特别:ab ≥0,|a +b |= ,|a -b |= . ab ≤0,|a -b |= ,|a +b |= . 2、最简绝对值不等式的解法.① | f (x ) |≥a ⇔ ; ② | f (x ) |≤a ⇔ ; ③ a ≤| f (x ) |≤b . ④ 对于类似a | f (x ) |+b | g (x ) | > c 的不等式,则应找出绝对值的零点,以此划分区间进行讨论求解. 例题讲练【例1】 解不等式:| x 2-3x -4|> x +1【例2】设f(x)=x2-x+b,| x-a |<1,求证:| f(x) -f(a) |<2(| a |+1).【例3】已知f(x)=x,g(x)=x+a(a>0),⑴当a=4时,求)() ()(xfx gaxf-的最小值;⑵若不等式) () ()(xfx gaxf->1对x∈[1, 4]恒成立,求a的取值范围.【例4】设a、b∈R,已知二次函数f(x)=ax2+bx +c,g(x)=cx2+bx+a,当|x|≤1时,|f(x)|≤2⑴求证:|g(1)|≤2;⑵求证:当|x|≤1时,| g(x)|≤4.小结归纳1.利用性质||a|-|b||≤|a+b|≤|a|+|b|时,应注意等号成立的条件.2.解含绝对值的不等式的总体思想是:将含绝对值的不等式转化为不含绝对值的不等式求解.3.绝对值是历年高考的重点,而绝对值不等式更是常考常新,教学中,应注意绝对值与函数问题的结合.基础训练题一、选择题1.方程132+-xxx=132+-xxx的解集是()A.(][)∞+⋃-,30,1B.)3,0()1,(⋃--∞C.),3()1,1(∞+⋃-D.),3()1,(∞+⋃--∞2.x∈R,则(1+x)(1-|x|)>0的解集为()A.{x|-1<x<1} B.{x|x<1}C.{x| x<-1或x>1} D.{x| x<1且x≠-1} 3.f(x)为R上的增函数,y=f(x)的图象过点A(0,-1)和下面哪一点时,能确定不等式|f(x-1)|<1的解集为{x|1<x<4} ()A.(3, 1) B.(4, 1)C.(3, 0) D.(4, 0)4.若不等式|x-4|-|x-3|≤a对一切实数x都成立,则实数a的取值范围是()A.a>1 B.a<1C.a≤1 D.a≥15.下面四个式子中:⑴ |b-a|=| a-b |,⑵| a+b |+| a -b|≥2|a|,⑶aa=-2)(,⑷|)||(|21ba+≥||ab成立的有几个()A.1 B.2C.3 D.46.在下列四个函数中,满足性质:“对于区间(1,2)上的任意x1,x2(x1≠x2),| f(x1)-f(x2)|<| x1-x2|恒成立”的只有()A.f(x)=x1B.f(x)=| x |C.f(x)=2x D.f(x)=x2二、填空题7.已知| a |≠| b |,m=||||||baba--,n=||||||baba++,则m,n的大小关系是.8.不等式x2-4| x |+3<0的解集为.9.设|x-2|<a时,不等式|x2-4|<1成立,则正数a的取值范围是.10.已知方程| x |=ax+1有一个负根且无正根,则实数a 的取值范围是.三、解答题11.解不等式:|2x+1|+| x-2 |+| x-1 |>4.12.若a、b∈R,α, β是方程x2+a x+b=0的两根,且|a|+| b |<1,求证:| α |<1且|β|<1.13.已知适合不等式| x 2-4x +p |+| x -3 |≤5的x 的最大值是3,求p 的值.提高训练题14.(1) 已知:| a |<1,| b |<1,求证:|b a ab--1|>1; (2) 求实数λ的取值范围,使不等式|ba ab --λλ1|>1对满足| a |<1,| b |<1的一切实数a 、b 恒成立;(3) 已知| a |<1,若|abba ++1|<1,求b 的取值范围.15.已知函数f (x )=x 3+ax +b 定义在区间[-1,1]上,且f (0)=f (1),又P(x 1,y 1),Q(x 2,y 2)是其图象上任意两点(x 1≠x 2).(1)设直线PQ 的斜率为k ,求证:| k |<2; (2)若0≤x 1<x 2≤1,求证:| y 1-y 2 |<1.6.6 含参数的不等式知识要点含有参数的不等式可渗透到各类不等式中去,在解不等式时随时可见含参数的不等式.而这类含参数的不等式是我们教学和高考中的一个重点和难点.解含参数的不等式往往需要分类讨论求解,寻找讨论点(常见的如零点,等值点等),正确划分区间,是分类讨论解决这类问题的关键.在分类讨论过程中要做到不重,不漏.例题讲练【例1】 已知A ={x | 2ax 2+(2-ab )x -b >0},B ={x | x <-2或x >3},其中b >0,若A ⊇B ,求a 、b 的取值范围.【例2】 已知关于x 的不等式ax ax --25<0的解集为M ,(1) 当a =4时,求集合M ;(2) 若3∈M 且5∉M ,求实数a 的取值范围.【例3】 若不等式2x -1>m (x 2-1)对满足-2≤m ≤2的所有m 都成立,求x 的取值范围.【例4】 解关于x 的不等式ax 2-2≥2x -ax (a ∈R).小结归纳解含参数的不等式的基本途径是分类讨论,应注意寻找讨论点,以讨论点划分区间进行讨论求解.能避免讨论的应设法避免讨论.基础训练题 一、选择题1. 如果 a >0,b >0,则不等式-b <x1<a 的解集是( ) A .{x |-b 1<x <0或0<x <b1} B .{x | x <-b1或x >a 1}C .{x |-a 1<x <0或0<x <b 1} D .{x |-a 1<x <b1}2. 已知函数f (x )=x 2+bx +c ,且f (-1)=f (3),则( )A .f (1)>c > f (-1)B .f (1)< c < f (-1)C .f (1)<f (-1) < cD .f (1)> f (-1)> c3.设关于x 的不等式ax >b 的解集中有一个元素是3,则( )A .a >0且3a >bB .a <0且3a <bC .a >0且b <0D .以上都不对4. 若不等式x 2+ax +1≥0对于一切x ∈(0,21)成立,则a 的取值范围是 ( ) A .[0,+∞) B .[-2,2]C .[-25,+∞) D .[-25,-2] 5. 设a 1,b 1,c 1,a 2,b 2,c 2均为非零实数,不等式a 1x 2+b 1x +c 1>0和a 2x 2+b 2x +c 2>0的解集分别为集合M和N ,那么“212121c cb b a a ==”是“M =N ”的( )A .充要条件B .必要非充分条件C .充分非必要条件D .既非充分也非必要条件6. 