西南交大模电实验仿真
- 格式:doc
- 大小:593.00 KB
- 文档页数:6
电力系统及其自动化实验(一)实验报告姓名:班级:学号:实验时间:2016年3月15日1.实验内容:实验的目的:1、通过模拟牵引供电系统,了解牵引供电系统的结构及工作过程;2、了解认识微电网及控制实验系统;3、了解西南交通大学—施耐德电气联合实验室。
实验的原理:1、牵引供电系统实验室初步设计的联合实验室平台体系架构,平台的设计在充分考虑供电可靠性、实验室布局与实现不便的客观条件的基础上,最大限度地保留了铁路牵引供电系统与配电系统的特点。
采用400V 配电网络来模拟实际铁路的10kV 配电。
同时,依托施耐德电气强大的行业背景,通过采用相应智能设备方便地实现了对整个实验室系统的集中管理、保护与控制自动化、电能质量监测等。
牵引供电部分模拟实际牵引变电所,通过升压变压器将10kV 升至27.5kV 为牵引负荷供电。
配电部分模拟铁路配电网,采用400V 电压模拟实际线路采用的10kV 电压。
在一级负荷贯通线路上设置有故障模块,模拟实际铁路配电线路的各种故障,借以观察故障后保护以及断路器等的动作情况,实际铁路配电网络中的分段装置开关房用施耐德电气的配电柜来模拟。
2、微电网及控制实验系统微网系统是一种相对于配电网规模较小的分散式独立系统,它基于以现代电力电子技术,将风电,光伏发电,储能设备组合在一起,直接供小型用户使用,它可以被视为电网中的一个可控单元,在短时间内动作以满足外部输配电网络及负载的需求。
微电网保证以下功能:1) 任意电源接入对系统不造成影响,确保人员电气安全;2) 自主可选择运行点,微电网控制应该做到能够基于本地信息对电网中的事件进行反映,并自动切换至独立运行方式;3) 并网或脱网平滑;4) 有功无功独立控制;5) 具有校正电压跌落和系统不平衡能力该系统由 6 个子系统组成,每个子系统有主要控制器通过以太网上层计算机进行高速实时通讯。
各子系统内部运行通过子系统逆变器独立控制。
如下图所示3、西南交通大学-施耐德电气联合实验室采用400V配电网络来模拟实际铁路的10kV配电。
实验二、三:quartusⅡ原理图设计1.实验原理图2.实验仿真波形实验四:Verilog描述组合逻辑电路1.一位数值比较器1.1源代码module compare(a_gt,a_eq,a_lt,a,b);input a,b;output a_gt,a_eq,a_lt;assign a_gt=a&~b;assign a_eq=a&b|~a&~b;assign a_lt=~a&b;endmodule1.2代码生成原理图2.七段译码器2.1源代码module decode4_7(codeout,indec);input[3:0] indec;output[6:0] codeout;reg[6:0] codeout;always@(indec)begincase(indec)4'd0:codeout=7'b1111110;4'd1:codeout=7'b0110000;4'd2:codeout=7'b1101101;4'd3:codeout=7'b1111001;4'd4:codeout=7'b0110011;4'd5:codeout=7'b1011011;4'd6:codeout=7'b1011111;4'd7:codeout=7'b1110000;4'd8:codeout=7'b1111111;4'd9:codeout=7'b1111011;default: codeout=7'b1001111;endcaseendendmodule2.2代码生成原理图3.总原理图4.实验仿真波形图实验五:集成触发器的应用1.原理图2.实验仿真波形图实验六:移位寄存器实验1.原理图2.实验仿真波形图实验七:十进制可逆计数器1.十进制可逆计数器1.1 十进制可逆计数器源代码module s2014111909(clk,ud,q,co);input clk,ud;output reg [3:0] q;output co;assign co=((q==9)&&ud)||((q==0)&&(!ud));always @(posedge clk)beginif(ud)beginif(q>8) q<=0;else q<=q+1'd1;endelsebeginif(q==0) q<=4'd9;else q<=q-1'd1;endendendmodule1.2 代码生成原理图1.3 实验仿真波形图2.总原理图3.波形图实验八:脉冲宽度调制(PMW)实验1.