讲课初二、整式的乘除与因式分解()
- 格式:docx
- 大小:20.28 KB
- 文档页数:2
可编辑修改精选全文完整版整式的乘法与因式分解一:[整式的乘法与因式分解]初二数学知识点之整式乘除与因式分解讲解及汇总1.单项式的乘法法那么:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式.单项式与多项式的乘法法那么:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.多项式与多项式的乘法法那么:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.单项式的除法法那么:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,那么连同它的指数作为商的一个因式.多项式除以单项式的法那么:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.2、乘法公式:①平方差公式:(a+b)(a-b)=a2-b2文字语言表达:两个数的和与这两个数的差相乘,等于这两个数的平方差.②完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2文字语言表达:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.3、因式分解:因式分解的定义.把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了初二数学知识点解析:二次函数的应用,希望对大家的学习有一定帮助。
2.有一个抛物线形桥拱,其最大高度为16米,跨度为40米,现在它的示意图放在平面直角坐标系中(如右图),那么此抛物线的解析式为().3.某公司的生产利润原来是a元,经过连续两年的增长到达了y万元,如果每年增长的百分数都是x,那么y与x的函数关系是()4.把一段长1.6米的铁丝围长方形ABCD,设宽为x,面积为y.那么当y最大时,x所取的值是()A.0.5B.0.4C.0.3D.0.6【考点归纳】1.二次函数的解析式:(1)一般式:();(2)顶点式:();(3)交点式:().2.顶点式的几种特殊形式.线()对称,顶点坐标为(,).⑴当a 0时,抛物线开口向(),有最()(填"高"或"低")点,当X=()时,有最()("大"或"小")值是();⑵当a 0时,抛物线开口向(),有最()(填"高"或"低")点,当X=()时,有最()("大"或"小")值是().【典型例题】一、例1橘子洲头要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如下图).假设OP=3米,喷出的水流的最高点A距水平面的高度是4米,离柱子OP的距离为1米.(1)求这条抛物线的解析式;(2)假设不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外6.以下函数关系中,是二次函数的是( )A.在弹性限度内,弹簧的长度y与所挂物体质量x之间的关系B.当距离一定时,火车行驶的时间t与速度v之间的关系C.等边三角形的周长C与边长a之间的关系D.圆心角为120°的扇形面积S与半径R之间的关系小编为大家整理的初二数学知识点解析:二次函数的应用相关内容大家一定要牢记,以便不断提高自己的数学成绩,祝大家学习愉快!二、熟练掌握因式分解的常用方法.1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三局部:①系数一各项系数的最大公约数;②字母--各项含有的相同字母;③指数--相同字母的最低次数;(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底〞;②如果多项式的第一项的系数是负的,一般要提出“-〞号,使括号内的第一项的系数是正的.2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。
