量子力学作业
- 格式:ppt
- 大小:446.00 KB
- 文档页数:22
15-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的m 35.0m μλ=,天狼星的m 29.0m μλ=,试求这些星球的表面温度.解:将这些星球看成绝对黑体,则按维恩位移定律:K m 10897.2,3⋅⨯==-b b T m λ对太阳: K 103.51055.010897.236311⨯=⨯⨯==--mbT λ对北极星:K 103.81035.010897.236322⨯=⨯⨯==--mbT λ对天狼星:K 100.11029.010897.246333⨯=⨯⨯==--mbT λ15-3 从铝中移出一个电子需要4.2 eV 的能量,今有波长为2000οA 的光投射到铝表面.试问:(1)由此发射出来的光电子的最大动能是多少?(2)遏止电势差为多大?(3)铝的截止(红限)波长有多大?解:(1)已知逸出功eV 2.4=A 据光电效应公式221m mv hv =A +则光电子最大动能:A hcA h mv E m -=-==λυ2max k 21eV0.2J 1023.3106.12.41020001031063.6191910834=⨯=⨯⨯-⨯⨯⨯⨯=----m2max k 21)2(mvE eUa==∴遏止电势差 V 0.2106.11023.31919=⨯⨯=--a U(3)红限频率0υ,∴000,λυυcA h ==又∴截止波长 1983401060.12.41031063.6--⨯⨯⨯⨯⨯==Ahc λm 0.296m 1096.27μ=⨯=-15-4 在一定条件下,人眼视网膜能够对5个蓝绿光光子(m 105.0-7⨯=λ)产生光的感觉.此时视网膜上接收到光的能量为多少?如果每秒钟都能吸收5个这样的光子,则到 达眼睛的功率为多大? 解:5个兰绿光子的能量J1099.1100.51031063.65187834---⨯=⨯⨯⨯⨯⨯===λυhcn nh E功率 W 1099.118-⨯==tE15-5 设太阳照射到地球上光的强度为8 J ·s -1·m -2,如果平均波长为5000οA ,则每秒钟落到地面上1m 2的光子数量是多少?若人眼瞳孔直径为3mm ,每秒钟进入人眼的光子数是多少? 解:一个光子能量 λυhch E ==1秒钟落到2m 1地面上的光子数为21198347ms1001.21031063.6105888----⋅⨯=⨯⨯⨯⨯⨯===hcEn λ每秒进入人眼的光子数为11462192s1042.14/10314.31001.24--⨯=⨯⨯⨯⨯==dnN π15-6若一个光子的能量等于一个电子的静能,试求该光子的频率、波长、动量.解:电子的静止质量S J 1063.6,kg 1011.934310⋅⨯=⨯=--h m 当 20c m h =υ时,则Hz10236.11063.6)103(1011.92034283120⨯=⨯⨯⨯⨯==--hc m υο12A 02.0m 104271.2=⨯==-υλc122831020122sm kg 1073.21031011.9sm kg 1073.2-----⋅⋅⨯=⨯⨯⨯=====⋅⋅⨯==c m cc m c E p cpE hp 或λ15-7 光电效应和康普顿效应都包含了电子和光子的相互作用,试问这两个过程有什么不同? 答:光电效应是指金属中的电子吸收了光子的全部能量而逸出金属表面,是电子处于原子中束缚态时所发生的现象.遵守能量守恒定律.而康普顿效应则是光子与自由电子(或准自由电子)的弹性碰撞,同时遵守能量与动量守恒定律.15-8 在康普顿效应的实验中,若散射光波长是入射光波长的1.2倍,则散射光子的能量ε与反冲电子的动能k E 之比k E /ε等于多少? 解:由 2200mc h c m hv +=+υ)(00202υυυυ-=-=-=h h h cm mcE kυεh =∴5)(00=-=-=υυυυυυεh h E k已知2.10=λλ由2.10=∴=υυλυc2.11=υυ则52.0112.110==-=-υυυ15-10 已知X 光光子的能量为0.60 MeV ,在康普顿散射之后波长变化了20%,求反冲电子的能量.