已知a >0,且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<21,则实数a 的取值范围是 ( )A .]21,0(∪[)∞+,2 B .)1,21[∪(]2,1C .)1,41[∪(]4,1 D .]41,0(∪[)∞+,4二、填空题7. 不等式11<-x ax的解集是{x | x <1或x >2},则a = . 8. 设f (x )=3ax -2a +1,若存在x 0∈(-1,1),使f (x 0)=0,则实数a 的取值范围是 .9. 若不等式122)31(3+->x ax x 对一切实数x 恒成立,则实数a 的取值范围是 .10.若关于x 的不等式组 ⎩⎨⎧>+->01a x ax 的解集不是空集,则实数a 的取值范围是 .三、解答题11.对于任意的x ∈R ,均有x 2-4ax +2a +30≥0(a ∈R),求关于x 的方程3+a x=| a -1|+1的根的范围.12.解关于x 的不等式01224222>+--a a ax x .13.已知函数f (x )=bax x +2(a 、b 为常数),且方程f (x )-x+12=0有两个实根为x 1=3,x 2=4. (1)求函数f (x )的解析式;(2)设k >1,解关于x 的不等式f (x )<xkx k --+2)1(.提高训练题14.设函数f (x )=| x -a |,g (x )=ax (a >0).(1)解关于x 的不等式| x -a |<ax ;(2)设F(x )=f (x ) -g (x ),若F(x )在(0,+∞)上有最小值,求出这个最小值.15.已知f (x )=lg(x +1),g (x )=2lg(2x +t )( t ∈R ,t 是参数) (1) 当t =-1时,解不等式:f (x ) ≤ g (x )(2) 如果当x ∈[0,1]时,f (x ) ≤ g (x )恒成立,求参数t 的取值范围.6.7 不等式的应用知识要点 1.不等式始终贯穿在整个中学教学之中,诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数的定义域,值域的确定,三角、数列、立体几何,解析几何中的最大值、最小值问题,无一不与不等式有着密切关系.2.能够运用不等式的性质、定理和方法分析解决有关函数的性质,方程实根的分布,解决涉及不等式的应用例题讲练【例1】 若关于x 的方程4x +a ·2x +a +1=0有实数解,求实数a 的取值范围. .【例2】 如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从A 孔流入,经沉淀后从B 孔流出.设箱体的长度为a 米,高度为b 米.已知流出的水中该杂质的质量分数与a ,b 的乘积ab 成反比.现有制箱材料60平方米.问当a ,b 各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A 、B 孔的面积忽略不计).【例3】已知二次函数y=ax2+2bx+c,其中a>b >c且a+b+c=0.(1)求证:此函数的图象与x轴交于相异的两个点.(2)设函数图象截x轴所得线段的长为l,求证:3<l<23.【例4】一船由甲地逆水匀速行驶至乙地,甲乙两地相距S(千米),水速为常量p(千米/小时),船在静水中的最大速度为q(千米/小时)(q>p),已知船每小时的燃料费用(以元为单位)与船在静水中速度v(千米/小时)的平方成正比,比例系数为k.⑴把全程燃料费用y(元)表示为静水中速度v的函数,并求出这个函数的定义域.⑵为了使全程燃料费用最小,船的实际前进速度应为多少?小结归纳不等式的应用主要有两类:⑴一类是不等式在其它数学问题中的应用,主要是求字母的取值范围,这类问题所进行的必须是等价转化.注意沟通各知识点之间的内在联系,活用不等式的概念、方法,融会贯通.⑵一类是解决与不等式有关的实际问题,这类问题首先应认真阅读题目,理解题目的意义,注意题目中的关键词和有关数据,然后将实际问题转化为数学问题,即数学建模,再运用不等式的有关知识加以解决.基础训练题一、选择题1.设M=(a1-1)(b1-1)(c1-1),若a+b+c=1,(a,b,c∈R+)则M的取值范围是()A.[)8,0B.⎪⎭⎫⎢⎣⎡1,81C.[)8,1D.[)∞+,82.已知方程sin2x-4sin x+1-a=0有解,则实数a的取值范围是()A.[-3,6] B.[-2,6]C.[-3,2] D.[-2,2]3.点P(x,y)在椭圆92x+42y=1上移动,则x+y的最大值等于()A.5 B.3C.6 D.134.已知f(x)=32x-(k+1)3x+2,当x∈R时,f(x)恒为正值,则k的取值范围是()A.(-∞,-1) B.(-∞,22-1)C.(-1,22-1) D.(-22-1,22-1) 5.一批物资要用11辆汽车从甲地运到360千米外的乙地,若车速为v千米/小时,两车的距离不能小于(10v)2千米,运完这批物资至少需要()A.10小时B.11小时C.12小时D.13小时6.设函数是定义在R上的奇函数,若f (x)的最小正周期为3,且f (1)>1,f (2)=132+-mm,则m的取值范围是()A.m<32B.m<32且m≠-1C.-1< m<32D.m>32且m<-1二、填空题7.如果对任意实数x,不等式| x+1 |≥kx恒成立,则实数k的范围是 .8.已知f (x)=⎩⎨⎧<-≥11xx,则不等式x+(x+2)f (x+2)≤5的解集是.9.一个盒中装有红球、白球和黑球,黑球的个数至少是白球个数的一半,至多是红球个数的31,白球与黑球的个数之和至少是55,则红球个数的最小值为 . 10.船在流水中在甲地和乙地间来回行驶一次的平均速度V 1和在静水中的速度V 2的大小关系是 .三、解答题11.已知实数p 满足不等式0212<++x x ,试判断方程Z 2-2Z +5-p 2=0有无实根,并给出证明.12.已知二次函数f (x )=x 2+bx +c (b 、c ∈R ),不论α、β为何实数,恒有f (sin α)≥0,f (2+cos β)≤0. (1) 求证:b +c =-1; (2) 求证:c ≥3;(3) 若函数f (sin α)的最大值为8,求b 、c 的值.13.某游泳馆出售冬季游泳卡,每张240元,使用规定:不记名,每卡每次只限1人,每天只限1次.某班有48名同学,老师们打算组织同学们集体去游泳,除需要购买若干张游泳卡外,每次游泳还要包一辆汽车,无论乘坐多少名同学,每次的包车费均为40元,若使每个同学游泳8次,每人最少交多少钱?提高训练题14.