初中数学人教版八年级上册实用资料第十四章整式的乘法与因式分解14.1整式的乘法14.1.1同底数幂的乘法1.理解同底数幂的乘法法则.2.运用同底数幂的乘法法则解决一些实际问题.重点正确理解同底数幂的乘法法则.难点正确理解和应用同底数幂的乘法法则.一、提出问题,创设情境复习a n的意义:a n表示n个a相乘,我们把这种运算叫做乘方,乘方的结果叫做幂;a叫做底数,n是指数.(出示投影片)提出问题:(出示投影片)问题:一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103秒可进行多少次运算?[师]能否用我们学过的知识来解决这个问题呢?[生]运算次数=运算速度×工作时间,所以计算机工作103秒可进行的运算次数为:1015×103.[师]1015×103如何计算呢?[生]根据乘方的意义可知1015×103=(10×10×…×10)15个10×(10×10×10)=(10×10×…×10)18个10=1018.[师]很好,通过观察大家可以发现1015、103这两个因数是同底数幂的形式,所以我们把像1015,103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算——同底数幂的乘法.二、探究新知1.做一做(出示投影片)计算下列各式:(1)25×22;(2)a3·a2;(3)5m·5n.(m,n都是正整数)你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述.[师]根据乘方的意义,同学们可以独立解决上述问题.[生](1)25×22=(2×2×2×2×2)×(2×2)=27=25+2.因为25表示5个2相乘,22表示2个2相乘,根据乘方的意义,同样道理可得a3·a2=(a·a·a)(a·a)=a5=a3+2.5m·5n=(5×5·…·5),\s\do4(m个5))×(5×5·…·5),\s\do4(n个5))=5m+n.[生]我们可以发现下列规律:a m·a n等于什么(m,n都是正整数)?为什么?(1)这三个式子都是底数相同的幂相乘;(2)相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.2.议一议(出示投影片)[师生共析]a m·a n表示同底数幂的乘法.根据幂的意义可得:a m·a n=(a×a·…·a)m个a·(a×a·…·a)n个a=a·a·…·a(m+n)个a=a m+n于是有a m·a n=a m+n(m,n都是正整数),用语言来描述此法则即为:“同底数幂相乘,底数不变,指数相加”.[师]请同学们用自己的语言解释“同底数幂相乘,底数不变,指数相加”的道理,深刻理解同底数幂的乘法法则.[生]a m表示m个a相乘,a n表示n个a相乘,a m·a n表示m个a相乘再乘以n个a相乘,也就是说有(m+n)个a相乘,根据乘方的意义可得a m·a n=a m+n.[师]也就是说同底数幂相乘,底数不变,指数要降一级运算,变为相加.3.例题讲解出示投影片[例1]计算:(1)x2·x5; (2)a·a6;(3)2×24×23; (4)x m·x3m+1.[例2]计算a m·a n·a p后,能找到什么规律?[师]我们先来看例1,是不是可以用同底数幂的乘法法则呢?[生1](1),(2),(4)可以直接用“同底数幂相乘,底数不变,指数相加”的法则.[生2](3)也可以,先算两个同底数幂相乘,将其结果再与第三个幂相乘,仍是同底数幂相乘,再用法则运算就可以了.[师]同学们分析得很好.请自己做一遍.每组出一名同学板演,看谁算得又准又快.生板演:(1)解:x2·x5=x2+5=x7;(2)解:a·a6=a1·a6=a1+6=a7;(3)解:2×24×23=21+4·23=25·23=25+3=28;(4)解:x m·x3m+1=x m+(3m+1)=x4m+1.[师]接下来我们来看例2.受(3)的启发,能自己解决吗?与同伴交流一下解题方法.解法一:a m·a n·a p=(a m·a n)·a p=a m+n·a p=a m+n+p;解法二::a m·a n·a p=a m·(a n·a p)=a m·a n+p=a m+n+p;解法三:a m·a n·a p=(a·a…a)m个a·(a·a…a)n个a·(a·a…a)p个a=a m+n+p归纳:解法一与解法二都直接应用了运算法则,同时还运用了乘法的结合律;解法三是直接应用乘方的意义.三种解法得出了同一结果.我们需要这种开拓思维的创新精神.[生]那我们就可以推断,不管是多少个幂相乘,只要是同底数幂相乘,就一定是底数不变,指数相加.[师]是的,能不能用符号表示出来呢?[生]am1·am2·am3·…am n=am1+m2+m3+…m n.[师]鼓励学生.那么例1中的第(3)题我们就可以直接应用法则运算了.2×24×23=21+4+3=28.