解:已知X 射线的初能量,MeV 6.00=ε又有00,ελλεhchc =∴=经散射后 000020.1020.0λλλλ∆λλ=+=+= 此时能量为 002.112.1ελλε===hc hc反冲电子能量 MeV 10.060.0)2.111(0=⨯-=-=εεE15-11 在康普顿散射中,入射光子的波长为0.030 οA ,反冲电子的速度为0.60c ,求散射光子的波长及散射角. 解:反冲电子的能量增量为202022020225.06.01c m cm cm cm mcE =--=-=∆由能量守恒定律,电子增加的能量等于光子损失的能量, 故有 20025.0c m hchc=-λλ散射光子波长ο121083134103400A043.0m 103.410030.0103101.925.01063.610030.01063.625.0=⨯=⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯=-=------λλλc m h h由康普顿散射公式2sin0243.022sin22200ϕϕλλλ∆⨯==-=cm h可得 2675.00243.02030.0043.02sin2=⨯-=ϕ散射角为 7162'=οϕ15-12 实验发现基态氢原子可吸收能量为12.75eV 的光子. (1)试问氢原子吸收光子后将被激发到哪个能级?(2)受激发的氢原子向低能级跃迁时,可发出哪几条谱线?请将这些跃迁画在能级图上. 解:(1)2eV 6.13eV 85.0eV 75.12eV 6.13n -=-=+-解得 4=n 或者 )111(22n Rhc E -=∆75.12)11.(1362=-=n解出 4=n题15-12图 题15-13图(2)可发出谱线赖曼系3条,巴尔末系2条,帕邢系1条,共计6条.15-13 以动能12.5eV 的电子通过碰撞使氢原子激发时,最高能激发到哪一能级?当回到基态时能产生哪些谱线?解:设氢原子全部吸收eV 5.12能量后,最高能激发到第n 个能级,则]11[6.135.12,eV 6.13],111[2221nRhc nRhc E E n -==-=-即得5.3=n ,只能取整数,∴ 最高激发到3=n ,当然也能激发到2=n 的能级.于是ο322ο222ο771221A 6563536,3653121~:23A 121634,432111~:12A1026m 10026.110097.18989,983111~:13===⎥⎦⎤⎢⎣⎡-=→===⎥⎦⎤⎢⎣⎡-=→=⨯=⨯⨯===⎥⎦⎤⎢⎣⎡-=→-R R R n R R R n RR R n λυλυλυ从从从可以发出以上三条谱线.题15-14图15-14 处于基态的氢原子被外来单色光激发后发出巴尔末线系中只有两条谱线,试求这两 条谱线的波长及外来光的频率.解:巴尔末系是由2>n 的高能级跃迁到2=n 的能级发出的谱线.只有二条谱线说明激发后最高能级是4=n 的激发态.ο1983424ο101983423222324A4872106.1)85.04.3(1031063.6A6573m 1065731060.1)51.14.3(10331063.6e 4.326.13e 51.136.13e 85.046.13=⨯⨯-⨯⨯⨯=-==⨯=⨯⨯-⨯⨯⨯⨯=-=∴-=∴-==-=-=-=-=-=-=-----E E hc E E hcE E hc E E hch VE V E V E a mn mn βλλλλυ基态氢原子吸收一个光子υh 被激发到4=n 的能态 ∴ λυhcE E h =-=14Hz 1008.310626.6106.1)85.06.13(15341914⨯=⨯⨯⨯-=-=--hE E υ15-15 当基态氢原子被12.09eV 的光子激发后,其电子的轨道半径将增加多少倍? 解: eV 09.12]11[6.1321=-=-nE E n 26.1309.126.13n =-51.16.1309.12.1366.132=-=n , 3=n12r n r n =,92=n,19r r n =轨道半径增加到9倍.15-16德布罗意波的波函数与经典波的波函数的本质区别是什么?