设函数f (x )=x 2+2bx +c (c <b <1),f (1)=0,且方程f (x )+1=0有实根.(1)证明:-3<c ≤-1且b ≥0;(2)若m 是方程f (x )+1=0的一个实根,判断f (m -4)的正负,并加以证明.15.已知定义域为[0,1]的函数f (x )同时满足:① 对于任意x ∈[0,1],总有f (x )≥0;②f (1)=1;③ 若x 1≥0,x 2≥0,x 1+x 2≤1,则有f (x 1+x 2)≥f (x 1)+f (x 2). ⑴ 求f (0)的值.⑵ 求函数f (x )的最大值.⑶ 证明:① 当x ∈(21,1]时,有f (x )<2x 成立.② 当x ∈[0,21]时,有f (x )≤21f (2x )成立.单 元 测 试一、选择题1. 关于x 的不等式|x -1|>m 的解集为R 的充要条件是( )A .m <0B .m ≤-1C .m ≤0D .m ≤1 2. 若a 、b 是任意实数,且b a >,则( )A .22b a >B .1<abC .0)lg(>-b aD .b a )21()21(<3. 若,,h a y h a x <-<-则下列不等式一定成立的是( )A .h y x <-B .h y x 2<-C .h y x >-D .h y x 2>-4. 欲证7632-<-,只需证( )A .22)76()32(-<-B .22)73()62(-<-C .22)63()72(+<+D .22)7()632(-<--5. 设x 1,x 2是方程x 2+px +4=0的两个不相等的实根,则 ( ) A .| x 1 |>2且| x 1 |=2 B .| x 1+x 2|>4 C .| x 1+x 2|<4 D .| x 1 |=4且| x 2 |=16. 对一切正整数n ,不等式211++<-n n b b 恒成立,则b 的范围是 ( )A .(0, 32) B .(32,0]C .(52,∞-)),1(∞+⋃D .(52, 1)7. 已知函数f (x )= ⎪⎩⎪⎨⎧<--≥+-)0()0(22x x x x x x ,则不等式f (x )+2>0的解区间是 ( ) A .(-2,2) B .(-∞, -2)∪(2, +∞) C .(-1,1) D .(-∞, -1)∪(1, +∞) 8. 在R 上定义运算⊗.(1)x y x y ⊗=-若不等式()()1x a x a -⊗+<对任意实数x 恒成立,则 ( ) A .11a -<< B .02a <<C .3122a -<< D .1322a -<< 9. 某纯净水制造厂在净化水过程中,每增加一次过滤可减少水中杂质20%,要使水中杂质减少到原来的5%以下,则至少需过滤的次数为(参考数据lg2=0.3010,lg3=0.4771) ( ) A .5 B .10 C .14 D .1510.(理)集合1{|0}1x A x x -=<+、{}a b x x B <-=,若"1"a =是""Φ≠⋂B A 的充分条件,则b 的取值范围可以是( )A .20b -≤<B .02b <≤C .31b -<<-D .12b -≤< (文)集合1{|0}1x A x x -=<+、{}a x x B <-=1,则"1"a =是""Φ≠⋂B A 的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既非充分又非必要条件二、填空题11.若y x y x 2,2416,4230-<<<<则的取值范围是 . 12.若不等式02<--b ax x 的解集为{32<<x x },则=+b a .13.实数x 满足θsin 1log 3+=x ,则91-+-x x 的值为 .14.已知a 、b 、c 为某一直角三角形的三条边长,c 为斜边,若点(m ,n )在直线ax +by +2c =0上,则m 2+n 2的最小值是 .15.对a ,b ∈R ,记max| a ,b |= ⎩⎨⎧<≥ba b ba a ,函数f (x )=max| | x +1 |,| x -2 | | (x ∈R )的最小值是 .三、解答题16. 若a 、b 、c 都是正数,且a +b +c =1,求证:(1-a )(1-b )(1-c )≥8abc .17.已知函数f (x )=xax x ++22,x ∈[)∞+,1.(1) 当a =21时,求函数f (x )的最小值;(2) 若对任意x ∈[)∞+,1,f (x )>0恒成立,求实数a的取值范围.18.(理)解关于x 的不等式222(1)21x a x x ax+--≥+(文)解关于x 的不等式:2(1)10,(0)ax a x a -++<>19.设函数y =f (x )的定义域为(0,+∞),且对任意x 、y∈R +,f (xy )=f (x )+f (y )恒成立,已知f (8)=3,且当x >1时,f (x )>0.(Ⅰ)证明:函数f (x )在(0,+∞)上单调递增;(Ⅱ)对一个各项均正的数列{a n }满足f (S n )=f (a n )+f (a n+1)-1 (n ∈N *),其中S n 是数列{a n }的前n 项和,求数列{a n }的通项公式; (Ⅲ)在(Ⅱ)的条件下,是否存在正整数p 、q ,使不等式)1(211121-+>+++q pn a a a n对n ∈N *恒成立,求p 、q 的值.20.对1个单位质量的含污物体进行清洗,清洗前其清洁度(含污物体的清洁度定义为:1-)(含污物物体质量污物质量)为0.8,要求洗完后的清洁度是0.99.有两种方案可供选择,方案甲:一次清洗;方案乙:两次清洗.该物体初次清洗后受残留水等因素影响,其质量变为a (1≤a ≤3).设用x 单位质量的水初次清洗后的清洁度是18.0++x x (x >a -1),用y 质量的水第二次清洗后的清洁度是ay acy ++,其中c (0.8<c <0.99)是该物体初次清洗后的清洁度.(Ⅰ) 分别求出方案甲以及c =0.95时方案乙的用水量,并比较哪一种方案用水量较少;(Ⅱ) 若采用方案乙,当a 为某定值时,如何安排初次与第二次清洗的用水量,使总用水量最少?并讨论a 取不同数值对最少总用水量多少的影响.21. 已知条件p :|5x -1|>a 和条件01321:2>+-x x q ,请选取适当的实数a 的值,分别利用所给的两个条件作为A 、B 构造命题:“若A 则B ”,并使得构造的原命题为真命题,而其逆命题为假命题.则这样的一个原命题可以是什么?并说明为什么这一命题是符合要求的命题.。