三、随堂练习1.m14可以写成()A.m7+m7B.m7·m7C.m2·m7D.m·m142.若x m=2,x n=5,则x m+n的值为()A.7 B.10 C.25D.523.计算:-22×(-2)2=________;(-x)(-x2)(-x3)(-x4)=________.4.计算:(1)(-3)2×(-3)5;(2)106·105·10;(3)x2·(-x)5;(4)(a+b)2·(a+b)6.四、课堂小结[师]这节课我们学习了同底数幂的乘法的运算性质,请同学们谈一下有何新的收获和体会呢?[生]在探索同底数幂乘法的性质时,进一步体会了幂的意义,了解了同底数幂乘法的运算性质.[生]同底数幂的乘法的运算性质是底数不变,指数相加.应用这个性质时,我觉得应注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即a m·a n=a m+n(m,n是正整数).五、课后作业教材第96页练习.本课的主要教学任务是“同底数幂乘法的运算性质”:同底数幂相乘,底数不变,指数相加. 在课堂教学时,通过幂的意义引导学生得出这一性质,接着再引导学生深入探讨同底数幂运算,幂的底数可以是“任意有理数、单项式、多项式”,训练学生的整体思想.14.1.2幂的乘方1.知道幂的乘方的意义.2.会进行幂的乘方计算.重点会进行幂的乘方的运算.难点幂的乘方法则的总结及运用.一、复习引入(1)叙述同底数幂乘法法则,并用字母表示:(2)计算:①a2·a5·a n;②a4·a4·a4.二、自主探究1.思考:根据乘方的意义及同底数幂的乘法填空,看看计算结果有什么规律:(1)(32)3=32×32×32=3();(2)(a2)3=a2·a2·a2=a();(3)(a m)3=a m·a m·a m=a().(m是正整数)2.小组讨论对正整数n,你认识(a m)n等于什么?能对你的猜想给出验证过程吗?幂的乘方(a m)n=a m·a m·a m…a m n个=am+m+m+…m,\s\up6(n个m))=a mn字母表示:(a m)n=a mn(m,n都是正整数)语言叙述:幂的乘方,底数不变,指数相乘.注意:幂的乘方不能和同底数幂的乘法相混淆,例如不能把(a5)2的结果错误地写成a7,也不能把a5·a2的计算结果写成a10.三、巩固练习1.下列各式的计算中,正确的是()A.(x3)2=x5B.(x3)2=x6C.(x n+1)2=x2n+1D.x3·x2=x62.计算:(1)(103)5; (2)(a4)4;(3)(a m)2; (4)-(x4)3.四、归纳小结幂的乘方的意义:(a m)n=a mn.(m,n都是正整数)五、布置作业教材第97页练习.运用类比方法,得到了幂的乘方法则.这样的设计起点低,学生学起来更自然,对新知识更容易接受.类比是一种重要的数学思想方法,值得引起注意.14.1.3积的乘方1.经历探索积的乘方和运算法则的过程,进一步体会幂的意义.2.理解积的乘方运算法则,能解决一些实际问题.重点积的乘方运算法则及其应用.难点幂的运算法则的灵活运用.一、问题导入[师]提出的问题:若已知一个正方体的棱长为1.1×103cm,你能计算出它的体积是多少吗?[生]它的体积应是V=(1.1×103)3cm3.[师]这个结果是幂的乘方形式吗?[生]不是,底数是1.1与103的乘积,虽然103是幂,但总体来看,我认为应是积的乘方才有道理.[师]积的乘方如何运算呢?能不能找到一个运算法则?用前两节课的探究经验,请同学们自己探索,发现其中的奥妙.二、探索新知老师列出自学提纲,引导学生自主探究、讨论、尝试、归纳.(出示投影片)1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b();(2)(ab)3=________=________=a()b();(3)(ab)n=________=________=a()b().(n是正整数)2.把你发现的规律先用文字语言表述,再用符号语言表达.3.解决前面提到的正方体体积计算问题.4.积的乘方的运算法则能否进行逆运算呢?请验证你的想法.5.完成教材第97页例3.学生探究的经过:1.(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,其中第①步是用乘方的意义;第②步是用乘法的交换律和结合律;第③步是用同底数幂的乘法法则.同样的方法可以算出(2),(3)题;(2)(ab)3=(ab)·(ab)·(ab)=(a·a·a)·(b·b·b)=a3b3;(3)(ab)n=(ab)·(ab)·…·(ab)n个ab=a·a·…·an个a·b·b·…·bn个b=a n b n.2.