等差数列学案
- 格式:doc
- 大小:153.50 KB
- 文档页数:2
等差数列学习目标:1.明确等差数列的定义,掌握等差数列的通项公式,会解决知道a n ,a 1,d ,n 中的三个,求另外一个的问题;培养学生观察能力,进一步提高学生推理、归纳能力,培养学生的应用意识.2.明确等差中项的概念,进一步熟练掌握等差数列的通项公式及推导公式;培养学生的应用意识,提高学生的数学素质.学习重点:1.等差数列的概念的理解与掌握;2.等差数列的通项公式的推导及应用;3.等差数列的定义、通项公式、性质的理解与应用.学习难点:1.等差数列“等差”特点的理解、把握和应用;2.灵活应用等差数列的定义及性质解决一些相关问题.知识梳理1. 等差数列的定义如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,则称这个数列为等差数列,这个常数叫做等差,即公差,即a n +1-a n =d (d 为常数),其中n ∈N *(或者表示为a n +2-a n +1=a n +1-a n ,n ∈N *).2. 等差数列的通项公式a n = a 1+(n -1)d ..(1) 推广:a n =a m +(n -m )d ;(2) 变式:d =;n m a a n m-- (3) 数列{a n }为等差数列的充要条件:a n =an +b (a ,b 为常数).3. 等差数列的前n 项和公式S n =121()(1)22n a a n n na d +-+或. (1) n 为奇数时,有S n =na 中,S 奇-S 偶=a 中;n 为偶数时,有S 偶-S 奇=2n d . (2) 数列{a n }为等差数列的充要条件:S n =An 2+Bn (A ,B 为常数).4. 等差中项若a ,b ,c 成等差数列,则称b 为a ,c 的等差中项,即b =2a c +.a ,b ,c 成等差数列⇔2b =a +c . 5. 等差数列的性质 (1) 在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N*),则有a m +a n =a p +a q ;(2) 若数列{a n }、{b n }均为等差数列,则数列{pa n }、{a n +q }、{a n ±b n }也成等差数列;(3) 若数列{a n }成等差数列,则下标成等差的子数列也成等差数列;(4) 若数列{a n }成等差数列,S n 为其前n 和,则S k ,S 2k -S k ,S 3k -S 2k ,…,成等差数列.数列n S n ⎧⎫⎨⎬⎩⎭为等差数列. 例题讲解知识点1 等差数列的概念及通项[例1](1)求等差数列8,5,2…的第20项.(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?(3)在等差数列{a n }中,已知a 5=10,a 12=31,求首项a 1与公差d .(4)在等差数列{a n }中,已知a 5=10,a 15=25,求a 25.(5)已知等差数列{a n }中,a 15=33,a 45=153,试问217是否为此数列的项?若是说明是第几项;若不是,说明理由.【例2】已知数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12. (1) 求证:1n S ⎧⎫⎨⎬⎩⎭是等差数列;(2) 求数列{a n }的通项公式.【变式拓展】已知正项数列{a n }的前n 和为S n ,且对任意的正整数n ,满足a n +1,求数列{a n }的通项公式.知识点2 等差数列的基本运算【例3】在等差数列{a n }中:(1) 已知a 15=33,a 45=153,求a 61;(2) 已知a 6=10,S 5=5,求a 8和S 8;(3) 已知前3项和为12,前3项积为48,且d >0,求a 1.【变式拓展】在等差数列{a n }中,前n 项和为S n ,已知S 10=100,S 100=10,求S 110.[例4](1)两个等差数列5,8,11,……和3,7,11,……都有100项,那么它们共有多少相同的项?(2)一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是多少?[例5]已知数列的通项公式为a n =pn +q ,其中p 、q 是常数,且p ≠0,那么这个数列是否一定是等差数列?如果是,其首项与公差是什么?[例6]已知三个数成等差数列,其和为15,其平方和为83,求此三个数.[例7]在等差数列{a n }中,若a 3+a 8+a 13=12,a 3a 8a 13=28,求{a n }的通项公式.知识点3 等差数列的前n 项和【例8】设等差数列{a n }的前n 项和为S n ,且a 3=12,S 12>0,S 13<0.(1) 求公差d 的取值范围;(2) 指出S 1,S 2,…,S 12中哪一个最大,并说明理由.【变式拓展】 在等差数列{a n }中,a 3=8,S 3=33.(1) 求数列{a n }的前n 项和的最大值;(2) 求数列{|a n |}的前n 项和T n .课堂练习1. 等差数列{a n }的首项为70,公差为-9,则这个数列中绝对值最小的项为___________.2. ( 2009·靖江市联考)设{a n }是正项数列,其前n 项和S n 满足:4S n =(a n -1)(a n +3),则数列{a n }的通项公式a n =___________.3. 若两个等差数列{a n }、{b n }满足125125...75,____....3n n a a a a n b b b n b ++++==++++则 4. (2008·重庆卷)设S n 是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=___________.5. (2009·安徽卷理)已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99.以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是___________.6.(1)求等差数列3,7,11,……的第4项与第10项.(2)求等差数列10,8,6,……的第20项.(3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.(4)-20是不是等差数列0,-312,-7,……的项?如果是,是第几项?如果不是,说明理由.7.在等差数列{a n }中,(1)已知a 4=10,a 7=19,求a 1与d ;(2)已知a 3=9,a 9=3,求a 12.8.已知一个无穷等差数列的首项为a 1,公差为d :(1)将数列中的前m 项去掉,其余各项组成一个新的数列,这个数列是等差数列吗?如果是,它的首项与公差分别是多少?(2)取出数列中的所有奇数项,组成一个新的数列,这个数列是等差数列吗?如果是,它的首项与公差分别是多少?(3)取出数列中的所有项数为7的倍数的各项,组成一个新的数列,这个数列是等差数列吗?如果是,它的首项与公差各是多少?。
张喜林制2.2.1 等差数列教材知识检索考点知识清单1.等差数列的定义:一般地,如果一个数列从第 项起,每一项与它的前一项的 都等于____ ,那么这个数列就叫做等差数列.这个常数d 叫做等差数列的 .2.等差数列的单调性:等差数列的公差 时,数列为递增数列;等差数列的公差 时,数列为递减数列; 等差数列的公差 时,数列为常数列.等差数列不会是 .3.等差数列的通项公式=n a4.要证明数列}{n a 为等差数列,只要证明:当2≥n 时,要点核心解读1.等差数列的定义在等差数列的定义中,要强调“从第二项起”和“同一常数”,这体现了等差数列的基本特征,还要注意公差是“每一项与它前一项的差”,防止将被减数和减数颠倒,如果用数学符号来描述,可叙述为:若d n d a a n n ,2(]≥=-- 为常数),则}{n a 是等差数列.还可以写成:若d N n d a a u n ,1++∈<=- 为常数),则}{n a 是等差数列.[注意] 以上定义中的常数是相对于变量n (项数)而言的.2.等差中项如果a 、b 、c 成等差数列,则称b 是a 与c 的等差中项,由以上定义知:b 是a 与c 的等差中项甘a 、b 、c 成等差数列22c a b b c a +=⇔=+⇔ 3.等差数列的判定(1)用定义判定:即判定d a a n n =-+1(常数))(+∈N n 或122++=+n n n a a a (即)112n n n n a a a a -=-+++ 是否成立.(2)用通项公式判定:即用}{n a 为等差数列q pn a n +=⇔q p 、(为常数)判定.4.等差数列的通项公式及其变式通项公式:d n a a n )1(1-+=(其中1a 为首项,d 为公差).变式1:).()(⋅=/-+=m n d m n a a m n变式2:).2(11+∈≥--=N n n n a a d n 且 变式3:).