答:德布罗意波是概率波,波函数不表示实在的物理量在空间的波动,其振幅无实在的物理意义,2φ仅表示粒子某时刻在空间的概率密度.15-17 为使电子的德布罗意波长为1οA ,需要多大的加速电压? 解: ooA 1A 25.12==uλ 25.12=U∴ 加速电压 150=U 伏15-18 具有能量15eV 的光子,被氢原子中处于第一玻尔轨道的电子所吸收,形成一个 光电子.问此光电子远离质子时的速度为多大?它的德布罗意波长是多少?解:使处于基态的电子电离所需能量为eV 6.13,因此,该电子远离质子时的动能为eV 4.16.13152112=-=+==E E mvE k φ它的速度为31191011.9106.14.122--⨯⨯⨯⨯==mE v k -15s m 100.7⋅⨯=其德布罗意波长为:o953134A 10.4m 1004.1100.71011.91063.6=⨯=⨯⨯⨯⨯==---mvh λ15-19 光子与电子的波长都是2.0οA ,它们的动量和总能量各为多少? 解:由德布罗意关系:2mc E =,λhmv p ==波长相同它们的动量相等.1-241034s m kg 103.3100.21063.6⋅⋅⨯=⨯⨯==---λhp光子的能量eV 102.6J 109.9103103.3316824⨯=⨯=⨯⨯⨯====--pc hch λυε电子的总能量 2202)()(c m cp E +=,eV 102.63⨯=cp而 eV 100.51MeV 51.0620⨯==c m∴ cp c m >>2∴ MeV 51.0)()(202202==+=c m c m cp E15-20 已知中子的质量kg 1067.127n -⨯=m ,当中子的动能等于温度300K 的热平衡中子气体的平均动能时,其德布罗意波长为多少? 解:kg 1067.127n -⨯=m ,S J 1063.634⋅⨯=-h ,-123K J 1038.1⋅⨯=-k中子的平均动能 mpKT E k 2232==德布罗意波长 oA 456.13===mkTh phλ15-21 一个质量为m 的粒子,约束在长度为L 的一维线段上.试根据测不准关系估算这个粒子所具有的最小能量的值.解:按测不准关系,h p x x ≥∆∆,x x v m p ∆=∆,则h v x m x ≥∆∆,xm h v x ∆≥∆这粒子最小动能应满足222222min 22)(21)(21mLhxm hxm h m v m E x =∆=∆≥∆=15-22 从某激发能级向基态跃迁而产生的谱线波长为4000οA ,测得谱线宽度为10-4οA ,求该激发能级的平均寿命. 解:光子的能量 λυhch E ==由于激发能级有一定的宽度E ∆,造成谱线也有一定宽度λ∆,两者之间的关系为: λλ∆=∆2hcE由测不准关系,h t E ≥∆⋅∆,平均寿命t ∆=τ,则λλτ∆=∆=∆=c Eh t 2s 103.51010103)104000(81048210----⨯=⨯⨯⨯⨯=15-23 一波长为3000οA 的光子,假定其波长的测量精度为百万分之一,求该光子位置的测不准量.解: 光子λhp =,λλλλ∆=∆-=∆22hhp由测不准关系,光子位置的不准确量为cm 30A 103103000o962=⨯=====-λλ∆λλ∆λ∆∆p h x。
量子力学初步1. 设描述微观粒子运动的波函数为(),r t ψ,则ψψ*表示______________________________________;(),r t ψ须满足的条件是_______________________________;其归一化条件是_______________________________.2. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将_______________________________. (填入:增大D 2倍、增大2D 倍、增大D 倍或不变)3. 粒子在一维无限深方势阱中运动(势阱宽度为a ),其波函数为()()30x x x a a πψ=<<粒子出现的概率最大的各个位置是x = ____________________.4. 在电子单缝衍射实验中,若缝宽为a =0.1 nm (1 nm = 10-9 m),电子束垂直射在单缝面上,则衍射的电子横向动量的最小不确定量y p ∆= _________N·s.