积的乘方的结果是把积的每一个因式分别乘方,再把所得的幂相乘,也就是说积的乘方等于幂的乘积.用符号语言叙述便是:(ab)n=a n·b n.(n是正整数)3.正方体的V=(1.1×103)3它不是最简形式,根据发现的规律可作如下运算:V=(1.1×103)3=1.13×(103)3=1.13×103×3=1.13×109=1.331×109(cm3).通过上述探究,我们可以发现积的乘方的运算法则:(ab)n=a n·b n.(n为正整数)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.再考虑如下问题:(abc)n如何计算?是不是也有类似的规律?3个以上的因式呢?学生讨论后得出结论:三个或三个以上因式的积的乘方也具有这一性质,即(abc)n=a n·b n·c n.(n为正整数) 4.积的乘方法则可以进行逆运算.即a n·b n=(ab)n.(n为正整数)分析这个等式:左边是幂的乘积,而且幂指数相同,右边是积的乘方,且指数与左边指数相等,那么可以总结为:同指数幂相乘,底数相乘,指数不变.看来这也是降级运算了,即将幂的乘积转化为底数的乘法运算.对于a n·b n=(a·b)n(n为正整数)的证明如下:a n·b n=(a×a×…×a)n个a(b×b×…×b)n个b——幂的意义=(ab)(ab)(ab)(ab)…(ab)n个(ab)——乘法交换律、结合律=(a·b)n——乘方的意义5.[例3](1)(2a)3=23·a3=8a3;(2)(-5b)3=(-5)3·b3=-125b3;(3)(xy2)2=x2·(y2)2=x2·y2×2=x2·y4=x2y4;(4)(-2x3)4=(-2)4·(x3)4=16·x3×4=16x12.(学生活动时,老师深入到学生中,发现问题,及时启发引导,使各个层面的学生都能学有所获)[师]通过自己的努力,发现了积的乘方的运算法则,并能做简单的应用.可以作如下归纳总结:(1)积的乘方法则:积的乘方等于每一个因式乘方的积.即(ab)n=a n·b n.(n为正整数)(2)三个或三个以上的因式的积的乘方也是具有这一性质.如(abc)n=a n·b n·c n;(n为正整数)(3)积的乘方法则也可以逆用.即a n·b n=(ab)n,a n·b n·c n=(abc)n.(n为正整数)三、随堂练习1.教材第98页练习.(由学生板演或口答)四、课堂小结(1)通过本节课的学习,你有什么新的体会和收获?(2)在应用积的运算性质计算时,你觉得应该注意哪些问题?五、布置作业(1)(-2xy)3;(2)(5x3y)2;(3)[(x+y)2]3;(4)(0.5am3n4)2.本节课属于典型的公式法则课,从实际问题猜想——主动推导探究——理解公式——应用公式——公式拓展,整堂课体现以学生为本的思想。
初二数学整式的乘除和因式分解教案计划一、知识点总结:1、同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
2、幂的乘法则:幂的乘方,底数不变,指数相乘。
3、积的乘法则:积的乘方,等于各因数乘方的积。
4、同底数幂的除法法则:同底数幂相除,底数不变,指数相减。
5、零指数和负指数;6、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
7、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加。
8、多项式与多项式相乘的法则。
二、例题讲解:1、(a+b)(a+b)=a^2+2ab+b^22、(-3)^5=(-3)(-3)(-3)(-3)(-3)= -2433、(2x^2y^3z)(-3xy)= -6x^3y^4z4、(ab)/(a)=b5、2^-3=1/(2^3)=1/86、(-2x^2y^3z)(3xy)= -6x^3y^4z7、2x(2x-3y)-3y(x+y)=4x^2-6xy-3xy-3y^2=4x^2-9xy-3y^28、(3a+2b)(a-3b)=3a^2-7ab-6b^29、单项式的除法法则:单项式相除时,先将系数相除,再将同底数幂相除,将商的因式作为结果,对于只在被除式中含有的字母,则将其连同指数作为商的一个因式。
例如,-7abm÷49ab可以化简为-1/7m。
10、多项式除以单项式的法则:多项式除以单项式时,先将多项式的每一项除以单项式,然后将所有商相加。