(m n m n a a d m n =/--= [注意] (1)等差数列的通项公式是关于变量n (项数)的一次函数或常数函数(d=0时),因此在解决有关问题时,可用函数方法处理.(2)等差数列的通项公式实质是d a n a n ,,,1四者之间的关系式,只要知道其中三个的值,由它们便可求出另一个的值,特别地,要求等差数列的通项公式,只需先求出首项1a 和公差d5.等差数列的性质(1)等差数列}{n a 中,⋅∈-=-+),()(N m n d m n a a m n(2)若a ,b ,c 成等差数列,则k mc k mb k ma +++,.,也成等差数列(m ,k 为常数).(3)等差数列}{n a 中,若,q p n m +=+则q p m n a a a a +=+).,,,(+∈N q p m n[特别注意] “数列}{n a 中,若,q p m +=则=m a ,,q P a a +是不成立的.(4)等差数列}{n a 中,若公差d>0,则数列}{n a 为递增数列;等差数列}{n a 中,若公差d<0,则数列}{n a 为递减数列.(5)等差数列}{n a 中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列,但剩下的项按原来的顺序排列,构成的新数列不一定是等差数列,证明:假设从第p 项起,每隔q 项抽出等差数列的项,则组成的新数列是,,,,32q p q q p p a a a a +++ρ ,,)1(q n p a -+ 则有--+q n p a )1(=-+q n p a )2(---+]1)1({q n r p qd d q n p =--+]}1)2([为常数所以等差数列}{n a 中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列,显然,剩下的项按原来的顺序排列,构成的新数列不一定是等差数列.(6)若数列}{n b 也是公差为d 的等差数列,则数列+n a 1{λ212}(λλλh n b 是常数)是公差为d )(21λλ+ 的等差数列.证明:因为,)1(,)1(11d n b b d n a a n n -+=-+=所以+n a ]λ])1([112d n a b n -+=λλ-++n b ([12λ,))(1()(]12]1211d n b a d λλλλ+-++=)所以=+--1211n n b a λλ+11[a λ+-])2(d n ])2([12d n b -+λ =)2()(1211-++n b a λλ+](λ,)2d λ所以=+-+--)()(121121n n n n b a b a λλλλ.)(21d λλ+所以数列2121,}{λλλλ<+n n b a 是常数)是公差为d )(21λλ+的等差数列.利用等差数列的性质可使有些问题的解题过程十分简捷.6.等差数列与一次函数的关系通项公式,)1(11d a dn d n a a n -+=-+=即n a 是n 的一次函数式,故表示等差数列各项的点都在一条直线上.如:首项为l ,公差为2的等差数列的通项公式为,12-=n a n 相应的图象是直线12)(-=x x f 上均匀排列开的无穷多个孤立的点,如图2 -2 -1 -1所示,由函数的图象可得等差数列的单调性:当d>0时,数列}{n a 为递增数列(图2 -2 -1-2甲);当d<0时,数列}{n a 为递减数列(图2 -2 -1-2乙);当d=0时,数列}{n a 为常数列(图2 -2 -1-2丙).请注意图象,公差d 恰好为所在直线的斜率,因此有=d ,(n m n m a a n m =/--斜率公式). 典例分类剖析考点1 等差数列的概念命题规律(1)判断所给出的数列是否为等差数列.(2)判断某一项或某些项是否为等差数列中的项.(3)证明某一数列为等差数列.[例1] (1)求等差数列8,5,2,…的第20项;(2) -401是不是等差数列-5,-9,-13,…中的项?如果是,是第几项?(3)若数列}{n a 的通项⎩⎨⎧≥+==),2(12),1(1n n n a n 试问数列}{n a 是等差数列吗? [解析] 第(1)小题是求等差数列的指定项,我们可以先求出首项1a 和公差d ,然后将它们代入等差数列的通项公式,即可求出相应的项,第(2)小题是判断一个数是否为一个等差数列的项,只需令此数等于通项公式,并求解此方程,如果它有正整数解,则此数为该数列的项,否则不是.[答案] (1) 由,20,385,81=-=-==n d a 得.49)3()120(820-=-⨯-+=a(2)由,4)5(9,51-=---=-=d a得到这个数列的通项公式为).1(45---=n a n设-401=-5 -4(n -1)成立.解这个关于n 的方程,得n=100.∴ -401是这个数列的第100项.(3)数列}{n a 不是等差数列,根据等差数列定义,一个数列是等差数列的充要条件是从第二项起,每一项与前一项的差都等于同一个常数,而此数列中虽然有,23423==-=- a a a a 但是,2412=/=-a a 因此此数列不满足等差数列的条件,所以它不是一个等差数列,但可以这样说:此数列从第2项起组成一个等差数列.[启示]d a ,]和n 是等差数列的三个基本量,有关等差数列的问题都可以利用这三个基本量来求解这种方法称为基本量法.[例2]在等差数列}{n a 中,已知,5,1185==a a 求⋅10a[解析] 由题目可获取以下主要信息:已知等差数列中的某两项,求另外一项,解答本题可利用通项公式进行.[答案] 设数列}{n a 的公差为d .由题意知:⎩⎨⎧=+=+,57,11411d a d a 解得⎩⎨⎧-==.2,191d a 故.212)2()1(19+-=-⨯-+=n n a n.12110210=+⨯-=∴a[规律方法] 在等差数列}{n a 中,首项1a 与公差d 是两个最基本的元素;有关等差数列的问题,如果条件与结论间的联系不明显,则均可化成有关d a 、1的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.母体迁移 1.若,2b c a =+则是否有++c b c a (),5(22)(),2b ac a +能构成等差数列.考点2 等差数列的性质及应用命题规律(1)考查对性质的灵活运用.(2)利用等差数列的性质解决一些计算繁琐的问题,达到减小计算量,优化解题过程的目的.[例3] (1)在等差数列}{n a 中,==++642741,15a a a a a a ,45求数列的通项公式;(2)设}{n a 为等差数列,若,45076543=++++a a a a a 求,82a a +(3)若数列}{n a 为等差数列,),(,q p p a q a q p =/==求⋅+q p a[答案] ,2)1(62471a a a a a +==+.1354741==++∴a a a a10,5624=+∴=∴a a a 且.962=a a62,a a ∴是方程09102=+-x x 的两根,⎩⎨⎧==∴9,162a a 或⎩⎨⎧==1,962a a 若12=a 且,96=a 则.32,2-=∴=n a d n同理可得.213n a n -=故32-=n a n 或.213n a n -=(2)解法一:,28256473a a a a a a a +==+=+.0455576543==++++∴a a a a a a.1802,905825==+∴=∴a a a a解法二:因为}{n a 为等差数列,设首项为,1a 公差为d ,+=++++++=+++∴11117435632a d a d a d a a a a ,20d 即d a d a 4,45020511+∴=+ ,90=.180********=+=+++=+∴d a d a d a a a(3)解法一:可用通项公式求解,,)1(,)1(11d q a a d p a a q p -+=-+=①⎩⎨⎧=-+=-+∴.)1(,)1(11p d q a q d p a 两式相减,得⋅-=-p q d q p )(.1,-=∴=/d q p 代入①,有.1,)1)(1(11-+=∴=--+q p a q p a故.0)1()1(1)1(1=-⋅-++-+=-++=+q p q p d q p a a q p解法二:利用关系式d m n a a m n )(-+=求解,,)(,)(d q p p q d q p a a q p -+=∴-+=即.1,.)(-=∴=/-=-d q p d q p p q故.0)1()][(=-+=-++=+q q d p q p a a p q ρ解法三:利用一次函数图象求解.不妨设p<q ,由于等差数列中,n a 关于n 的图象是一条直线上均匀排开的一群孤立的点,故三点 ,(),,q a p p (),(),q p q a q p a ++共线.设,m a q p =+由已知得三点),(),,(),,(m q p p q q p +共线(如图2 -2 -1-3).