(普朗克常量h =6.63×10-34 J·s)5. 波长λ= 5000 Å的光沿x 轴正向传播,若光的波长的不确定量λ∆= 10-3 Å,则利用不确定关系式x p x h ∆∆≥可得光子的x 坐标的不确定量至少为_________.6. 粒子做一维运动,其波函数为()000xAxe x x x λψ-≥=≤式中λ>0,粒子出现的概率最大的位置为x = _____________.7. 量子力学中的隧道效应是指______________________________________ 这种效应是微观粒子_______________的表现.8. 一维无限深方势阱中,已知势阱宽度为a ,应用测不准关系估计势阱中质量为m 的粒子的零点能量为____________.9. 按照普朗克能量子假说,频率为ν的谐振子的能量只能为_________;而从量子力学得出,谐振子的能量只能为___________.10. 频率为ν的一维线性谐振子的量子力学解,其能量由下式给出:______________________,其中最低的量子态能量为__________,称为“零点能”.11. 根据量子力学,粒子能透入势能大于其总能量的势垒,当势垒加宽时,贯穿系数__________;当势垒变高时,贯穿系数________. (填入:变大、变小或不变)12. 写出以下算符表达式:ˆx p=__________;ˆH =__________;ˆyL =__________. 13. ˆx与ˆx p 的对易关系[]ˆˆ,x x p 等于__________. 14. 试求出一维无限深方势阱中粒子运动的波函数()()sin 1,2,3,n n xx A n a πψ==的归一化形式. 式中a 为势阱宽度.15. 利用不确定关系式x x p h ∆∆≥,估算在直径为d = 10-14 m 的核的质子最小动能的数量级.(质子的质量m =1.67×10-27 kg , 普朗克常量h =6.63×10-34 J·s )16. 已知粒子处于宽度为a 的一维无限深方势阱中运动的波函数为(),1,2,3,n n x x n a πψ==试计算n =1时,在x 1=a /4 → x 2=3a /4 区间找到粒子的概率.17. 一维无限深方势阱中的粒子,其波函数在边界处为零,这种定态物质波相当于两段固定的弦中的驻波,因而势阱的宽度a 必须等于德布罗意波半波长的整数倍。
《量子力学》作业参考答案一 填空1. 爱因斯坦,h ν或ω ,k n h P==λ2. Ψ=A ()Et r P i e-⋅,Eh Ph μλ2==3. 归一化条件(⎰=∙1τψψd ),相因子(δi e ).4. i ψψH t ˆ=∂∂ ,()()Et i e r t r -=ψψ,. ()()∑-=ψntE in n n e r C t r ψ, 5. 6, () 2,1,0±±=z L .6. ()()()P P d r r P P '-=⎰∞*'δτψψ, 112222223==⎰⎰⎰⎰---*l l l l l l P P dz dy dx L d τψψ.7.实物粒子也应该具有波动性.电子衍射8.E=h ν=ω ,k n h P==λ9.波函数在空间各点的相对强度,强度的绝对大小。
10. i ψψH t ˆ=∂∂ , ψψE H =ˆ或()ψψψμE r V =+∇-222 . 11. ()221 +=l l L , m L z =.12.()()dr r r R dr r W nl nl 22=,()()Ω=Ωd Y d W lm lm 2,,ϕθϕθ13.C=()2321π, C=23-L14.()()dx x u x i x Fx u F q q q q ⎰'*'⎪⎭⎫ ⎝⎛∂∂= ,ˆ, ()x x x i x F F x x '-⎪⎭⎫ ⎝⎛∂∂='δ ,ˆ. 15.()()ti nmn n m mn e H t a dt t da i ω∑'= , ()⎰''='t t i mk m t d e H i t a mk 01ω , 16.mk ωω±=或ω ±=k m E E , ()ωωδπ±=-mk mk m k F w 222, 或()ωδπ±-=-k m mk m k E E F w 22 17.原子光谱线系的精细结构,塞曼效应, 斯特思-盖拉赫实验. 18. FS S 1-, n λλλ+++ 21,19. mk A , ()mk mk B I ω,20. ⎥⎦⎤⎢⎣⎡01ψ, ⎥⎦⎤⎢⎣⎡20ψ,21. ;j j ,j ,jj j j 2121211--++= 21m m m +=;22.由全同粒子构成的体系中,任意两粒子的交换,不引起体系状态的改变;全同粒子体系的波函数,具有确定的交换对称性,且这种交换对称性不随时间改变。