例如,(am+bm+cm)÷m可以化简为a+b+c。
11、平方差公式:平方差公式展开只有两项,左边是两个二项式相乘,其中一个二项式的两项互为相反数,右边是相同项的平方减去相反项的平方。
例如,(a+b)(a-b)=a^2-b^2.12、完全平方公式:完全平方公式展开有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。
第十四章整式的乘法与因式分解1.了解幂的意义,并学会简单的同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法的运算,能根据幂的各种运算性质解决数学问题和简单的实际问题.2.了解零指数幂的意义;探索整式乘除法的法则,会进行简单的乘除法运算.3.要求学生说出平方差公式和完全平方式的特点,能正确地利用平方差公式和完全平方式进行多项式的乘法.4.了解因式分解的意义及其与整式乘法之间的关系,从中体会事物之间可以相互转化的思想,学会用提公因式法、公式法(直接用公式不超过两次)进行因式分解(指数是正整数).让学生主动参与到一些探索过程中来,逐步形成独立思考、主动探索的习惯,培养思维的批判性、严密性和初步解决问题的能力.通过本章中一些生活实例的学习,体会数学与生活之间的密切联系,在一定程度上了解数学的应用价值,提高学生学习的兴趣.本章是整式的加减的后续学习,首先,从幂的运算开始入手,逐步展开整式的乘除法运算;接着,在整式的乘法中提炼出两种特殊的乘法运算,即两个乘法公式;最后,从整式乘法的逆过程出发,引入因式分解的相关知识.本章主要有如下特点:1.注重知识形成的探索过程,让学生在探索过程中领悟知识,在领悟的过程中建构体系,从而更好地实现知识体系的更新和知识的正向迁移.2.知识内容的呈现方式力求与学生已有的知识结构相联系,同时兼顾学生的思维水平和心理特征.3.让学生掌握基本的数学事实与数学活动经验,减轻不必要的记忆负担.4.注意从生活中选取素材,给学生提供一些交流、讨论的空间,让学生从中体会数学的应用价值,逐步养成谈数学、想数学、做数学的良好习惯.5.教材的安排、例题的讲解与习题的处理都给教师留有较大的余地与足够的空间,教师能根据各地学生的实际情况,充分发挥自己的教学主动性和积极性,创造性地进行教学.【重点】1.理解和掌握幂的运算性质.2.掌握整式的乘除运算方法,理解乘法公式,能对多项式进行因式分解.【难点】1.整式的乘除运算.2.利用乘法公式进行计算,利用提公因式法和因式分解法对多项式进行因式分解.1.幂的运算是整式乘除的基础,在教学幂的运算性质时,要让学生经历探索的过程,通过特例计算,自己概括出有关运算法则,理解并掌握这些法则,并能用来进行简单的计算.要注意留给学生探索与交流的空间,让学生在自己的实践中获得运算法则.在教学中要注意渗透化归的思想.对于整式的乘除法要让学生通过适当的尝试,获得一些直接体验,体验单项式与单项式相乘的运算规律,在此基础上总结出整式乘除法的一些运算法则,对于一些法则的获得要注意结合图形,让学生体会特点,从而加深对知识的理解和掌握.2.对于乘法公式的教学,要留出更多的时间和空间让学生自主探索,发现规律,体验乘法公式的来源,理解公式的意义和作用,降低对公式的记忆要求.教学时可以让学生直接计算较为简单的情况,在此基础上指出这一乘法结果的普遍性.教师要注意从已有的整式乘法的知识中提炼出这一乘法公式,让学生明确公式来源于整式的乘法,又应用于整式乘法的辩证性.3.对于因式分解这部分内容,要注意留给学生讨论的时间,引导学生进行归纳、概括.注意教给学生因式分解的方法和步骤,强化提公因式法和公式法的结构特点,让学生在不断练习中得以巩固和提高.总之,在本章的教学中,教师要创造性地使用教材,充分发挥自己在教学中的组织、引导、合作的作用,通过创设一定的问题情境,帮助学生在做一做、探索、交流与讨论中,主动地去获取知识.本章的教学中,教师不要人为地增加学生的记忆负担,提高对学生的要求,也不要人为地补充一些繁、难、偏、旧的内容,根据学生的具体情况,可以在某些具体问题上,让一部分学有余力的学生得到更好的发展,体现教材的弹性.14.1整式的乘法1.了解幂的意义,并学会简单的同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法的运算.2.从幂的运算入手,逐步展开整式的乘法,要了解单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会进行简单的整式乘法的计算.3.