实验代码module s1909(clk,h,l,out);input clk;input[3:0] h,l;output reg out;reg[6:0]pwmcnt;reg[11:0]fcnt;wire [6:0] z;reg clk1;assign z=h*10+l;always@(posedge clk)beginif(fcnt>=12'd2499)begin clk1<=~clk1; fcnt<=0;endelsebegin fcnt<=fcnt+1;endendalways@(posedge clk1)beginif(pwmcnt<z)begin out=1;endelse if(pwmcnt>=7'd99)begin pwmcnt=0;out=0;endelse begin out=0;endpwmcnt=pwmcnt+1;endendmodule2.波形图(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
模电仿真实验报告张明一 2014302540027实验一晶体三极管共射放大电路一、实验目的1、学习共射放大电路的参数选取方法。
2、学习放大电路静态工作点的测量与调整,了解静态工作点对放大电路性能的影响。
3、学习放大电路的电压放大倍数和最大不失真输出电压的分析方法。
4、学习放大电路输入、输出电阻的测量方法以及频率特性的分析方法。
二、实验准备已知条件和设计要求如下: 1、电源电压 =12V ;2、静态工作电流 =1.5mA ;3、当R c =3K Ω, R L =∞时,要求V o(max )>=3V(峰值),A v >=100;4、根据要求选取三极管,β=100~200, = =10μF , =100μF ; 三、实验内容1、三极管在BIPOLAR 库中,元件名称:Q2N2222参数设置方法:激活三极管,右键打开Edit\pspice model 文本框,修改电流放大系数Bf=100(默认值为255.9),修改 =0.7V (默认值为0.75 V ),修改基区电阻 =300(默认值为10)。
修改完成后,存盘退出。
电容参数为 = =10μF , =100μF;电阻参数 =3K ,其他阻值根据参数计算得出。
根据计算及 =1.5mA 得实验电路如下: 直流通路2、共射放大电路的静态分析FREQ = 3.5kVAMPL = 4m VOFF = 0由各节点电压和各支路电流可知,电路基本符合实验设计要求。
电路工作在放大区。
3、观察输入与输出波形,测量电压放大倍数。
输入端加交流信号源 vsin(交流信号频率:3.5KHz ,幅值:10mv)。
交流通路当R L =3K Ω,交流扫描分析如下:对比输入和输出电压容易知道,共射放大电路接3千欧负载时电压放大倍数少于100,不满足要求。
当R L 开路时,交流扫描分析如下:Fr e q u n c y 1.0H z10H z10H z1.0K H z10K H z10K H z1.0M Hz 10M H zV (U s :+)V (R L :2)20m V40m V60m V(9.82K ,482.5m )(9.82K ,7.0m )V (Q 1:c ) -V (Q 1:e ) 1.0V2.0V3.0V4.0V5.0V6.0V7.0VI C (Q 1)0.8m A1.2m A1.6m A2.0m A(3.6980,1.501m )1.0V(6.1759K,936.664m)0.5V(6.1759K,7.0700m)0V1.0Hz10Hz100Hz 1.0KHz10KHz100KHz 1.0MHz10MHzV(Us:+)V(RL:2)Frequency对比输入和输出电压容易知道,共射放大电路负载开路时电压放大倍数大于100,满足要求。
实验五模拟运算电路一、实验目的1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。
2、了解运算放大器在实际应用时应考虑的一些问题。
二、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
理想运算放大器特性在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。
开环电压增益A ud=∞输入阻抗r i=∞输出阻抗r o=0带宽f BW=∞失调与漂移均为零等。
理想运放在线性应用时的两个重要特性:(1)输出电压U O与输入电压之间满足关系式U O=A ud(U+-U-)由于A ud=∞,而U O为有限值,因此,U+-U-≈0。