第四节基本不等式[知识能否忆起]一、基本不等式ab ≤a +b21.基本不等式成立的条件:a >0,b >0.2.等号成立的条件:当且仅当a =b 时取等号. 二、几个重要的不等式a 2+b 2≥2ab (a ,b ∈R );b a +ab ≥2(a ,b 同号).ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R );⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R ). 三、算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.四、利用基本不等式求最值问题 已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)[小题能否全取]1.(教材习题改编)函数y =x +1x (x >0)的值域为( )A .(-∞,-2]∪[2,+∞)B .(0,+∞)C .[2,+∞)D .(2,+∞)解析:选C ∵x >0,∴y =x +1x ≥2,当且仅当x =1时取等号.2.已知m >0,n >0,且mn =81,则m +n 的最小值为( ) A .18 B .36 C .81D .243解析:选A ∵m >0,n >0,∴m +n ≥2mn =18.当且仅当m =n =9时,等号成立.3.(教材习题改编)已知0<x <1,则x (3-3x )取得最大值时x 的值为( ) A.13 B.12 C.34D.23解析:选B 由x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.4.若x >1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:55.已知x >0,y >0,lg x +lg y =1,则z =2x +5y 的最小值为________.解析:由已知条件lg x +lg y =1,可得xy =10. 则2x +5y≥2 10xy=2,故⎝⎛⎭⎫2x +5y min =2,当且仅当2y =5x 时取等号.又xy =10,即x =2,y =5时等号成立.答案:21.在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.2.对于公式a +b ≥2ab ,ab ≤⎝⎛⎭⎫a +b 22,要弄清它们的作用和使用条件及内在联系,两个公式也体现了ab 和a +b 的转化关系.3.运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab ≤a 2+b 22;a +b 2≥ab (a ,b >0)逆用就是ab ≤⎝⎛⎭⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等.典题导入[例1] (1)已知x <0,则f (x )=2+4x+x 的最大值为________.(2)(2012·浙江高考)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.245 B.285 C .5D .6[自主解答] (1)∵x <0,∴-x >0, ∴f (x )=2+4x +x =2-⎣⎡⎦⎤4-x +(-x ).∵-4x +(-x )≥24=4,当且仅当-x =4-x ,即x =-2时等号成立.∴f (x )=2-⎣⎡⎦⎤4-x +(-x )≤2-4=-2,∴f (x )的最大值为-2.(2)∵x >0,y >0,由x +3y =5xy 得15⎝⎛⎭⎫1y +3x =1. ∴3x +4y =15·(3x +4y )·⎝⎛⎭⎫1y +3x =15⎝⎛⎭⎫3x y +4+9+12y x =135+15⎝⎛⎭⎫3x y +12y x ≥135+15×23x y ·12yx=5(当且仅当x =2y 时取等号),∴3x +4y 的最小值为5. [答案] (1)-2 (2)C本例(2)条件不变,求xy 的最小值.解:∵x >0,y >0,则5xy =x +3y ≥2x ·3y , ∴xy ≥1225,当且仅当x =3y 时取等号.∴xy 的最小值为1225.由题悟法用基本不等式求函数的最值,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值.在求条件最值时,一种方法是消元,转化为函数最值;另一种方法是将要求最值的表达式变形,然后用基本不等式将要求最值的表达式放缩为一个定值,但无论哪种方法在用基本不等式解题时都必须验证等号成立的条件.以题试法1.(1)当x >0时,则f (x )=2xx 2+1的最大值为________.(2)(2011·天津高考)已知log 2a +log 2b ≥1,则3a +9b 的最小值为________.(3)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 解析:(1)∵x >0,∴f (x )=2x x 2+1=2x +1x ≤22=1,当且仅当x =1x ,即x =1时取等号.(2)由log 2a +log 2b ≥1得log 2(ab )≥1,即ab ≥2,∴3a +9b =3a +32b ≥2×3a +2b2(当且仅当3a =32b ,即a =2b 时取等号).又∵a +2b ≥22ab ≥4(当且仅当a =2b 时取等号), ∴3a +9b ≥2×32=18.即当a =2b 时,3a +9b 有最小值18.(3)由x >0,y >0,xy =x +2y ≥22xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,即m ≤10.故m 的最大值为10.答案:(1)1 (2)18 (3)10典题导入[例2] (2012·江苏高考)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.[自主解答] (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,故x =20k 1+k2=20k +1k ≤202=10,当且仅当k =1时取等号. 所以炮的最大射程为10千米.(2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根⇔判别式Δ=(-20a )2-4a 2(a 2+64)≥0 ⇔a ≤6.所以当a 不超过6千米时,可击中目标.由题悟法利用基本不等式求解实际应用题的方法(1)问题的背景是人们关心的社会热点问题,如“物价、销售、税收、原材料”等,题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.以题试法 2.