由 △ABE ∽ △BCF 得,CFBF BE AE = pm p q q p m p p q p q -=∴-+-=--∴1)( 得,0=m 即.0=+q p a[启示] (1)等差数列性质q p n m +=+“且,,,p n m ”q p n m a a a a N q +=+⇒∈+是否可推广为“若,,+∈N n m 则+m a ”?n m n a a +=不行.例如,当n a n 213-=时,则,854=+a a 而.59-=a 显然 ,n m n m a a a +=/+但该性质可推广为三项情形,即s q p t n m ++=++且+⇒∈+m a N s q p t n m ,,,,,”s q p t n a a a a a ++=+以及四项乃至一般情形,只要两边项数一样,且下标和相等即可,请你完成它的证明.(2)上述各种解法无不体现了等差数列性质的灵活运用.母体迁移 2.等差数列}{n a 中:(1)若,,147n a m a ==则=21a(2)若,1531-=++a a a 则=++++54321a a a a a(3)若,52.,34525432==+++a a a a a a 且,24a a >则=5a(4)若,53=a 则=+412a a考点3 等差数列的通项公式命题规律(1)利用解方程组的方法求1a 和d ,从而求出通项公式.(2)利用通项公式及其变形形式解决一些简单的问题[例4] (2010年辽宁省部分重点中学联考题)在等差数列{n a }中,已知,5,1185==a a 求⋅10a[答案] 方法一:设数列}{n a 的公差为d ,由题意知:⎩⎨⎧=+=+,57,11411d a d a 解得 ⎩⎨⎧-==.2,191d a 故 .212)2()1(19+-=-⨯-+=n n a n.12110210=+⨯-=∴a 方法二:,,)(m n a a d d m n a a m n m n --=∴-+=,231155858-=-=--=∴a a d .1)2(252810=-⨯+=+=d a a[方法技巧] 在等差数列}{n a 中,首项1a 与公差d 是两个最基本的元素,有关等差数列的问题,如果条件与结论间的联系不明显,则均可化成有关d a 、1的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.母体迁移 3.已知两个等差数列 ,11,8,5:}{n a 与,,11,7,3:}{ n b 它们的项数均为100项,则它们有多少个彼此具有相同数值的项?考点4 等差数列与一次函数命题规律(1)深刻理解等差数列,进一步理解数列是一特殊的函数,特例是等差数列是一次函数,其中公差d 为斜率.(2)可用函数的性质来处理等差数列问题.[例5] 已知(1,1),(3,5)是等差数列}{n a 图象上的两点.(1)求这个数列的通项公式;(2)画出这个数列的图象;(3)判断这个数列的单调性.[答案] (1)由于(1,1),(3,5)是等差数列}{n a 图象上的两点,所以,5,131==a a 由1213=+=d a a,52=+d 解得,2=d 于是.12-=n a n(2)图象是直线12-=x y 上一些等间隔的点(图略).(3)因为一次函数12-=x y 是增函数,所以数列}{n a 是递增数列.[启示] 本题综合考查数列的通项公式、图象和性质.母体迁移 4.已知数列}{n a 的通项公式为+=2pn a n qn (常数).,R q p ∈(1)当p ,q 满足什么条件时,数列}{n a 是等差数列?(2)求证:对于任意的实数p 和q ,数列}{1n n a a -+是等差数列.考点5 等差数列模型的实际应用命题规律(1)利用等差数列的知识从实际问题中抽象出等差数列的模型.(2)通过构造等差数列的模型去解决实际问题.[例6] 某人有七位朋友,第一位朋友每天晚上都去他家看他,第二位朋友每隔一个晚上到他家去,第三位朋友每隔两个晚上去他家串门,第四位朋友每隔三个晚上去他家做客.依此类推,直至第七位朋友每隔六个晚上在他家出现.这七位朋友昨晚在主人家中碰面,他们还会同一个晚上在主人家中碰面吗?[答案] 第一位朋友每天晚上在主人家;第二位朋友以后在主人家中的天数为:2,4,6,8,…,这些数构成以2为首项,公差为2的等差数列,通项公式为:,2⋅=n a n第三位朋友以后在主人家中的天数为:3,6,9,…,这些数构成以3为首项,公差为3的等差数列,通项公式为:,3⋅=n a n第四、五、六、七位朋友晚上在主人家的天数分别构成以4,5,6,7为首项,公差为4,5,6,7的等差数列;通项公式分别为:;7,6,5,4n a n a n a n a n n n n ====他们要在同一晚上出现,这个数应为这七个数列的公共项,这一项是2,3,4,5,6,7的倍数,而2,3,4,5,6,7的最小公倍数为420,因此第420,840,1260,…天晚上他们会同时在主人家出现.母体迁移 5.为了测试某种金属热膨胀性质,将这种金属的一根细棒加热,从C 100开始第1次测量细棒长度,以后每升高C50测量一次,把依次量得的数据所成的数列}{n l 表示成图象如图2 -2 -1-4,根据图象解答下列问题:(1)第5次量得金属棒的长度是多少?此时金属棒的温度是多少?(2)求}{n l 的通项公式和金属长度L (单位:m )关于温度t 单位:℃)的函数关系式(设长度是关于温度的一次函数);(3)在C 30的温度条件下,如果把两块这种矩形金属板平铺在一个平面上,这个平面的最高温度可达到,500C o 问铺设时两块金属板之间至少要留多宽的空隙?优化分层测讯学业水平测试1.2006是等差数列4,6,8,…的( ).A .第1002项B .第1001项C .第1003项D .第1006项 2.在数列}{n a 中,),(122,211++∈+==N n a a a n n 则101a 的值为( ).49.A 50.B 51.C 52.D3.在等差数列中,),(,n m m a n a n m =/==则n m a +为( ).n m A -. 0.B 2.m C 2.n D4.设数列}{},{n n b a 都是等差数列,且=+==2211,75,25b a b a ,100则3737b a +等于( ). 0.A 37.B 100.C 37.-D5.在等差数列}{n a 中,若,45076543=++++a a a a a 则82a a +的值等于 6.若,b a =/两个等差数列b x x a ,,,21与b y y y a ,,,,321的公差分别为,,21d d 则=21d d 7.已知数列}{n a 中,,66,2171==a a 通项n a 是项数n 的一次函数,则通项公式=n a 8.体育场一角的看台座位是这样排列的:第一排有15个座位,从第二排起每一排都比前一排多2个座位.你能用n a 表示第n 排的座位数吗?第10排能坐多少个人?高考能力测试(测试时间:90分钟测试满分:100分)一、选择题(本题包括8小题,每小题5分,共40分.每小题只有一个选项符合题意) 1.(2011年重庆高考题)在等差数列}{n a 中,,4,232==a a 则=10a ( ).12.A 14-B 16.C 18.D)23lg(2-⋅与)23lg(+的等差中项为( ).0.A 2323lg+-⋅B )625lg(-⋅C 1.D3.等差数列}{n a 中,),(,l m m a l a i m =/==则通项公式为( ).n l m a A n ++=. n m a B n -+=1. l m n a C n --=. 2.nl m a D n ++=4.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则=-||n m ( ). 1.A 43.B 21.C 83.D5.-个首项为23,公差为整数的等差数列,如果前6项均为正数,第7项起为负数,则它的公差是( ).2.-A3.-B4.-C 6.-D 6.(2010年湖北黄冈调考题)已知数列}{n a 的前n 项和为=n s ,2n 则++++322111a a a a200620051a a ++的值是( ).214010.-A 214011.-B 214012.-C 214013.-D 7.(高考题改编)下表给出一个等差数阵,其中每行每列都是等差数列,⋅ij a 表示第i 行第J 列的数,则66a 的值是( ).50.A 43.B 24.C 58.D8.(2010年北京海淀区练习题)已知数列}{},{n n b a 都是公差为l 的等差数列,其首项分别为,11b a 、且∈=+1111,,5b a b a ⋅+N 设),(+∈=N n a c n b n 则数列}{n c 的前10项和等于( ).55.A 70.B 58.C 010.D二、填空题(本题包括4小题,每小题5分.共20分)9.