09_10年北航研究生矩阵论B期末试卷[1]
- 格式:pdf
- 大小:1.02 MB
- 文档页数:4
北京邮电大学2015——2016学年第一学期《矩阵论》期末考试试题评分参考标准一、(10分)设 x 1,x 2 是线性空间 V 的一组基,线性变换 T 在这组基下的矩阵为 A =[21−10] 。
y 1,y 2 是另一组基,且 (y 1,y 2)=(x 1,x 2) [1−1−12] 。
(1)求 T 在 y 1,y 2 下的矩阵 B ;(2) 计算 A 100 。
解:(1)B =[1−1−12]−1A [1−1−12]=[1101]。
(5分) (2)A 100=[1−1−12]B 100[1−1−12]−1A =[101100−100−99]。
(5分)二、(10分)计算 ln A ,其中 A =[e1e 1e 1e ] 。
解:ln A =[11/e −1/2e 21/3e 311/e −1/2e 211/e 1]。
(10分)三、(15分) 设 x =[512] 。
(1)计算Givens 变换 G 1 使得 G 1x =[a 0] ; (2)计算Givens 变换 G 2 使得 G 2x =b [11] 。
解:(1)G 1=[5/1312/13−12/135/13],a =13,或G 1=[−5/13−12/1312/13−5/13],a =−13。
(7分) (2)G 2=[17/13√27/13√2−7/13√217/13√2],b =13√2/2,或G 2=[−17/13√2−7/13√27/13√2−17/13√2],b =−13√2/2。
(8分)四、(10分)设 A =[−1−600−630000 00344−3] ,计算 ‖A ‖1,‖A ‖2,‖A ‖∞,‖A ‖F 。
解:‖A ‖1=9,‖A ‖2=1+2√10,‖A ‖∞=9,‖A ‖F =2√33。
(10分)五、(10分)设矩阵A ∈R n×n 满足 A 3=A ,证明存在非奇异矩阵 X 使得 X −1AX =[I r −I s 0t]。
武汉大学数学与统计学院2005-2006学年工科硕士研究生学位课程期末考试《矩阵论》 试题 (A 卷,150分钟)专业 电气工程 班号 姓名 学号注:所有的答题内容必须写在答题纸上,凡写在其它地方的一律无效;交卷时将试卷连同答题纸、草稿纸一并上交。
一、 是非题(满分12“√”,否则打“×”)(√A 是n m ⨯的实矩阵,x 为n 维向量,则⇔=0Ax A T 0=Ax ;()()212200*0*000T T T m j mjm ji A Ax x A Ax Ax a a a Y Ax ⨯=∴==⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭⇔=⇔==∑∑Tij m n j=1j=1令Y=(y ),则Y Y=0,即 ( × ) 2.设n 阶方阵A 满足E A =2,则A 的特征值只能是1;也可能是-1,如令1001A ⎛⎫= ⎪-⎝⎭证明:21111111A E A AAx x A Ax A x x A x Ax Ax x λλλλλλλλ----=⇒==⇒=⇒==⇒=⇒=⇒=±(√ ) 3.欧氏空间n R 上的任意两种向量范数都是等价的; 在线性空间中所任意两种范数等价而欧氏空间是一种特殊的线性空间(√ ) 4.设A 为n m ⨯矩阵,B 为n 阶可逆方阵,则---=A B AB 1)(.()()()111()AB B A AB ABB A AB AA AB ABAB B A--------===∴=二、 填空题(本题满分12分,每空3分).设有三个四维向量T T T Z Y X )3,1,1,2(,)1,1,1,1(,)1,1,1,1(=--=-=.则它们的2-范数分别为=2X2 ; =2Y2 ;2Z 且与Z Y X ,,都正交的所有向量为 (4013)k -. 即求1234111101111021130x x x x ⎛⎫-⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪--= ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的解。
同济大学工程硕士课程考核试卷
2009—2010学年第一学期
课名:工程数学(上) 考试类型:考试
(注意:本试卷共五大题, 大张,满分50分.考试时间为90分钟。
要求写出解题过程,否则不予计分)
一.设⎪⎪⎪
⎭
⎫
⎝⎛--=140102011A ,⎪⎪⎪⎭⎫ ⎝⎛-=731b ,用Doolittle 分解法计算线性方程组b Ax =(10分)
二.设线性方程组121212
22
36223x x x x x x -=⎧⎪
-=⎨⎪-+=-⎩,用广义逆验证它是矛盾方程,并求它的最小二乘解的通
解。
(10分)
三.设线性空间22
⨯上的变换22
3(),T A A A A T ⨯=-∈,
(1)试证明T 是
22
⨯上的线性变换;
(2)求线性变换T 在基123410110100,,,00001011A A A A ⎛⎫⎛⎫⎛⎫⎛⎫
====
⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
下的矩阵; (3)求T 的最小多项式,并回答T 是否可以对角化?(15分)
四.设⎪⎪⎪⎭
⎫ ⎝⎛-----=412927313