通过计算,提高学生独立思考、主动探索的能力.1.在推理的过程中,让学生学会类比的方法,培养学生的观察、抽象、概括的能力.2.在观察的过程中,让学生掌握整式乘法的一些计算方法,并能运用这些方法进行计算.1.让学生体验从特殊到一般的过程,能自己在实践中总结概括法则.2.培养学生学习数学的积极性,让学生树立热爱数学的情感.【重点】1.同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法法则.2.整式的乘法法则.【难点】1.能正确进行同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法计算.2.整式的乘法的一些计算.14.1.1同底数幂的乘法1.理解同底数幂的乘法法则.2.能运用同底数幂的乘法法则解决一些实际问题.1.在进一步体会幂的意义时,发展推理能力和有条理的表达能力.2.通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊到一般,一般到特殊的认知规律.体会科学的思想方法,激发学生探索创新的精神.【重点】正确理解同底数幂的乘法法则.【难点】正确理解和应用同底数幂的乘法法则.【教师准备】多媒体课件(1,2,3).【学生准备】复习幂的意义.导入一:复习a n的意义:a n表示n个a相乘,我们把这种运算叫做乘方,乘方的结果叫做幂;a叫做底数,n是指数.提出问题:一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103秒可进行多少次运算?【师】能否用我们学过的知识来解决这个问题呢?【生】运算次数=运算速度×工作时间,所以计算机工作103秒可进行的运算次数为:1015×103.【师】1015×103如何计算呢?【生】根据乘方的意义可知:1015×103=(10× (10)15个10×(10×10×10)=(10×10× (10)18个10=1018.【师】很好,通过观察大家可以发现1015,103这两个因数是同底数幂的形式,所以我们把像1015×103的运算叫做同底数幂的乘法,根据实际需要,我们有必要研究和学习这样的运算——同底数幂的乘法.[设计意图]首先让学生回忆幂的一些知识,然后根据教材中的问题1让学生列式、观察并计算出结果,从而导入到本节课的学习之中.导入二:“盘古开天辟地”的故事:公元前一百万年,没有天没有地,整个宇宙是混沌的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.【师】盘古的左眼变成了太阳,那么太阳离我们多远呢?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒,你能计算出地球距离太阳大约有多远吗?【生】可以列出算式:3×105×5×102=15×105×102=15ד?”.(引入课题)[设计意图]从远古到现代,让学生感受传说,极大地激发了学生的学习热情,同时相应问题的提出,也为学习同底数幂的乘法埋下了伏笔.导入三:北京奥运场馆一平方千米的土地上,一年内从太阳得到的能量相当于燃烧108千克煤所产生的能量.那么105平方千米的土地上,一年内从太阳得到的能量相当于燃烧多少千克煤?【师】你们能列式吗?(学生讨论得出108×105)【师】108,105我们称之为什么?(幂)【师】我们再来观察底数有什么特点?【生1】都是10.【生2】是一样的.【师】像这样底数相同的两个幂相乘的运算,我们把它叫做同底数幂的乘法.(揭示课题) [设计意图]利用提问题,一方面可以集中学生注意力,使之较快进入课堂学习状态,另一方面可以对学生进行爱国主义教育,增强学生的环保意识.问题1【课件1】计算下列各式:(1)25×22;(2)a3·a2;(3)5m·5n(m,n都是正整数).你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述.【师】根据乘方的意义,同学们可以独立解决上述问题.【生】25×22 =(2×2×2×2×2)×(2×2)=27 =25+2.25表示5个2相乘,22表示2个2相乘,根据乘方的意义:a3·a2=(a·a·a)·(a·a)=a5=a3+2.5m.5n=(5×5× (5)m个5×(5×5× (5)n个5=5m+n.(让学生自主探索,在启发性设问的引导下发现规律,并用自己的语言叙述)【生】我们可以发现下列规律:(1)这三个式子都是底数相同的幂相乘;(2)相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.