(2012·福州质检)某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.解:(1)设每件定价为t 元,依题意,有⎝⎛⎭⎫8-t -251×0.2t ≥25×8,整理得t 2-65t +1 000≤0,解得25≤t ≤40.因此要使销售的总收入不低于原收入,每件定价最多为40元. (2)依题意,x >25时,不等式ax ≥25×8+50+16(x 2-600)+15x 有解,等价于x >25时,a ≥150x +16x +15有解.∵150x +16x ≥2 150x ·16x =10(当且仅当x =30时,等号成立),∴a ≥10.2. 因此当该商品明年的销售量a 至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.1.已知f (x )=x +1x -2(x <0),则f (x )有 ( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4解析:选C ∵x <0,∴f (x )=- ⎣⎡⎦⎤(-x )+1(-x )-2≤-2-2=-4,当且仅当-x =1-x ,即x =-1时取等号.2.(2013·太原模拟)设a 、b ∈R ,已知命题p :a 2+b 2≤2ab ;命题q :⎝⎛⎭⎫a +b 22≤a 2+b22,则p 是q 成立的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件解析:选B 命题p :(a -b )2≤0⇔a =b ;命题q :(a -b )2≥0.显然,由p 可得q 成立,但由q 不能推出p 成立,故p 是q 的充分不必要条件.3.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2解析:选A ∵x >1,∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2(x -1)+3x -1=(x -1)2+2(x -1)+3x -1=x -1+3x -1+2≥2(x -1)3x -1+2=23+2.当且仅当x -1=3x -1,即x =1+3时,取等号.4.(2012·陕西高考)小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =ab C.ab <v <a +b2D .v =a +b2解析:选A 设甲、乙两地的距离为s ,则从甲地到乙地所需时间为sa,从乙地到甲地所需时间为s b ,又因为a <b ,所以全程的平均速度为v =2s s a +s b=2ab a +b <2ab2ab=ab ,2ab a +b >2ab2b=a ,即a <v <ab . 5.已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n的最小值为( ) A.32B.53C.256D .不存在解析:选A 设正项等比数列{a n }的公比为q ,由a 7=a 6+2a 5,得q 2-q -2=0,解得q =2.由a m a n =4a 1,即2m +n -22=4,得2m +n -2=24,即m +n =6.故1m +4n =16(m +n )⎝⎛⎭⎫1m +4n =56+16⎝⎛⎭⎫4m n +n m ≥56+46=32,当且仅当4m n =n m 时等号成立. 6.设a >0,b >0,且不等式1a +1b +ka +b ≥0恒成立,则实数k 的最小值等于( )A .0B .4C .-4D .-2解析:选C 由1a +1b +ka +b ≥0得k ≥-(a +b )2ab ,而(a +b )2ab =b a +a b +2≥4(a =b 时取等号),所以-(a +b )2ab ≤-4,因此要使k ≥-(a +b )2ab 恒成立,应有k ≥-4,即实数k 的最小值等于-4.7.已知x ,y 为正实数,且满足4x +3y =12,则xy 的最大值为________.解析:∵12=4x +3y ≥24x ×3y ,∴xy ≤3.当且仅当⎩⎪⎨⎪⎧4x =3y ,4x +3y =12,即⎩⎪⎨⎪⎧x =32,y =2时xy取得最大值3.答案:38.已知函数f (x )=x +px -1(p 为常数,且p >0)若f (x )在(1,+∞)上的最小值为4,则实数p 的值为________.解析:由题意得x -1>0,f (x )=x -1+px -1+1≥2p +1,当且仅当x =p +1时取等号,因为f (x )在(1,+∞)上的最小值为4,所以2p +1=4,解得p =94.答案:949.(2012·朝阳区统考)某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *).则当每台机器运转________年时,年平均利润最大,最大值是________万元.解析:每台机器运转x 年的年平均利润为y x =18-⎝⎛⎭⎫x +25x ,而x >0,故yx ≤18-225=8,当且仅当x =5时,年平均利润最大,最大值为8万元.答案:5 810.已知x >0,a 为大于2x 的常数, (1)求函数y =x (a -2x )的最大值; (2)求y =1a -2x-x 的最小值. 解:(1)∵x >0,a >2x , ∴y =x (a -2x )=12×2x (a -2x )≤12×⎣⎡⎦⎤2x +(a -2x )22=a 28,当且仅当x =a 4时取等号,故函数的最大值为a 28. (2)y =1a -2x+a -2x 2-a 2≥212-a 2=2-a2. 当且仅当x =a -22时取等号.故y =1a -2x -x 的最小值为2-a2.11.正数x ,y 满足1x +9y =1.(1)求xy 的最小值; (2)求x +2y 的最小值. 解:(1)由1=1x +9y ≥21x ·9y 得xy ≥36,当且仅当1x =9y,即y =9x =18时取等号,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )⎝⎛⎭⎫1x +9y =19+2y x +9xy ≥19+2 2y x ·9xy=19+62,当且仅当2y x =9xy,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2. 12.为了响应国家号召,某地决定分批建设保障性住房供给社会.首批计划用100万元购得一块土地,该土地可以建造每层1 000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高20元.已知建筑第5层楼房时,每平方米建筑费用为800元.