(2009年上海高考题)已知函数.,tan sin )(x x x f +=项数为27的等差数列}{n a 满足),2,2(ππ-∈n a 且公差.0=/d 若+)(1a f ,0)()(272=++a f a f 则当=k 时,.0)(=k a f10.(2010年南京市调考题)将等差数列2,7,12,17,22,…中的数按顺序抄写在本子上,如下表所示,若每行写12个数,每页共15行,则数2007应抄在第 页第 行第 个位置上.11.(2010年苏州市模拟题)在正整数100至500之间能被11整除的整数的个数为 12.若)23lg(),23lg(,lg +-x x x 成等差数列,则=22log x三、解答题(本题包括3小题,共40分.解答应写出文字说明、证明过程或演算步骤)13.(13分)已知数列}{n a 为等差数列,,1c a =公差为l ,若=n b ),(122++∈-N n a a n n 试判断数列}{n b 是否为等差数列?并证明你的结论.14.(13分)(2010年东北八校联考题)已知数列}{n a 为等差数列,关于x 的方程2122++++i i i a x a x a),,,2,1(0n i ==且d d a i (0=/为公差). (1)这些方程是否有公共根?若有,求出它;若没有,请说明理由; (2)在方程有一个公共根的条件下,设另一个根为,i x 则⋅+++11,,11,1121n x x x 是否成等差数列?证明你的结论.15.(14分)(2010年北京模拟题)已知数列}{n a 和}{n b 满足关系式:⋅∈+++=+)(21N n na a ab nn (1)若,2n b n =求数列}{n a 的通项公式;(2)若}{n b 是等差数列,求证:}{n a 也是等差数列.。
§2.2 等差数列1.等差数列的判定(1)a n -a n -1=d (n ≥2,d 为常数)⇔{a n }是公差为d 的等差数列; (2)2a n =a n -1+a n +1 (n ≥2)⇔{a n }是等差数列;(3)a n =kn +b (k ,b 为常数)⇔{a n }是公差为k 的等差数列(n ≥1);(4)S n =An 2+Bn (A ,B 为常数)⇔{a n }是公差为2A 的等差数列(n ≥1).例如:已知等差数列{a n }的前n 项和S n =(n -1)2+λ,则λ的值是________. 解析 S n =(n -1)2+λ=n 2-2n +(1+λ), ∵{a n }是等差数列,∴1+λ=0,λ=-1. 答案 -12.等差数列的通项公式将a n =a 1+(n -1)d 可整理为a n =dn +(a 1-d ),它是关于n 的一次函数(d ≠0)或常函数(d =0),它的图象是一条射线上的一群横坐标为正整数的孤立的点,公差d 是该射线所在直线的斜率.例如:等差数列{a n }中,若a n =m ,a m =n (m ≠n ),则a m +n =______. 解析 由点(n ,a n ),(m ,a m ),(m +n ,a m +n )三点共线, ∴a m +n -a n (m +n )-n =a m -a n m -n .即a m +n -m m =n -m m -n=-1,易得a m +n =0. 答案 03.等差数列的前n 项和公式(1)将公式S n =na 1+n (n -1)2d 变形可得S n =d2n 2+⎝⎛⎭⎫a 1-d 2n .故当d ≠0时,等差数列前n 项和公式是关于n 的二次函数,它的图象是抛物线y =d2x 2+⎝⎛⎭⎫a 1-d 2x 上横坐标为正整数的一群孤立点.(2)S n n =d2n +⎝⎛⎭⎫a 1-d 2是关于n 的一次函数(d ≠0)或常函数(d =0). 当涉及等差数列前n 项和S n 的计算问题时,有时设S n =An 2+Bn 的形式更简便快捷. 例如:等差数列{a n }中,若S p =q ,S q =p (p ≠q ),则S p +q =__________. 解析 设S n =An 2+Bn ,则⎩⎪⎨⎪⎧S p =Ap 2+Bp =q (1)S q =Aq 2+Bq =p (2) 由(1)-(2)得Ap 2+Bp -Aq 2-Bq =q -p , ∴A (p 2-q 2)+B (p -q )=q -p , ∵p ≠q ,∴A (p +q )+B =-1. ∵S p +q =A (p +q )2+B (p +q ) =[A (p +q )+B ]·(p +q ) =-(p +q ). 答案 -(p +q ) 4.等差数列的性质(1)若数列{a n }和{b n }均是等差数列,则{ma n +kb n }仍为等差数列,其中m 、k 均为常数. (2)若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q .(3)等差数列中依次k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d (d 是原数列公差).(4)若{a n }与{b n }均为等差数列,且前n 项和分别为S n 与S ′n ,则a m b m =S 2m -1S ′2m -1.(5)等差数列{a n }中,奇数项的和记作S 奇,偶数项的和记作S 偶,则S n =S 奇+S 偶.当n 为偶数时:S 偶-S 奇=n2d ;当n 为奇数时:S 奇-S 偶=a 中,S 奇=n +12a 中,S 偶=n -12a 中,S 奇S 偶=n +1n -1.(其中a 中是等差数列的中间一项)例如:已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是________.解析 S 偶-S 奇=n2d =5d ,∴5d =30-15=15,∴d =3.答案 35.等差数列前n 项和的最值求等差数列前n 项和的最值的常用方法: (1)通项法当a 1>0,d <0时,数列{a n }只有前面有限项为非负数,从某项开始所有项均为负数,因此,S n 有最大值,当n 满足不等式组⎩⎪⎨⎪⎧ a n ≥0a n +1<0时,S n 取到这个最大值;当a 1<0,d >0时,数列{a n }只有前面有限项为非正数,从某项开始所有项均为正数,因此,S n 有最小值,当n 满足不等式组⎩⎪⎨⎪⎧a n ≤0a n +1>0时,S n 取到这一最小值.(2)二次函数法由于S n =d2n 2+⎝⎛⎭⎫a 1-d 2n ,n ∈N *是关于n 的二次函数式,故可转化为求二次函数的最值问题,但要注意数列的特殊性n ∈N *.例如:{a n }是等差数列,a 1>0,a 2 009+a 2 010>0,a 2 009·a 2 010<0,则使前n 项和S n 最大时,n 的值是________;使前n 项和S n >0成立时,n 的最大值是________.答案 2 009 4 018一、等差数列的判断方法方法链接:判定等差数列的常用方法: (1)定义法:a n +1-a n =d (常数)(n ∈N *);(2)通项公式法:a n =kn +b (k ,b 为常数) (n ∈N *); (3)中项公式法:2a n +1=a n +a n +2 (n ∈N *);(4)前n 项和法:S n =An 2+Bn (A 、B 为常数),n ∈N *.例1 数列{a n }的前n 项和S n 满足:S n =n (a 1+a n )2,判断{a n }是否为等差数列?并证明你的结论.解 {a n }是等差数列,证明如下:因为a n =S n -S n -1=n (a 1+a n )2-(n -1)(a 1+a n -1)2(n ≥2),所以a n +1=(n +1)(a 1+a n +1)2-n (a 1+a n )2,所以a n +1-a n =12[(n +1)(a 1+a n +1)-2n (a 1+a n )+(n -1)(a 1+a n -1)]=12[(n +1)a n +1-2na n +(n -1)a n -1] (n ≥2), 即(n -1)(a n +1-2a n +a n -1)=0,所以a n +1+a n -1=2a n (n ≥2), 所以数列{a n }为等差数列.二、等差数列中基本量的运算方法链接:在等差数列中,五个重要的量,只要已知三个量,就可求出其他两个量,其中a 1和d 是两个基本量,利用通项公式与前n 项和公式,求出a 1和d ,等差数列就确定了.例2 在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8和S 8;(2)已知前3项和为12,前3项积为48,且d >0,求a 1; (3)已知前3项依次为a,4,3a ,前k 项和S k =2 550,求a 及k . 解 (1)∵a 6=10,S 5=5, ∴⎩⎪⎨⎪⎧a 1+5d =105a 1+10d =5. 解方程组得a 1=-5,d =3, ∴a 8=a 6+2d =10+2×3=16,S 8=8×(a 1+a 8)2=44.