【师生共析】a m·a n表示同底数幂的乘法,根据幂的意义可得:a m·a n=(a×a×…×a)m个a ×(a×a×…×a)n个a=a m+n.于是有a m·a n=a m+n(m,n都是正整数),用语言来描述此法则即为:“同底数幂相乘,底数不变,指数相加”.[知识拓展]同底数幂是具有相同底数的幂.(1)幂可以看做是代数式中的一类,是形如a n的代数式.目前,在我们研究的这类式子中,可以是任何有理数,也可以是整式,而a n中的n只能是正整数.(2)35与155不是同底数幂,因为它们的底数一个是3,一个是15,是不一样的,这说明两个幂是不是同底数幂,与它们的指数是否相同毫无关系.(3)53与515是同底数幂,因为它们的底数相同(都是5).同理,x3与x5,(a+b)2与(a+b)5也都是同底数幂.同底数幂的乘法法则的关键在于底数,底数一定要相同,并且二者是相乘关系,这样指数才能相加,否则不能运用此法则.问题2(针对导入三)1.探索108×105等于多少.(鼓励学生大胆猜想)学生可能会出现以下几种情况:①10013;②1040;③10040;④1013.[设计意图]猜想产生疑问,激发兴趣,为学生推导公式做好情感铺垫.【师】那到底谁的猜想正确呢?小组合作讨论,生回答,师板演:108× 105=(10× 10×…×10) 8个10×(10 × 10× (10)5个10=10×10×…×10 13个10=1013.即108× 105=108+5. [设计意图]师给出适当的提示后,相信学生能在已有的知识基础上,利用集体的智慧,找出猜想中的正确答案,并通过“转化”思想得出结论,也找到了正确的推理过程.2.出示问题:(学生口答,课件显示过程)a 6·a 9=(a ·a ·…·a ) 6个a·(a ·a ·…·a )9个a=a ·a ·…·a 15个a=a 15. 即a 6·a 9=a 6+9.3.观察以上两个式子,你有什么发现? 【师】这是两个特殊的式子,它们的指数分别是8,5;6,9.底数相同的两数的任何次幂相乘,都是底数不变,指数相加吗?能找到一个具有一般性,代表性的式子吗?a m ·a n 怎么计算?[设计意图]a6·a9和a m·a n的推导过程由于108·105打好了坚实的基础,所以用填空的形式简化公式的推导过程,既避免了重复教学过程,也节约时间,同时也能达到让学生经历从具体到一般的推导过程.【板书】a m·a n=a m+n(m,n都是正整数).师补充解释m,n都是正整数的原因,并请学生用自己的语言概括该结论,之后全体学生用精炼的文字概括表述.【板书】同底数幂相乘,底数不变,指数相加.[设计意图]全班学生参与活动,经历从理解法则的含义的概括到用十分准确简练的语言概括过程,从而提高学生的表达能力.问题3【课件2】(教材例1)计算:(1)x2·x5;(2)a·a6;(3)(-2)×(-2)4×(-2)3;(4)x m·x3m+1.计算a m·a n·a p后,能找到什么规律?【师】我们先来看例1,是不是可以用同底数幂的乘法法则呢?【生1】(1)(2)(4)可以直接用“同底数幂相乘,底数不变,指数相加”的法则.【生2】(3)也可以,先算2个同底数幂相乘,将其结果再与第三个幂相乘,仍是同底数幂相乘,再用法则运算就可以了.【师】同学们分析得很好.请自己做一遍,每组出一名同学板演,看谁算得又准又快.【生板演】(1)解:x2·x5=x2+5=x7.(2)解:a·a6=a1+6=a7.(3)解:(-2)×(-2)4×(-2)3=(-2)5×(-2)3=(-2)8=256.(4)解:x m·x3m+1=x m+3m+1=x4m+1.【师】接下来我们来看例2.受例1中第(3)题的启发,能自己解决吗?与同伴交流一下解题方法.解法1:a m·a n·a p=(a m·a n)·a p=a m+n·a p =a m+n+p.解法2:a m·a n·a p=a m·(a n·a p)=a m·a n+p=a m+n+p.解法3:a m·a n·a p= (a×a×…×a)m个a ×(a×a×…×a)n个a×(a×a×…×a)p个a=a m+n+p.【归纳】解法1与解法2都直接应用了运算法则,同时还运用了乘法的结合律;解法3是直接应用乘方的意义.三种解法得出了同一结果,我们需要这种开拓思维的创新精神.【生】那我们就可以推断,不管是多少个幂相乘,只要是同底数幂相乘,就一定是底数不变,指数相加呢?【师】是的,能不能用符号表示出来呢?