即U+≈U-,称为“虚短”。
(2)由于r i=∞,故流进运放两个输入端的电流可视为零,即I IB=0,称为“虚断”。
这说明运放对其前级吸取电流极小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
基本运算电路1) 反相比例运算电路电路如图5-1所示。
对于理想运放,该电路的输出电压与输入电压之间的R关系为为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。
图5-1 反相比例运算电路 图5-2 反相加法运算电路2) 反相加法电路电路如图5-2所示,输出电压与输入电压之间的关系为)U R RU R R (U i22F i11F O +-= R 3=R 1 / R 2 / R F 3) 同相比例运算电路图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为i 1FO )U R R (1U += R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。
模拟电子技术A第2次作业(B)集电极(C)基极正确答案:A解答参考:4. 放大电路如图所示,其中的晶体管工作在( )。
(A)放大区(B)饱和区(C)截止区正确答案:B解答参考:5.整流电路如图所示,变压器副边电压有效值U2为25V,输出电流的平均值,则二极管应选择()。
整流电流平均?值反向峰值电压(a) 2AP2 16mA 30V(b) 2AP3 25mA 30V(c) 2AP4 16mA 50V(d) 2AP6 12mA 100V (A)2AP2(B)2AP3(C)2AP4(D)2AP6正确答案:C解答参考:6. 反馈放大器的方框图如图所示,要使放大器产生自激振荡,其相位条件是()。
(A)反馈电压与电压之间的相位差为(B)反馈电压与电压之间的相位差为(C)反馈电压与电压之间的相位差为零正确答案:C解答参考:7. 在计算低频小功率晶体管输入电阻r时,有三位同学用了三种方法,而且计be算结果差别很大,请指出正确的表达式是()。
(A)r be =(B)r be =(C)r be = 300+正确答案:A解答参考:(B)(C) I o(D) I o正确答案:B 解答参考:11.电路如图所示,电容CE 远大于C1和C,其中满足自激振荡相位条件的是下列图中()。
(A)(B)(C)正确答案:B解答参考:12. 正弦波振荡电路如图所示,其振荡频率为()。
(A)(B)(C)正确答案:A解答参考:四、主观题(共5道小题)13.电路如图1 所示,设输入信号, 的波形如图 2 所示,若忽略二极管的正向压降,试画出输出电压的波形,并说明t1,t2时间内二极管 D1,D2 的工作状态。
参考答案:t1:D1导通,D2截?止t2 :D2导通,D1截?止14.电路如图 1 所示,设 D1,D2均为理想元件,已知输入电压 u i=150sin V 如图 2 所示,试画出电压 u o的波形。
参考答案:15.电路如图所示,求输出电压 u o与输入电压 u I之间运算关系的表达式。
集成运算放大器仿真实验
1.仿真出反相比例运算电路波形图及放大倍数Au,能否仿真出改变参数后
得到的Au和你自己的序号一致,如果不能说明原因。
(1)电路图设计
反相比例运算电路波形的观察
则电压放大倍数Au=uo/ui,其中uo为输出电压,ui为输入信号源。
所以Au=-R3/R1。
(2)可以仿真出于自己序号一致的Au
2. 仿真出同相比例运算电路波形图及放大倍数Au
电路仿真图:
采用 NE5532运算放大器,输入电阻 Ri 为从入口看进去的值, 即为 R2||R1的值,则 Ri=1× 9÷(1+9)=0.9 求输出电阻时,先将信号源 Vi 置
零,则运放内的受控电压源也为零。
理想运放的输出电阻为零,再并上支
1 '
*h
路电阻也为零,放大增益Au=1+9/1=10
3.仿真出电压跟随器波形图及放大倍数Au
采用NE5532 运算放大器,输入电阻Ri=Vi/Ii,期中Vi=Vp,因为Ri趋于无穷,必有Ii,故从放大电路输出口看进去的电阻为Ri=Vi/Ii趋于无穷大,将信号源Vi 置零,则运算放大器的受控电压源也为零。
同时因为理想放大器的输出电阻R0=0,,尽管输出端还有其他并联支路。
但从放大电路输
出口看进去的电阻R0=r0||[(Ri|ri)+R2],故有R0趋于0,而放大倍数A0=V0/Vi=1