(2)设数列的前三项分别为a -d ,a ,a +d ,依题意有: ⎩⎪⎨⎪⎧(a -d )+a +(a +d )=12(a -d )·a ·(a +d )=48, ∴⎩⎪⎨⎪⎧a =4a (a 2-d 2)=48, ∴⎩⎪⎨⎪⎧a =4d =±2. ∵d >0,∴d =2,a -d =2.∴a 1=2. (3)设公差为d ,则由题意得⎩⎪⎨⎪⎧a +3a =8,d =4-a ,ka +k (k -1)2d =2 550,∴⎩⎪⎨⎪⎧a =2,d =2,k =50或k =-51(舍去).因此,a =2,k =50.三、等差数列的性质及运用方法链接:等差数列有一些重要的性质,例如: (1)若m +n =p +q ,则a m +a n =a p +a q ; (2)若m +n =2p ,则a m +a n =2a p ;(3)若{a n }是等差数列,则S k ,S 2k -S k ,S 3k -S 2k 也成等差数列.(其S k 为前k 项和)(4)若等差数列{a n }的前n 项和为S n ,等差数列{b n }的前n 项和为T n ,则a n b n =S 2n -1T 2n -1.熟练运用这些性质,可以提高解题速度,获得事半功倍的功效.例3 (1)设等差数列{a n }的前n 项和为S n ,若S 9=72,求a 2+a 4+a 9的值; (2)已知等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,求证:①a n b n =S 2n -1T 2n -1;②a n b m =2m -12n -1·S 2n -1T 2m -1.(1)解 由S 9=9(a 1+a 9)2=72,∴a 1+a 9=16,∴a 1+a 9=2a 5=16,∴a 5=8,∴a 2+a 4+a 9=a 1+a 5+a 9=3a 5=24.(2)证明 ①a n b n =2a n 2b n =a 1+a 2n -1b 1+b 2n -1=(a 1+a 2n -1)2n -12(b 1+b 2n -1)2n -12=S 2n -1T 2n -1.②a n b m =2a n 2b m =a 1+a 2n -1b 1+b 2m -1=(a 1+a 2n -1)2n -12·2m -12(b 1+b 2m -1)2m -12·2n -12=2m -12n -1·S 2n -1T 2m -1.四、等差数列前n 项和的最值 方法链接:等差数列前n 项和最值问题除了用二次函数求解外,还可用下面的方法讨论:若d >0,a 1<0,S n 有最小值,需⎩⎪⎨⎪⎧a n ≤0,a n +1≥0;若a 1>0,d <0,S n 有最大值,需⎩⎪⎨⎪⎧a n ≥0,a n +1≤0.n 取正整数.例4 (1)首项为正数的等差数列,前n 项和为S n ,且S 3=S 11,问n 为何值时,S n 最大?(2)等差数列{a n }中,a 1=-60,a 17=-12,求{|a n |}的前30项和及前n 项和.解 (1)设首项为a 1,公差为d ,则由题意知,d <0,点P (n ,S n )在抛物线y =d2x 2+⎝⎛⎭⎫a 1-d 2x 上,其对称轴方程为x =7(由S 11=S 3知),故(7,S 7)是抛物线的顶点,∴n =7时,S n 最大.(2)设公差为d ,则由a 1+16d =a 17,得d =3>0,因此a n =3n -63.点Q (n ,a n )在增函数y =3x -63的图象上.令y =0则得x =21,故当n ≥22时,a n >0;当1≤n ≤21且n ∈N *时,a n ≤0, 于是|a 1|+|a 2|+…+|a 30|=-a 1-a 2-…-a 21+a 22+a 23+…+a 30 =a 1+a 2+…+a 30-2(a 1+a 2+…+a 21) =765.记T n =|a 1|+|a 2|+…+|a n |, 则由上面的求解过程知: 当1≤n ≤21,n ∈N *时, T n =|a 1|+|a 2|+…+|a n | =-a 1-a 2-…-a n =(123-3n )n 2=-32n 2+1232n .当n >21,n ∈N *时,T n =|a 1|+|a 2|+…+|a 20|+|a 21|+…+|a n | =-(a 1+a 2+…+a 21)+a 22+a 23+…+a n =(a 1+a 2+…+a n )-2(a 1+a 2+…+a 21) =32n 2-1232n +1 260. ∴数列{|a n |}的前n 项和T n=⎩⎨⎧-32n 2+1232n (1≤n ≤21,n ∈N *),32n 2-1232n +1 260 (n >21,n ∈N *).五、关于等差数列的探索性问题方法链接:对于与等差数列有关的探索性问题,先由前三项成等差数列确定参数后,再利用定义验证或证明所得结论.例5 已知数列{a n }中,a 1=5且a n =2a n -1+2n -1 (n ≥2且n ∈N *). (1)求a 2,a 3的值;(2)是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.解 (1)∵a 1=5,∴a 2=2a 1+22-1=13, a 3=2a 2+23-1=33.(2)假设存在实数λ,使得数列⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列.则a 1+λ2,a 2+λ22,a 3+λ23成等差数列,∴2×a 2+λ22=a 1+λ2+a 3+λ23,∴13+λ2=5+λ2+33+λ8.解得λ=-1.当λ=-1时,⎝ ⎛⎭⎪⎫a n +1-12n +1-⎝⎛⎭⎫a n -12n=12n +1[(a n +1-1)-2(a n -1)] =12n +1(a n +1-2a n +1) =12n +1[(2a n +2n +1-1)-2a n +1] =12n +1×2n +1=1. 综上可知,存在实数λ=-1,使得数列⎩⎨⎧⎭⎬⎫a n +λ2为等差数列,且首项是2,公差是1.六、关于等差数列的创新型问题方法链接:关于等差数列的创新型试题,常以图表、数阵、新定义等形式出现.解决此类问题时通过对图表的观察、分析、提炼,挖掘出题目蕴含的有用信息,利用所学等差数列的有关知识加以解决.ij(1)写出a 45的值;(2)写出a ij 的计算公式.解 (1)通过观察“等差数阵”发现:第一行的首项为4,公差为3;第二行首项为7,公差为5.归纳总结出:第一列(每行的首项)是以4为首项,3为公差的等差数列,即3i +1,各行的公差是以3为首项,2为公差的等差数列,即2i +1.所以a 45在第4行,首项应为13,公差为9,进而得出a 45=49.(2)该“等差数阵”的第一行是首项为4,公差为3的等差数列:a 1j =4+3(j -1); 第二行是首项为7,公差为5的等差数列: a 2j =7+5(j -1); ……第i 行是首项为4+3(i -1),公差为2i +1的等差数列, 因此,a ij =4+3(i -1)+(2i +1)(j -1)=2ij +i +j =i (2j +1)+j .1.审题不细心,忽略细节而致错例1 首项为-24的等差数列,从第10项起开始为正数,求公差d 的取值范围.[错解] a 10=a 1+9d =-24+9d >0,∴d >83.[点拨] 忽略了“开始”一词的含义,题目强调了第10项是该等差数列中的第一个正项,应有a 9≤0.[正解] 设a n =-24+(n -1)d , 由⎩⎪⎨⎪⎧a 9=-24+(9-1)d ≤0a 10=-24+(10-1)d >0, 解不等式得:83<d ≤3.温馨点评 审题时要细心,包括问题的细节,有时细节决定解题的成败.2.忽略公式的基本特征而致错例2 已知两个等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且对一切正整数n 都有S n T n =5n +32n +7,试求a 9b 9的值. [错解] 设S n =(5n +3)k ,T n =(2n +7)k ,k ≠0, 则a 9=S 9-S 8=(5×9+3)k -(5×8+3)k =5k , b 9=T 9-T 8=(2×9+7)k -(2×8+7)k =2k ,所以a 9b 9=52.[点拨] 此解答错在根据条件S n T n =5n +32n +7,设S n =(5n +3)k ,T n =(2n +7)k ,这是把等差数列前n 项和误认为是关于n 的一次函数,没有准确把握前n 项和公式的特点.[正解] 因为{a n }和{b n }是公差不为0的等差数列, 故设S n =n (5n +3)k ,T n =n (2n +7)k ,k ≠0,则 a 9=S 9-S 8=9×(5×9+3)k -8×(5×8+3)k =88k ,b 9=T 9-T 8=9×(2×9+7)k -8×(2×8+7)k=41k ,所以a 9b 9=8841.温馨点评 等差数列的前n 项和S n =d2n 2+⎝⎛⎭⎫a 1-d 2n ,当d ≠0时,是关于n 的二次函数式,且常数项为零,当d =0时,S n =na 1,但是本题不属于这种情况(否则S n T n =na 1nb 1=a 1b 1与S nT n=5n +32n +7矛盾). 