(1)若建筑第x 层楼时,该楼房综合费用为y 万元(综合费用是建筑费用与购地费用之和),写出y =f (x )的表达式;(2)为了使该楼房每平方米的平均综合费用最低,应把楼层建成几层?此时平均综合费用为每平方米多少元?解:(1)由题意知建筑第1层楼房每平方米建筑费用为720元, 建筑第1层楼房建筑费用为720×1 000=720 000(元)=72 (万元), 楼房每升高一层,整层楼建筑费用提高20×1 000=20 000(元)=2(万元), 建筑第x 层楼房的建筑费用为72+(x -1)×2=2x +70(万元), 建筑第x 层楼时,该楼房综合费用为y =f (x )=72x +x (x -1)2×2+100=x 2+71x +100,综上可知y =f (x )=x 2+71x +100(x ≥1,x ∈Z ).(2)设该楼房每平方米的平均综合费用为g (x ),则g (x )=f (x )×10 0001 000x =10f (x )x=10(x 2+71x +100)x =10x +1 000x+710≥210x ·1 000x+710=910.当且仅当10x =1 000x,即x =10时等号成立.综上可知应把楼层建成10层,此时平均综合费用最低,为每平方米910元.1.(2012·浙江联考)已知正数x ,y 满足x +22xy ≤λ(x +y )恒成立,则实数λ的最小值为( )A .1B .2C .3D .4解析:选B 依题意得x +22xy ≤x +(x +2y )=2(x +y ),即x +22xy x +y ≤2(当且仅当x =2y 时取等号),即x +22xy x +y 的最大值是2;又λ≥x +22xyx +y ,因此有λ≥2,即λ的最小值是2.2.设x ,y ,z 为正实数,满足x -2y +3z =0,则y 2xz 的最小值是________.解析:由已知条件可得y =x +3z2,所以y 2xz =x 2+9z 2+6xz 4xz=14⎝⎛⎭⎫x z +9z x +6 ≥14⎝⎛⎭⎫2 x z ×9z x +6=3, 当且仅当x =y =3z 时,y 2xz 取得最小值3.答案:33.某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,购买面粉每次需支付运费900元.(1)求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?(2)某提供面粉的公司规定:当一次购买面粉不少于210吨时,其价格可享受9折优惠,问该厂是否考虑利用此优惠条件?请说明理由.解:(1)设该厂应每隔x 天购买一次面粉,其购买量为6x 吨,由题意可知,面粉的保管等其他费用为3[6x +6(x -1)+6(x -2)+…+6×1]=9x (x +1),设平均每天所支付的总费用为y 1元, 则y 1=[9x (x +1)+900]x +1 800×6=900x+9x +10 809 ≥2900x·9x +10 809=10 989, 当且仅当9x =900x,即x =10时取等号.即该厂应每隔10天购买一次面粉,才能使平均每天所支付的总费用最少. (2)因为不少于210吨,每天用面粉6吨,所以至少每隔35天购买一次面粉. 设该厂利用此优惠条件后,每隔x (x ≥35)天购买一次面粉,平均每天支付的总费用为y 2元,则y 2=1x [9x (x +1)+900]+6×1 800×0.90=900x+9x +9 729(x ≥35). 令f (x )=x +100x(x ≥35),x 2>x 1≥35,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+100x 1-⎝⎛⎭⎫x 2+100x 2=(x 2-x 1)(100-x 1x 2)x 1x 2.∵x 2>x 1≥35, ∴x 2-x 1>0,x 1x 2>0,100-x 1x 2<0, 故f (x 1)-f (x 2)<0,f (x 1)<f (x 2), 即f (x )=x +100x,当x ≥35时为增函数.则当x =35时,f (x )有最小值,此时y 2<10 989.因此该厂应接受此优惠条件.1.函数y =a 1-x (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0(mn >0)上,则1m +1n的最小值为________. 解析:因y =a x 恒过点(0,1),则A (1,1),又A 在直线上,所以m +n =1(mn >0). 故1m +1n =m +n mn =1mn ≥1⎝⎛⎭⎫m +n 22=4, 当且仅当m =n =12时取等号. 答案:42.已知直线x +2y =2分别与x 轴、y 轴相交于A 、B 两点,若动点P (a ,b )在线段AB 上,则ab 的最大值是________.解析:∵A (2,0),B (0,1),∴0≤b ≤1,由a +2b =2,得a =2-2b ,ab =(2-2b )b =2(1-b )·b ≤2·⎣⎡⎦⎤(1-b )+b 22=12. 当且仅当1-b =b ,即b =12时等号成立,此时a =1, 因此当b =12,a =1时,(ab )max =12. 答案:123.若x ,y ∈(0,+∞),x +2y +xy =30.(1)求xy 的取值范围;(2)求x +y 的取值范围.解:由x +2y +xy =30,(2+x )y =30-x ,则2+x ≠0,y =30-x 2+x>0,0<x <30. (1)xy =-x 2+30x x +2=-x 2-2x +32x +64-64x +2=-x -64x +2+32=-⎣⎡⎦⎤(x +2)+64x +2+34≤18,当且仅当x =6时取等号, 因此xy 的取值范围是(0,18].(2)x +y =x +30-x 2+x =x +32x +2-1 =x +2+32x +2-3≥82-3,当且仅当⎩⎨⎧ x =42-2,y =42-1时等号成立,又x +y =x +2+32x +2-3<30,因此x +y 的取值范围是[82-3,30).。