《大学物理II 》作业 No.07 量子力学的基本原理及其应用(C 卷)班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题(8小题)1、下列说法不正确的是 [ B ](A)德布罗意提出了物质波假说; (B)爱因斯坦提出了概率波假说; (C)海森堡提出了不确定关系; (D)波尔提出了互补原理。
解: 《大学物理学》下册第二版(张晓 王莉 主编)160页,玻恩于1926年用概率波的概念来解释微观粒子的波动性与粒子性的关联,所以B 的说法不对。
故选B2.如图所示,一束动量为p 的电子,通过缝宽为a 的狭缝。
在距离狭缝为R 处放置一荧光屏,屏上衍射图样中央最大的宽度d 等于 [ D ](A) 2a 2/R (B) 2ha /p(C) 2ha /(Rp )(D) 2Rh /(ap )解:根据单缝衍射中央明纹线宽度有()222hp Rhd R R ap a aλ=⨯⨯=⨯⨯= 故选D3. 我们不能用经典力学中的轨道运动来描述微观粒子,是因为: [ C ] (1)微观粒子的波粒二象性 (2)微观粒子的位置不能确定(3)微观粒子的动量不能确定 (4)微观粒子的位置和动量不能同时确定 (A) (1)(3) (B )(2)(3) (C)(1)(4) (D)(2)(4) 解:《大学物理学》下册第二版(张晓 王莉 主编)161-162页。
由于微观粒子的波粒二象性,使其运动具有一种不确定性。
不确定关系式 ≥∆⋅∆x p x 表明,微观粒子的位置和动量不能同时确定。
故选C4. 已知粒子在一维矩形无限深势阱中运动,其波函数为:()()2cos 0x x x a aπψ=<<那么粒子在/3x a =处出现的概率密度为[ A ] (A)a 21 (B) a1(C) a21 (D) a1解:任意位置概率密度()2222cos x x a aπψ=,将/3x a =代入,得 ()22221cos 32a x a a aπψ=⋅= 故选A5.锂(Z =3)原子中含有3个电子,电子的量子态可用(n ,l ,m l ,m s )四个量子数来描述,若已知基态锂原子中一个电子的量子态为(1,0,0,21),则其余电子的量子态不可能为[ C ] (A) (1,0,0,21-) (B) (2,0,0,21-)(C) (2,1,1,21)(D) (2,0,0,21)解:根据泡利不相容原理和能量最小原理知,处于基态的锂原子中其余两个电子的量子态分别为 (1,0,0,21-)和 (2,0,0,21)或 (2,0,0,21-), 故选C6.一个光子和一个电子具有同样的波长,关于二者动量的大小比较,有: [ B ] (A) 光子具有较大的动量 (B )他们具有相同的动量 (C )电子具有较大的动量 (D )它们的动量不能确定解:根据德布罗意公式和爱因斯坦光量子理论,知B 正确。
量子力学作业(一)一、在量子力学中, 微观粒子的波函数满足含时薛定谔方程。
因此,求解薛定谔方程是一个非常重要的基本问题。
假设一个质量为m 的微观粒子在势场中运动,其含时薛定谔方程为它对应的定态薛定谔方程为如果哈密顿算符存在一系列的能量本征值和本征态证明:定态波函数的任意线性叠加满足含时薛定谔方程。
其中是任意常数。
证明:/(,)[()]n iE t n n ni r t i c r e t t φ-∂∂ψ=∂∂∑/)(t iE n n n n e t r c i -∂∂=∑φ/n)(t iE n n n n e r E c -∑=φ 又)()(ˆr E r Hn n nφφ=/n)(ˆt iE n n n e r H c -∑=φ/)(ˆt iE n nn n e r c H -∑=φ),(ˆt r H ψ=二、考虑一维粒子的运动,粒子的质量为m, 处在一个无限深势阱中:)()(ˆ)()(222r E r H r r U m ψψψ==⎥⎦⎤⎢⎣⎡+∇-),2,1,0()()(ˆ ==n r E r H nn n ψψtE in nn ne r c t r-∑=ψ)(),(ψn c )(r U它的能量是分立的根据德布罗意假设,给出粒子的波长和势阱的宽度a 2之间的关系。