3.对数列的特点考虑不周全而致错例3 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 有最大值,并求出它的最大值.[错解] 设公差为d ,∵S 10=S 15,∴10×20+10×92d =15×20+15×142d ,得120d =-200,即d =-53,∴a n =20-(n -1)·53,当a n >0时,20-(n -1)·53>0,∴n <13.∴n =12时,S n 最大,S 12=12×20+12×112×⎝⎛⎭⎫-53=130.∴当n =12时,S n 有最大值S 12=130.[点拨] 解中仅解不等式a n >0是不正确的,事实上应解a n ≥0,a n +1≤0.[正解] 由a 1=20,S 10=S 15,解得公差d =-53.∵S 10=S 15,∴S 15-S 10=a 11+a 12+a 13+a 14+a 15=0, ∵a 11+a 15=a 12+a 14=2a 13=0,∴a 13=0. ∵公差d <0,a 1>0,∴a 1,a 2,…,a 11,a 12均为正数, 而a 14及以后各项均为负数.∴当n =12或13时,S n 有最大值为S 12=S 13=130.4.忽略题目中的隐含条件而致错例4 一个凸n 边形的各内角度数成等差数列,其最小角为120°,公差为5°,求凸n 边形的边数.[错解] 一方面凸n 边形的内角和为S n ,S n =120°n +n (n -1)2×5°.另一方面,凸n 边形内角和为(n -2)×180°.所以120n +n (n -1)2×5=(n -2)×180.化简整理得:n 2-25n +144=0. 所以n =9或n =16.即凸n 边形的边数为9或16.[点拨] 凸n 边形的每个内角都小于180°.当n =16时,最大内角为120°+15°×5°=195°>180°应该舍掉.[正解] 凸n 边形内角和为(n -2)×180°,所以120n +n (n -1)2×5=(n -2)×180解得:n =9或n =16.当n =9时,最大内角为120°+8°×5°=160°<180°; 当n =16时,最大内角为120°+15×5°=195°>180°舍去. 所以凸n 边形的边数为9.例 一个等差数列的前10项之和为100,前100项之和为10,求前110项之和. 分析 本题可从基本方法入手,先求a 1,d ,再求前110项之和,为了简化计算,也可利用等差数列前n 项和的性质.解 方法一 设等差数列{a n }的公差为d ,前n 项和为S n ,则S n =na 1+n (n -1)2d .由已知得⎩⎨⎧10a 1+10×92d =100, ①100a 1+100×992d =10. ②①×10-②整理得d =-1150,代入①,得a 1=1 099100,∴S 110=110a 1+110×1092d=110×1 099100+110×1092×⎝⎛⎭⎫-1150=110⎝⎛⎭⎫1 099-109×11100=-110. 故此数列的前110项之和为-110. 方法二 设S n =an 2+bn . ∵S 10=100,S 100=10,∴⎩⎪⎨⎪⎧102a +10b =100,1002a +100b =10,解得⎩⎨⎧a =-11100,b =11110.∴S n =-11100n 2+11110n .∴S 110=-11100×1102+11110×110=-110.方法三 设等差数列的首项为a 1,公差为d ,则⎩⎨⎧S p =pa 1+p (p -1)2d =q , ①(p ≠q )S q=qa 1+q (q -1)2d =p . ②①-②得(p -q )a 1+(p -q )(p +q -1)2d=-(p -q ). 又p ≠q ,∴a 1+p +q -12d =-1,∴S p +q =(p +q )a 1+(p +q )(p +q -1)2d=(p +q )(-1), ∴S 110=-110.方法四 数列S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100 成等差数列,设其公差为D .前10项的和10S 10+10×92·D =S 100=10,解得D =-22,∴S 110-S 100=S 10+(11-1)D =100+10×(-22)=-120. ∴S 110=-120+S 100=-110.方法五 ∵S 100-S 10=a 11+a 12+…+a 100 =90(a 11+a 100)2=90(a 1+a 110)2.又S 100-S 10=10-100=-90,∴a 1+a 110=-2.∴S 110=110(a 1+a 110)2=-110.1.已知等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }的前n 项和S n . 解 设{a n }的公差为d ,则 ⎩⎪⎨⎪⎧(a 1+2d )(a 1+6d )=-16,a 1+3d +a 1+5d =0, 即⎩⎪⎨⎪⎧ a 21+8da 1+12d 2=-16,a 1=-4d , 解得⎩⎪⎨⎪⎧a 1=-8,d =2,或⎩⎪⎨⎪⎧a 1=8,d =-2.因此S n =-8n +n (n -1)=n (n -9), 或S n =8n -n (n -1)=-n (n -9).2.设{a n }是公差不为零的等差数列,S n 为其前n 项和,满足a 22+a 23=a 24+a 25,S 7=7. (1)求数列{a n }的通项公式及前n 项和S n ;(2)试求所有的正整数m ,使得a m a m +1a m +2为数列{a n }中的项.解 (1)由题意,设等差数列{a n }的通项公式为 a n =a 1+(n -1)d ,d ≠0.由a 22+a 23=a 24+a 25得a 22-a 25=a 24-a 23,由性质得-3d (a 4+a 3)=d (a 4+a 3),因为d ≠0 所以a 4+a 3=0,即2a 1+5d =0.① 又因为S 7=7,所以a 1+3d =1.② 由①②可得a 1=-5,d =2.所以数列{a n }的通项公式a n =2n -7,S n =na 1+n (n -1)2d =n 2-6n .(2)因为a m a m +1a m +2=(a m +2-4)(a m +2-2)a m +2=a m +2-6+8a m +2为数列{a n }中的项,故8a m +2为整数. 又由(1)知a m +2为奇数,所以a m+2=2m-3=±1,即m=1,2.经检验,符合题意的正整数只有m=2.赏析试题考查了等差数列的有关知识,起点较低,落点较高,难度控制得恰到好处.第(2)问要求考生有一定的分析问题解决问题的能力.。
等差数列教案一、教学目标1.了解等差数列的定义和性质;2.掌握等差数列的通项公式和求和公式;3.能够应用等差数列的知识解决实际问题。
二、教学重点1.等差数列的定义和性质;2.等差数列的通项公式和求和公式。
三、教学难点1.应用等差数列的知识解决实际问题。
四、教学内容及方法1. 等差数列的定义和性质(1)定义等差数列是指一个数列中,从第二项开始,每一项与它的前一项之差相等的数列。
这个公差常用字母d表示。
例如,1,3,5,7,9就是一个公差为2的等差数列。
(2)性质[2a1+(n−1)d];•等差数列的前n项和为S n=n2•等差数列的第n项为a n=a1+(n−1)d;•等差数列的前n项平均值为a1+a n。
22. 等差数列的通项公式和求和公式(1)通项公式等差数列的通项公式为a n=a1+(n−1)d。
其中,a n表示等差数列的第n项,a1表示等差数列的首项,d表示等差数列的公差。
(2)求和公式等差数列的前n项和为S n=n2[2a1+(n−1)d]。
其中,S n表示等差数列的前n项和,a1表示等差数列的首项,d表示等差数列的公差。
3. 应用等差数列的知识解决实际问题(1)例题某人从第1天开始每天存5元钱,以后每天比前一天多存2元钱,到第n 天时共存了多少钱?解:这是一个公差为2的等差数列,首项为5,第n项为a n=5+(n−1)2=2n+3。
所以,到第n天时共存了S n=n2[2a1+(n−1)d]=n2[2×5+(n−1)×2]=n2(2n+7)元。
(2)练习题1.某等差数列的首项为3,公差为2,第n项为17,求n。
2.某等差数列的前6项和为42,公差为3,求该等差数列的首项。
4. 教学方法本课程采用讲授、练习、讨论等多种教学方法,注重理论与实践相结合,注重培养学生的分析和解决问题的能力。
五、教学评价本课程的教学目标明确,教学内容丰富,教学方法多样,能够有效地提高学生的数学素养和解决实际问题的能力。
数学等差数列教案优秀8篇一、预习问题:1、等差数列的定义:一般地,如果一个数列从起,每一项与它的前一项的差等于同一个,那么这个数列就叫等差数列,这个常数叫做等差数列的,通常用字母表示。
2、等差中项:若三个数组成等差数列,那么A叫做与的即或。