6.6 不等式的应用●知识梳理1.运用不等式求一些最值问题.用a +b ≥2ab 求最小值;用ab ≤(2b a +)2≤222b a +求最大值.2.某些函数的单调性的判定或证明也就是不等式的证明.3.求函数的定义域,往往直接归纳为解不等式(组).4.三角、数列、立体几何和解析几何中的最值都与不等式有密切联系.5.利用不等式可以解决一些实际应用题. ●点击双基1.已知函数f (x )=log 21(x 2-ax +3a )在[2,+∞)上是减函数,则实数a 的范围是A.(-∞,4]B.(-4,4]C.(0,12)D.(0,4]解析:∵f (x )=log 21(x 2-ax +3a )在[2,+∞)上是减函数, ∴u =x 2-ax +3a 在[2,+∞)上为增函数,且在[2,+∞)上恒大于0.∴⎪⎩⎪⎨⎧>+-≤.032422a a a, ∴-4<a ≤4. 答案:B2.把长为12 cm 的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是A.233 cm 2B.4 cm 2C.32 cm 2D.23 cm 2解析:设两段长分别为x cm ,(12-x ) cm ,则S =43(3x )2+43(312x -)2=183(x 2-12x +72)=183[(x -6)2+36]≥23. 答案:D3.(理)如果0<a <1,0<x ≤y <1,且log a x log a y =1,那么xy A.无最大值也无最小值 B.有最大值无最小值 C.无最大值有最小值 D.有最大值也有最小值解析:∵log a x +log a y ≥2y x a a log log =2, ∴log a xy ≥2. ∴0<xy ≤a 2.答案:B(文)已知a >b >c >0,若P =a cb -,Q =bca -,则 A.P ≥Q B.P ≤Q C.P >Q D.P <Q解析:特殊值检验.a =3,b =2,c =1. P =31,Q =1,P <Q . 答案:D4.已知实数x 、y 满足yx=x -y ,则x 的取值范围是_______. 解析:由yx=x -y ,得y 2-xy +x =0. ∵y ∈R ,∴Δ=x 2-4x ≥0.∴0≤x ≤4. ∵x =0时y =0不符合题意,∴0<x ≤4. 答案:0<x ≤45.已知不等式组⎪⎩⎪⎨⎧<+-<+-08603422x x x x ,的解集是不等式2x 2-9x +a <0的解集的子集,则实数a的取值范围是____________.解析:由⎪⎩⎪⎨⎧<+-<+-,,08603422x x x x 得2<x <3.则⇒⎩⎨⎧≤≤0302)()(f f a ≤9. 答案:(-∞,9] ●典例剖析【例1】 函数y =122++x bax 的最大值为4,最小值为-1,求常数a 、b 的值.剖析:由于函数是分式函数,且定义域为R ,故可用判别式法求最值.解:由y =122++x bax 去分母整理得yx 2-2ax +y -b =0. ①对于①,有实根的条件是Δ≥0, 即(-2a )2-4y (y -b )≥0. ∴y 2-by -a 2≤0.又-1≤y ≤4, ∴y 2-by -a 2=0的两根为-1和4. ∴⎩⎨⎧-=⨯-=+-.41412a b ,解得⎩⎨⎧==32b a ,或⎩⎨⎧=-=.32b a , 评述:这是关于函数最大值、最小值的逆向题.深化拓展 已知x 、y ∈R +且x 2+y8=1,求x +y 的最小值.本题不难求解(读者不妨求解).由本题的启发,你能解下列问题吗?已知a 、b 是正常数,a +b =10,又x 、y ∈R +, 且x a +y b=1,x +y 的最小值为18. 求a 、b 的值. 略解:x +y =(x +y )(y x 82+)=10+xy 2+y x8≥10+2y x x y 82⋅=18. 当且仅当yxx y 82=时取等号. 由⎪⎩⎪⎨⎧==+224182x y y x ,解得⎩⎨⎧==.126y x ,∴当x =6,y =12时,x +y 的最小值为18.同上题,x +y =(x +y )(xa +y b)=a +b +y bx x ay +≥a +b +2ab .由⎪⎩⎪⎨⎧=+=++,,10182b a ab b a 得⎩⎨⎧==,,82b a 或⎩⎨⎧==.28b a ,【例2】 已知a >0,求函数y =ax a x +++221的最小值.解:y =a x +2+ax +21,当0<a ≤1时,y =a x +2+ax +21≥2,当且仅当x =±a -1时取等号,y min =2. 当a >1时,令t =a x +2(t ≥a ).y =f (t )=t +t 1.f '(t )=1-21t>0.∴f (t )在[a ,+∞)上为增函数. ∴y ≥f (a )=aa 1+,等号当t =a 即x =0时成立,y min =aa 1+.综上,0<a ≤1时,y min =2;a >1时,y min =aa 1+.【例3】 已知函数f (x )=ax 2+bx +c (a >0且bc ≠0).(1)若| f (0)|=| f (1)|=| f (-1)|=1,试求f (x )的解析式;(2)令g (x )=2ax +b ,若g (1)=0,又f (x )的图象在x 轴上截得的弦的长度为l ,且0<l ≤2,试确定c -b 的符号.解:(1)由已知| f (1)|=| f (-1)|,有|a +b +c |=|a -b +c |,(a +b +c )2=(a -b +c )2,可得4b (a +c )=0.∵bc ≠0,∴b ≠0.∴a +c =0. 又由a >0有c <0.∵|c |=1,于是c =-1,则a =1,|b |=1. ∴f (x )=x 2±x -1.(2)g (x )=2ax +b ,由g (1)=0有2a +b =0,b <0. 设方程f (x )=0的两根为x 1、x 2.∴x 1+x 2=-a b =2,x 1x 2=ac . 则|x 1-x 2|=212214x x x x -+)(=ac44-. 由已知0<|x 1-x 2|≤2,∴0≤ac<1. 又∵a >0,bc ≠0,∴c >0.∴c -b >0. ●闯关训练 夯实基础1.已知方程sin 2x -4sin x +1-a =0有解,则实数a 的取值范围是 A.[-3,6] B.[-2,6] C.[-3,2] D.[-2,2] 解析:∵a =(sin x -2)2-3,|sin x |≤1, ∴-2≤a ≤6. 答案:B2.当x ∈[-1,2]时,不等式a ≥x 2-2x -1恒成立,则实数a 的取值范围是 A.a ≥2 B.a ≥1 C.a ≥0 D.a ≥-2 解析:当x ∈[-1,2]时,x 2-2x -1=(x -1)2-2∈[-2,2]. ∵a ≥x 2-2x -1恒成立,∴a ≥2. 答案:A3.b g 糖水中有a g 糖(b >a >0),若再添m g 糖(m >0),则糖水变甜了.试根据这一事实,提炼出一个不等式____________.解析:b a <mb m a ++. 答案:b a <mb m a ++ 4.若a >0,b >0,ab ≥1+a +b ,则a +b 的最小值为____________.