解:在势阱中)(x U 为零,则m p man E n2822222== π, 又λhp =, 可得22λna =,即势阱宽度是半个波长的整数倍。
量子力学作业(二)在一维情况下,微观粒子的本征能量和本征波函数可以通过解一维定态薛定谔方程来得到。
(1)证明: 本征波函数可以取实数或者虚数(2)证明:对于有限的规则势)(x U ,本征能量E 不存在简并的束缚态。
(提示:假设对于同一个能量E 存在两个束缚态本征波函数)(1x ψ和)(2x ψ,则通过计算可以发现)()(21x C x ψψ=,其中C 是一个非零常数。
这意味着)(1x ψ和)(2x ψ是线性相关的。
[0131]《量子力学基础》
[判断题]
自由粒子的能级是简并的。
参考答案:正确
[判断题]塞曼效应与电子的自旋有关。
参考答案:正确
[判断题]力学量的平均值一定是实数。
参考答案:正确
[判断题]量子力学中的算符都是幺正算符。
参考答案:错误
[判断题]量子的概念是由爱因斯坦提出的。
参考答案:错误
[判断题]波函数归一化后就完全确定了。
参考答案:错误
[判断题]自旋角动量算符与轨道角动量算符的引入方式不同,因而不能满足同一个对易关系。
参考答案:错误
[判断题]量子力学仅讨论在经典物理中存在的力学量。
参考答案:错误
[判断题]任意态的几率流密度都与时间无关。
参考答案:错误
[判断题]量子力学的建立始于人们对光的波粒二象性的认识。
参考答案:正确
[判断题]泡利首次提出电子具有自旋的假设。
参考答案:错误
[判断题]无论是属于相同本征值还是不同本征值的本征函数都必定相互正交。
参考答案:错误
[判断题]
量子力学是18 世纪20 年代诞生的科学。
参考答案:错误
[判断题]量子力学中用算符表示微观粒子的力学量。
参考答案:错误
第五批
[填空题]填空题
参考答案:1268740100038.doc。
一、1C 2D 3C 4B 5C 6A 7C 8BC 9A 10 B 11B 12ABC二、1 2 0.52 νh λ/h 2/mc h ν3 散射角 入射光波长和散射物质4 10-10m5 1.46×10-10m6 2h p x x ≥∆∆ 2h p y y ≥∆∆ 2h p z z ≥∆∆ 106 m/s 7 波函数是一种概率波,t 时刻粒子在空间r 处附近的体积元dv 中出现的概率与该处波函数绝对值平方成正比8 2 2(2l+1) 2n 29 0)(2222=-+U E m dx dψ 一维定态薛定谔方程 10 激活介质 激励能源 光学谐振腔三、答:物质波与经典波的本质差别在于,物质波既不是机械波,也不是电磁波,而是一种几率波,显示出粒子性和波动性的统一。
物质波是几率波,波函数不表示其实在物理量在空间的波动,其振幅没有实在的物理意义。
四、1.解:K b T m s 3109.549.02898-⨯===λ2. 解:概率密度a x a a x x x x ππ3sin 23sin a 2)()()(222=⎪⎪⎭⎫ ⎝⎛=ψψ=ψ* 取最大值时)0(13sin 2a x ax <<=π 则65,2,6a a a x = 3.证明:m vh p h x ===∆λ 由不确定关系h p x =∆∆h v m mvh =∆ v v =∆4解:(1)电子的最小动能J m h m p E e e K 153********min1041.2101.921010135.422----⨯=⨯⨯⎪⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛==λ (2)光子的最小能量J c h h E 1410989.1-⨯===λν (3)电子显微镜计较实用 五、 解:2λn a = ,3,2,1=nλhp =m p E E k 22==2228n ma h E =。