A ,求可逆阵P 和A 的Jordan 标准形J ,使1
P AP J -=。
(15
分)
五、(10分)用广义逆验证线性方程组
12312312341
228241
x x x x x x x x x -+=⎧⎪
-+-=⎨⎪-+-=-⎩
是矛盾方程祖,并求其最小二乘通解。
线性代数期末考试模拟题一一、单项选择题1.设A为3阶方阵, 数λ =-2, |A| =3, 则|λA| =()A.24; B.-24; C.6; D.-6.2.设A为n阶方阵, n1+n2+n3=n, 且|A|≠0, 即123AA AA⎛⎫⎪= ⎪⎪⎝⎭,则A-1=( )A.111213AA AA---⎛⎫⎪= ⎪⎪⎝⎭; B.111213AA AA---⎛⎫⎪= ⎪⎪⎝⎭;C.131211AA AA---⎛⎫⎪= ⎪⎪⎝⎭; D.131211AA AA---⎛⎫⎪= ⎪⎪⎝⎭.3.设A为n阶方阵, A的秩R(A)=r<n, 那么在A的n个列向量中()A.必有r个列向量线性无关;B.任意r个列向量线性无关;C.任意r个列向量都构成最大线性无关组;D.任何一个列向量都可以由其它r个列向量线性表出.4.若方程组AX=0有非零解, 则AX=β(≠0)()A.必有无穷多组解;B.必有唯一解;C.必定没有解;D.A、B、C都不对.5. 设A、B均为3阶方阵, 且A与B相似, A的特征值为1, 2, 3, 则(2B)-1特征值为( )A.2, 1, 32; B.12,14,16; C.1, 2, 3; D.2, 1,23.6. 设A,B为n 阶矩阵,且R(A)=R(B),则()A.AB=BA;B.存在可逆矩阵P, 使P-1AP=B;C .存在可逆矩阵C , 使C T AC =B ;D .存在可逆矩阵P 、Q ,使P AQ =B .7.实二次型()2123222132122,,x x x x x x x x f -++=是( ) A .正定二次型; B .半正定二次型; C .半负定二次型; D .不定二次型.8.设A , B 为满足AB =0的任意两个非零矩阵,则必有( )A .A 的列向量线性相关,B 的行向量线性相关; B .A 的列向量线性相关,B 的列向量线性相关;C .A 的行向量线性相关,B 的行向量线性相关;D .A 的行向量线性相关,B 的列向量线性相关.二、填空题⒈若行列式的每一行(或每一列)元素之和全为零,则行列式的值等于_______________;2.设n 阶矩阵A 满足A 2-2A +3E =O ,则A -1=_______________;3.设1230,3,1,2,1,1,2,4,3,0,7,13TT Tααα⎛⎫⎛⎫⎛⎫==-= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,则321,,ααα的一个最大线性无关组为___________________________;4. 设0γ是非齐次方程组AX =b 的一个解向量,r n -ααα,,,21 是对应的齐次方程组A X =0的一个基础解系,则 0γ,,1α,,2 αr n -α线性__________;5. 设λ1 , λ2 为n 阶方阵A 的两个互不相等的特征值,与之对应的特征向量分别为X 1,X 2,则X 1+X 2_________________________矩阵A 的特征向量。
一、填空题(每题5分,共30分)1. 设向量场),,(222xyz z xy yz x A =,求=divA=rotA2.求=+⎰→xx dx ααcos 12100lim 3.设),(y x f 在原点领域连续, 求极限=⎰⎰≤+→dxdy y x f y x ),(122220lim ρρπρ4.设为自然数,n z y x z y x D },10,10,10|),,{(≤≤≤≤≤≤= 求=+++⎰⎰⎰dxdydz zy x y x n n n n n D 5.设,)(2)1(cos sin dt ex f t x x +⎰= 求=)('x f 6.)为右半单位圆 设L (,sin cos :⎩⎨⎧==θθy x L 求=⎰ds y L || 二、(本题满分10分)设Ω为椭球体,1222222≤++c z b y a x 计算dxdydz xy z I )2(2+=⎰⎰⎰Ω三(本题满分10分)计算曲面积分,)(dS z y x ++⎰⎰∑其中∑是平面5=+z y 被柱面2522=+y x 所截得的部分。
四(本题满分30分,每题10分)1. 计算曲线积分2.计算曲面积分.zdxdy ydzdx xdydz ++⎰⎰∑其中)0(:22h y z x y ≤≤+=∑,方向取左侧。
⎰-+-+-=Ldz y x dy x z dx z y I ,)()()(02222=++=++z y x a z y x L 与平面是球面其中取逆时针方向。
轴正向看去的交线,从L z3.计算,4)4()(.22yx dy y x dx y x L +++-⎰其中L 为单位圆周,.122=+y x 方向为逆时针方向。
五、(本题10分)A .叙述在平面单连通区域D 上的曲线积分与路径无关的等价命题。
B 验证曲线积分⎰--L x ydy x f ydx e x f cos )(sin ])([与路径无关,且,0)0(,=f f 有一阶连续导数求).(x f六、证明题(本题10分).d )(2d )(,]1,0[)(1010⎰⎰≤x x f x x x f x f 式利用二重积分证明不等上连续且单调增加在设一元函数。