解析:1+a +b ≤ab ≤(2b a +)2, ∴(a +b )2-4(a +b )-4≥0. ∴a +b ≤2244-或a +b ≥2244+.∵a >0,b >0,∴a +b ≥2+22. 答案:2+225.已知正数x 、y 满足x +2y =1,求x 1+y1的最小值. 解:∵x 、y 为正数,且x +2y =1, ∴x 1+y 1=(x +2y )(x 1+y 1) =3+x y 2+yx≥3+22, 当且仅当x y 2=yx,即当x =2-1,y =1-22时等号成立.∴x 1+y1的最小值为3+22. 6.(2004年春季上海)已知实数p 满足不等式212++x x <0,试判断方程z 2-2z +5-p 2=0有无实根,并给出证明.解:由212++x x <0,解得-2<x <-21.∴-2<p <-21. ∴方程z 2-2z +5-p 2=0的判别式Δ=4(p 2-4). ∵-2<p <-21,41<p 2<4, ∴Δ<0.由此得方程z 2-2z +5-p 2=0无实根. 培养能力7.(2003年全国)已知c >0,设P :函数y =c x 在R 上单调递减,Q :不等式x +|x -2c |>1的解集为R .如果P 和Q 有且仅有一个正确,求c 的取值范围.解:函数y =c x 在R 上单调递减⇔0<c <1.不等式x +|x -2c |>1的解集为R ⇔函数y =x +|x -2c |在R 上恒大于1.∵x +|x -2c |=⎩⎨⎧>≥-,,c x cc x cx 22222 ∴函数y =x +|x -2c |在R 上的最小值为2c . ∴不等式x +|x -2c |>1的解集为R ⇔2c >1⇔c >21. 如果P 正确,且Q 不正确,则0<c ≤21. 如果P 不正确,且Q 正确,则c ≥1. ∴c 的取值范围为(0,21]∪[1,+∞).8.已知函数f (x )=x 2+bx +c (b 、c ∈R )且当x ≤1时,f (x )≥0,当1≤x ≤3时,f (x )≤0恒成立.(1)求b 、c 之间的关系式;(2)当c ≥3时,是否存在实数m 使得g (x )=f (x )-m 2x 在区间(0,+∞)上是单调函数?若存在,求出m 的取值范围;若不存在,请说明理由.解:(1)由已知f (1)≥0与f (1)≤0同时成立,则必有f (1)=0,故b +c +1=0. (2)假设存在实数m ,使满足题设的g (x )存在.∵g (x )=f (x )-m 2x =x 2+(b -m 2)x +c 开口向上,且在[22bm -,+∞)上单调递增,∴22b m -≤0.∴b ≥m 2≥0.∵c ≥3,∴b =-(c +1)≤-4.这与上式矛盾,从而能满足题设的实数m 不存在. 探究创新9.有点难度哟! 已知a >b >0,求a 2+)(b a b -16的最小值.解:∵b (a -b )≤(2b a b -+)2=42a ,∴a 2+)(b a b -16≥a 2+264a ≥16.当且仅当⎩⎨⎧=-=82a b a b ,,即⎪⎩⎪⎨⎧==222b a ,时取等号.深化拓展a >b >0,求b (a -b )·216a的最大值.提示:b (a -b )≤42a .答案:4●思悟小结1.不等式的应用大致可分为两类:一类是建立不等式求参数的取值范围或解决一些实际应用问题;另一类是建立函数关系,利用均值不等式求最值问题.2.建立不等式的主要途径有:(1)利用问题的几何意义;(2)利用判别式;(3)利用函数的有界性;(4)利用函数的单调性.3.解不等式应用问题的三个步骤: (1)审题,必要时画出示意图;(2)建立不等式模型,即根据题意找出常量与变量的不等关系;(3)利用不等式的有关知识解题,即将数学模型转化为数学符号或图形符号.4.利用重要不等式求最值时,要注意条件:一正、二定、三相等,即在x +y ≥2xy 中,x 和y 要大于零,要有定积或定和出现;同时要求“等号”成立.5.化归思想在本节占有重要位置,等式和不等式之间的转化、不等式和不等式之间的转化、函数与不等式之间的转化等,对于这些转化,一定要注意条件.●教师下载中心 教学点睛1.应用不等式解决数学问题时,关键在于要善于把等量关系转化为不等量关系,以及不等关系的转化等,把问题转化为不等式的问题求解.2.应用不等式解决应用问题时,应先弄清题意,根据题意列出不等式或函数式,再利用不等式的知识求解.3.与不等式相关联的知识较多,如函数与不等式、方程与不等式、数列与不等式、解析几何与不等式,要善于寻找它们之间的联系,从而达到综合应用的目的.拓展例题【例1】 (2003年福建质量检测题)已知函数f (x )=|log 2(x +1)|,实数m 、n 在其定义域内,且m <n ,f (m )=f (n ).求证:(1)m +n >0;(2)f (m 2)<f (m +n )<f (n 2). (1)证法一:由f (m )=f (n ),得|log 2(m +1)|=|log 2(n +1)|,即log 2(m +1)=±log 2(n +1),log 2(m +1)=log 2(n +1), ①或log 2(m +1)=log 211+n .②由①得m +1=n +1,与m <n 矛盾,舍去. 由②得m +1=11+n ,即(m +1)(n +1)=1.③∴m +1<1<n +1.∴m <0<n .∴mn <0. 由③得mn +m +n =0,m +n =-mn >0. 证法二:(同证法一得)(m +1)(n +1)=1.∵0<m +1<n +1,∴211)()(+++n m >))((11++n m =1.∴m +n +2>2.∴m +n >0.(2)证明:当x >0时,f (x )=|log 2(x +1)|=log 2(x +1)在(0,+∞)上为增函数. 由(1)知m 2-(m +n )=m 2+mn =m (m +n ),且m <0,m +n >0,∴m (m +n )<0. ∴m 2-(m +n )<0,0<m 2<m +n . ∴f (m 2)<f (m +n ). 同理,(m +n )-n 2=-mn -n 2=-n (m +n )<0, ∴0<m +n <n 2.∴f (m +n )<f (n 2). ∴f (m 2)<f (m +n )<f (n 2). 【例2】 求证:对任意x 、y ∈R ,都有497721++x x ≤5-3y +21y 2,并说明等号何时成立. 证明:72x +49≥2·7x ·7=2·7x +1, ∴497721++x x ≤21. 又∵5-3y +21y 2=21(y -3)2+21≥21,∴497721++x x ≤5-3y +21y 2.当且仅当x =1,y =3时取等号.。