3、等差数列的单调性:等差数列的公差时,数列为递增数列;时,数列为递减数列;时,数列为常数列;等差数列不可能是。
4、等差数列的通项公式:。
5、判断正误:①1,2,3,4,5是等差数列;()②1,1,2,3,4,5是等差数列;()③数列6,4,2,0是公差为2的等差数列;()④数列是公差为的等差数列;()⑤数列是等差数列;()⑥若,则成等差数列;()⑦若,则数列成等差数列;()⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列;()⑨等差数列的公差是该数列中任何相邻两项的差。
()6、思考:如何证明一个数列是等差数列。
二、实战操作:例1、(1)求等差数列8,5,2,的第20项。
(2)是不是等差数列中的项?如果是,是第几项?(3)已知数列的公差则例2、已知数列的通项公式为,其中为常数,那么这个数列一定是等差数列吗?例3、已知5个数成等差数列,它们的和为5,平方和为求这5个数。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法,通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
教学过程:一、片头(30秒以内)前面学习了数列的概念与简单表示法,今天我们来学习一种特殊的数列-等差数列。
本节微课重点讲解等差数列的定义,并且能初步判断一个数列是否是等差数列。
30秒以内二、正文讲解(8分钟左右)第一部分内容:由三个问题,通过判断分析总结出等差数列的定义 60 秒第二部分内容:给出等差数列的定义及其数学表达式50 秒第三部分内容:哪些数列是等差数列?并且求出首项与公差。
2.2.1等差数列的概念与通项公式预习案(限时20分钟)学习目标:1.通过实例,理解等差数列的概念,能根据等差数列的定义判断一个数列是否是等差数列.2.掌握等差数列的通项公式及变形公式.学习重点:理解等差数列的概念,能根据等差数列的定义判断一个数列是否是等差数列.学习难点:等差数列通项公式的应用.预习指导:请根据任务提纲认真预习课本❖ 任务一:什么是等差数列?如果一个数列从第2项起,每一项与它的前一项的差等于________常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的__________,通常用字母________表示.❖ 任务二:什么是等差中项?如果三个数a ,A ,b 成等差数列,那么________叫做a 与b 的等差中项.这三个数满足的关系式是_____________. ❖ 任务三:等差数列的通项公式以1a 为首项,d 为公差的等差数列{}n a 的通项公式为n a =_____________.特别注意:(1)公式中有四个量,即n a ,1a ,n ,d.已知其中任意三个量,通过解方程都可求得剩下的一个量.(2)等差数列的通项公式可推广为()n m a a n m d =+-(n ≥m ,m ,n ∈N*).由此可知已知等差数列的任意两项,就可求出其他的任意一项.预习检测1.已知数列3,9,15,…,3(2n -1),…,那么81是它的( )A .第12项B .第13项C .第14项D .第15项2.若数列{}n a 的通项公式为n a =-n +5,则此数列是( )A .公差为-1的等差数列B .公差为5的等差数列C .首项为5的等差数列D .公差为n 的等差数列3.等差数列1,-1,-3,-5,…,-89,它的项数是( )A .92B .47C .46D .454.(2016年辽宁大连双基测试)在等差数列{}n a 中,1548,7a a a +==,则5a =________.5. 判断下列数列是否为等差数列:(1)在数列{}n a 中32n a n =+;(2)在数列{}n a 中2n a n n =+.预习探究已知数列{}n a 通项公式31n a n =+,函数()()31f x x x R =+∈,请你从“数”与“形”两个方面探究数列通项 公式n a 与函数()f x 的区别与联系。
基础达标:1.等差数列40,37,34中的第一个负数项是( ) A .第13项 B .第14项 C .第15项 D .第16项 2.在-1与7之间顺次插入三个数,使这五个数成等差数列,则此数列为________.3.单调递增等差数列{a n }中,若a 3+a 6+a 9=12, a 3·a 6·a 9=28, 则a n =______.4.数列{a n }中,a n =3n-5, 则S 9=__________.5.等差数列{a n }中,已知a 2+a 9+a 12+a 19=100, 则S 20=________.6.等差数列{a n }中,a 1>0, d ≠0, S 20=S 30, 则S n 取得最大值时的n 的值为_____.7.在公差d=21的等差数列{a n }中,已知S 100=145,则a 1+a 3+a 5+……+a 99的值为_____.8.把20分成四个数成等差数列,使第一项与第四项的积同第二项与第三项的积的比为2∶3,则这四个数从小到大依次为____________.9.在等差数列{a n }中,a 3+a 4+a 5+a 6+a 7=450,求a 2+a 8.10.已知数列{a n }是等差数列,令221n n n a a b -=+,求证:{b n }也是等差数列.能力提升:14.等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10为( ) A .27 B .28 C .29 D .3015、已知等差数列{}n a 的前3项依次为1a -,1a +,23a +,则通项公式n a =( ).A. 25n -B. 23n -C. 21n -D. 21n + 16.已知等差数列{a n }满足:a 3a 7=-12,a 4+a 6=-4,则通项公式a n =________.17、已知等差数列{}n a 中,m a n =,n a m =,且m n ≠,则m n a +=__________.18、首项为24-的等差数列,从第10项开始为正数,则公差的取值范围是__________.19、等差数列{}n a 中,14739a a a ++=,25833a a a ++=,则369a a a ++=_________.20、已知ABC ∆中,角A ,B ,C 依次成等差数列,则22cos cos A C +的取值范围是__________.21.已知等差数列{a n }满足:S 10=310,S 20=1220,求a n .22.已知等差数列{a n }中,a 3+a 13=4,求S 15.23.一个有n项的等差数列,前四项和为26,最后四项和为110,所有项之和为187,求项数n.24.已知等差数列{a n}的前n项和为S n,求证:S n,S2n-S n,S3n-S2n,……成等差数列.25.已知等差数列{a n}满足,S p=q,S q=p,(p≠q),求S p+q.26.已知等差数列{a n }中,a 1<0,S 9=S 12,求S n 何时取最小值.综合探究:27.求证:数列1{lg(100sin )}4n π-是等差数列,并求它的前n 项和的最大值.(精确到十分位,lg 20.3010 )。
等差数列教案大班一、教学目标:1. 了解等差数列的概念和性质。
2. 掌握等差数列的通项公式及应用。
3. 能够运用等差数列解决实际问题。
4. 培养学生的逻辑思维和分析问题的能力。
二、教学重点:1. 等差数列的概念和性质。
2. 等差数列的通项公式及应用。
三、教学难点:1. 运用等差数列解决实际问题。
2. 发现等差数列在生活中的应用。
四、教学准备:1. 教学课件、教学书籍。
2. 黑板、粉笔。
3. 习题和练习题。
五、教学过程:步骤一:导入(5分钟)老师通过提问的方式,复习学生对数列的基本概念的理解。
引出等差数列的概念,并给出一个生活中的例子,如每天步行的步数。
引导学生思考等差数列的性质。
步骤二:讲解(20分钟)1. 通过教学课件,详细讲解等差数列的定义和性质。
2. 指导学生理解等差数列的通项公式,并给出相关的示例。
3. 鼓励学生自己推导等差数列的通项公式,帮助他们理解公式的由来。
步骤三:练习(25分钟)1. 分发练习题,并让学生独立完成。
2. 学生完成后,老师逐个讲解题目的解答过程,同时解释解题的思路和方法。
3. 引导学生分析实际问题,应用等差数列进行计算。
步骤四:拓展(20分钟)1. 引导学生思考等差数列在生活中的应用。
例如,车速、水位的变化等。
2. 让学生分组进行小研究,找出更多生活中的等差数列应用,并分享给全班。
3. 整理学生的发现,鼓励他们运用数学知识解决生活中的问题。
步骤五:总结与反思(5分钟)老师引导学生总结今天学习的内容,回顾所学的知识点和解题方法。
并鼓励学生进行反思,思考自己在学习过程中的问题和不足之处。
六、教学延伸:1. 教师可以带领学生进行更复杂的等差数列的计算和应用。