由上图可以看出,电压跟随器所得到的输出电压与输入电压在幅值、相位、频率上完全相同,所以在图上只能看到一条波形,实际上市两条波形重合了,也达到了电压跟随的效果。
西南交通大学信息科学与技术学院通信工程专业移动通信仿真实验报告学号: 20114190姓名: 刘云毅专业: 通信工程二零一四年六月目录一、利用Matlab软件,建立BPSK基带传输系统,比较AWGN和Rayleigh信道下的系统BER性能。
(3)1.摘要 (3)2.系统框图 (3)3.代码: (3)4.仿真结果及讨论 (5)二、利用Matlab软件,建立QPSK基带传输系统,比较AWGN信道和Rayleigh信道下的系统BER性能。
(5)1.摘要 (5)2.系统框图 (6)3.代码 (6)4.仿真结果及讨论 (8)三、利用Matlab软件,建立16QAM基带传输系统,比较AWGN信道和Rayleigh信道下的系统BER性能。
(8)1.摘要 (8)2.系统框图 (9)3.代码 (9)4.仿真结果及讨论 (12)四、利用Matlab软件,分别建立OFDM基带传输系统,仿真其在Rayleigh信道下的系统BER性能。
(13)1.摘要 (13)2.系统框图 (14)3.代码 (14)4.仿真结果及讨论 (16)五、收获 (16)六、参考文献 (16)一、利用Matlab软件,建立BPSK基带传输系统,比较AWGN和Rayleigh信道下的系统BER性能。
1.摘要二相相移键控(BPSK)是用二进制基带信号(0、1)对载波进行二相调制。
BPSK是最简单的PSK形式,相移大小为180°,又可称为2-PSK。
利用pskmod调制函数产生BPSK基带信号,分别通过AWGN和Rayleigh信道,分别计算信号误码率,并作图比较。
2.系统框图3.代码:close all; %关闭当前打开的matlab窗口,如画图窗口等clear all; %清理workspace空间的所有变量clc; %清空commondn=10^5;M=2;m=randi([0,1],1,n); %生成1*10^5的0、1随机的矩阵:h=pskmod(m,M); %用BPSK调制m信号EbNo=[-1:40];ray=raylrnd(0.5,1,n) %生成瑞利信号hray=h.*rayfor i=1:length(EbNo);yNoise=awgn(h,EbNo(i),'measured'); %加噪声yawgn=pskdemod(yNoise,M); %AWGN信道解调信号[num_biterr,l]=biterr(m,yawgn); %计算AWGN信道下错误的比特数simawgn(i)=num_biterr/n; %计算AWGN信道下误比特率yRayNoise=awgn(hray,EbNo(i),'measured');yRay=pskdemod(yRayNoise,M); %计算Rayleigh信道解调信号[num_biterrray,ll]=biterr(m,yRay); %计算Rayleigh信道下错误的比特数simRay(i)=num_biterrray/n; %计算Rayleigh信道下误比特率endtheoryawgn=0.5*erfc(sqrt(10.^(EbNo/10))); %计算AWGN信道和Rayleigh信道理论误比特率EbNo_=10.^(EbNo/10);theoryray=0.5*(1-sqrt(EbNo_./(EbNo_+1)));%作图close allfiguresemilogy(EbNo,theoryawgn,'bp-','LineWidth',1.5);hold on;semilogy(EbNo,simawgn,'mx-','LineWidth',1.5);hold on;axis([0 30 10^-4 1]);semilogy(EbNo,theoryray,'rp-','LineWidth',1.5);semilogy(EbNo,simRay,'bx-','LineWidth',1.5);axis([0 30 10^-4 1]);grid onlegend('AWGN-Theory','AWGN-Simulation','Rayleigh-Theory','Rayleigh-Simulation');xlabel('Eb/NO, dB');ylabel('BER');title('BPSK 的误码性能');4. 仿真结果及讨论从图中可以看出,AWGN 信道和Rayleigh 信道下理论值和仿真曲线重合,这个仿真方法是正确的。