2. 引导学生进行等差数列的推广,如等差数列的和公式等。
3. 给学生提供更多的练习题和挑战题,以更好地巩固所学的知识。
七、教学评价:1. 教师可以通过课堂练习和小组讨论的方式进行学生的评价。
2. 老师可以提供一些练习题或考试题,检查学生对等差数列的掌握程度。
等差数列复习学案【学习目标】1.理解等差数列的概念,理解等差中项的意义;2.掌握等差数列的通项公式;3.掌握等差数列的前n 项和公式.【自学指导】1.如果一个数列从第 项起,每一项与它的 的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的 ,公差通常用d 表示.2.在数列{}n a 中,若对任意n N *∈,有 (1)n >,则称数列{}n a 为等差数列.3.由三个数,,a A b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的 .A 为a 与b 的等差中项⇔,,a A b 组成 ⇔公式:4.设等差数列{}n a 的首项是1a ,公差是d ,则通项公式 .公式推导方法为归纳法.对于任意,n m N *∈,有()n m a a n m d =+-,公差n m a a d n m-=-()m n ≠. 5.设等差数列{}n a 的首项是1a ,公差是d ,项数是n ,则前n 项和公式为 .6.对于正整数m ,n ,p ,q ,若q p n m +=+,则等差数列中m a ,n a ,p a ,q a 的关系为 .例1 (1)在等差数列{}n a 中,已知154510,90a a ==,求60a ;(2)在等差数列{}n a 中,已知15621,3,2n a a a a ==-=,求n .例2 在等差数列{}n a 中,(1)若3456450a a a a +++=,则18a a += ;(2)若1235a a a ++=,45610a a a ++=,则789a a a ++= .例3 (1)已知三个数成等差数列,其和为15,首末两数的积为9,求此数列.(2)成等差数列的四个数之和为26,第二个数与第三个数之积为40,求此数列.(3)一个直角三角形三边的长组成等差数列,求这个直角三角形三边长的比.【基础训练】一、选择题1.在等差数列{n a }中,若1201210864=++++a a a a a ,则12102a a -的值为 ( )A 、20B 、22C 、24D 、282.等差数列-6,-1,4,9,……中的第20项为( )A 、89B 、 -101C 、101D 、-893.等差数列{}n a 中,3315=a ,15345=a ,则217是这个数列的 ( )A 、第60项B 、第61项C 、第62项D 、不在这个数列中4.若,,a b c 成等差数列,则二次函数2()2f x ax bx c =++与x 轴交点的个数是( )A .0个B .1个C .2个D .不确定5.等差数列中连续四项为a ,x ,b ,x 2,那么b a : 等于 ( )A 、41B 、31C 、31或 1D 、21二、填空题6.设n S 为等差数列}{n a 的前n 项和,若1236==S a ,则}{n a 的通项n a = .7.在等差数列}{n a 中公差0>d ,475a a +=,566a a =,则通项公式n a = .8.设n S 为等差数列}{n a 的前n 项和,若2112=S ,则=+++11852a a a a .9.如图(1)是一个三角形,分别连结这个三角形三边的中点,将原三角形剖分成4个三角形(如图(2)),再分别连结图(2)中间的小三角形三边的中点,又可将原三角形剖分成7个三角形(如图(3)).依此类推,第n 个图中原三角形被剖分为n a 个三角形.则数列{}n a 的通项公式是 ;第100个图中原三角形被剖分为 个三角形?三、解答题10.在等差数列}{n a 中,(1)已知21=a ,3=d ,10=n ,求n a 、n S ;(2)已知31=a ,21=n a ,2=d ,求n 、n S ;(3)已知121=a ,276=a ,求d ;(4)已知31-=d ,87=a ,1a 、10S .11.如图,三个正方形的边,,AB BC CD 的长组成等差数列,且21AD =cm ,这三个正方形的面积之和是1792cm .(1)求,,AB BC CD 的长;(2)以,,AB BC CD 的长为等差数列的前三项,以第10项为边长的正方形的面积是多少?12.在通常情况下,从地面到km 10高空,高度每增加km 1,气温就下降某一个固定数值.如果km 1高度的气温是C o 5.8,km 5高度气温是C o 5.17-,求km 2、km 4、km 8高度的气温.13. 已知等差数列}{n a 的公差为d ,求证:d nm a a n m =--。
等差数列 导学案
编写人:孙衍常 魏红 于晓群 审核人: 领导签字: 【使用说明】1.用10分钟左右时间规范整理上一导学案,落实消化;
2.用20分钟时间细读课本P35-P38的基础知识,并完成预习学案;
3.认真限时完成,规范书写;课上小组合作探讨,答疑解惑.
【学习目标】:1.掌握等差数列的概念及通项公式,提高运算求解能力;
2.合作学习,大胆质疑,探究等差数列相关知识应用的规律方法;
3.激情投入,享受学习数学的快乐.
【课前预习】
一、重点:等差数列的概念、通项公式、等差中项、叠加法.
难点:等差数列通项公式的推导 二、问题导学: 1.等差数列的概念
思考①:观察以下数列的特点:(1)2, 9,16,23,30;(2)89,83,77,71,65,59,53,47 ; (3)-10,-7,-4,-1,2,5 特点:
由此得等差数列的定义:___________________________________________________ 公差的定义及表示方法:___________________________________________________ 思考②:判断以下数列是否为等差数列:(1)1,2,4,6,8,10,12;
(2)1,3,6,10,15,21; (3)3,3,3,3,3,3,
思考③:公差d 与等差数列单调性的关系:__________________________________________
2、等差数列的通项公式
思考①:由递推关系1(2)n n a a d n -=+≥怎样推导出通项公式?
由上得等差数列的通项公式:n a = ,其中首项为 ,公差为 思考②:等差数列与一次函数的关系:________________________________________ 思考③:要求等差数列的通项公式需要知道几个独立的条件?
3、等差中项的定义:______________________________________________________
思考:判断数列为等差数列的方法: 、 。
【预习自测】
1、在等差数列{a n }中:
(1)已知576,16,a a ==则1a = ,公差d = 。
(2)已知31020,1,a a ==-则15a =
2. 填空题:
(1)30与18的等差中项是________ (2)-13与9的等差中项是________.
(3
)1
2的等差中项是________;(4)2()a b +与2()a b -的等差中项是________
【课内探究】
合作、探究、展示
探究一、求等差数列的通项公式
例1、已知等差数列10,7,4,…:
(1)试求此数列的第10项;
(2)-40是不是这个数列的项?-56是不是这个数列的项?如果是,是第几项?
【思考】已知等差数列{a n }的首项a 1=17,公差d=-0.6,此等差数列从第几项开始出现负数?
【拓展提升】若已知等差数列的任意项m a ,公差d ,求通项公式n a .
【规律方法总结】
探究二:证明数列是等差数列。
例2.已知数列{a n }的通项公式为a n =3n-5,这个数列是等差数列吗?
【拓展提升】已知数列{}n a 是等差数列,求证:2,,m m k m k a a a ++是等差数列。
规律方法总结: 探究三、等差数列的应用
例3.梯子共有5级,从上往下数第1级宽35厘米,第5级宽43厘米,且各级的宽度依次组成等差数列{a n },
(1) 求第2,3,4级的宽度; (2) 15a a +与24a a +有何关系?
【思考】已知*
,,,m n p q N ∈,且m n p q +=+,等式m n p q a a a a +=+是否成立?
【拓展提升】在等差数列{}n a 中,若2583579,21,a a a a a a ++==-求n a .
【规律方法总结】
【当堂检测】
1.在12与60 之间插入3个数,使这5个数成等差数列,求插入的3个数。
2.在通常情况下,从地面到10km 高空,高度每增加1km ,气温就下降某一个固定数值。
如果高度为1km 时气温是0
8.5C ,高度为5km 时的气温是0
17.5C -,求高度分别为2km,4km,8km 时的气温。
【总结提升】
(1)知识与方法方面 (2)数学思想及方法方面。