【生】a m1·a m2·a m3·…·a m n=a m1+m2+m3+…+m n.【师】(鼓励学生)那么例1中的第(3)题我们就可以直接应用法则运算了.(-2)×(-2)4×(-2)3=(-2)1+4+3=(-2)8=256.1.同底数幂的乘法的运算性质是底数不变,指数相加.应用这个性质时,应注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即a m·a n=a m+n(m,n 都是正整数).2.推广:a m·a n·a p=a m+n+p.3.(课件3)注意:在应用同底数幂乘法法则时,注意以下几点:(1)底数必须相同,如23与25,(a2b2)3与(a2b2)4,(x-y)2与(x-y)5等.(2)a可以是单项式,也可以是多项式.(3)按照运算性质,只有相乘时才是底数不变,指数相加.1.计算a6×a3的结果是()A.a9B.a2C.a18D.a3解析:原式=a6+3=a9.故选A.2.下列计算正确的是()A.x·x2=x2B.x2·x2=2x2C.x2+x3=x5D.x2·x=x3解析:A.底数不变,指数相加,故A错误;B.底数不变,指数相加,故B错误;C.不是同底数幂的乘法,指数不能相加,故C错误;D.底数不变,指数相加,故D正确.故选D.3.计算(-a)3·(-a)2的正确结果是()A.a5B.-a5C.a6D.-a6解析:原式=(-a)3+2=(-a)5=-a5.故选B.4.计算.(1)(-5)×(-5)2×(-5)3;(2)(-a)·(-a)3;(3)-a3·(-a)2;(4)(a-b)2·(a-b)3;(5)(a+1)2·(1+a)·(a+1)3.解析:利用同底数幂乘法法则进行计算,底数不同的利用互为相反数的奇偶次幂的性质进行转化.解:(1)(-5)×(-5)2×(-5)3=(-5)6=56.(2)(-a)·(-a)3=(-a)4=a4.(3)-a3·(-a)2=-a3·a2=-a5.(4)(a-b)2·(a-b)3=(a-b)5.(5)(a+1)2·(1+a)·(a+1)3=(a+1)6.14.1.1同底数幂的乘法1.法则2.公式例题讲解例1例2一、教材作业【必做题】教材第96页练习.【选做题】教材第104页习题14.1第9,10题.二、课后作业【基础巩固】1.计算(-x2)·x3的结果是()A.x5B.-x5C.x6D.-x62.下列计算正确的是()A.a3·a2=a6B.b4·b4=2b4C.x5+x5=x10D.y7·y=y83.下列运算正确的是()A.a5·a5=2a5B.a5+a5=a10C.a5·a5=2a10D.a5·a5=a104.a2014可以写成()A.a2010+a4B.a2010·a4C.a2014·aD.a2007·a20075.下列运算错误的是()A.(-a)(-a)=(-a)2B.-32·(-3)4=(-3)6C.(-a)3·(-a)2=(-a)5D.(-a)3·(-a)3=a6【能力提升】6.设a m=8,a n=16,则a m+n等于()A.24B.32C.64D.1287.下列各式成立的是()A.(x-y)2=-(y-x)2B.(x-y)n=-(y-x)n(n为正整数)C.(x-y)2(y-x)2=-(x-y)4D.(x-y)3(y-x)3=-(x-y)6【拓展探究】8.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014,将下式减去上式得2S-S=22014-1,即S=22014-1,即1+2+22+23+24+…+22013=22014-1.请你仿照此法计算:(1)1+2+22+23+24+ (210)(2)1+3+32+33+34+…+3n(其中n为正整数).【答案与解析】1.B(解析:(-x2)·x3=-x2+3=-x5.故选B.)2.D(解析:A.应为a3·a2=a5,故本选项错误;B.应为b4·b4=b8,故本选项错误;C.应为x5+x5=2x5,故本选项错误;D.y7·y=y8,正确.故选D.)3.D(解析:A.应为a5·a5=a10,故本选项错误;B.应为a5+a5=2a5,故本选项错误;C.应为a5·a5=a10,故本选项错误;D.a5·a5=a10,正确.故选D.)4.B(解析:A.a2010+a4不能进行计算;B.a2010·a4 =a2014;C.a2014·a=a2015;D.a2007·a2007=a4014,故选B.)5.B(解析:A.(-a)(-a)=(-a)2,故本选项正确;B.-32·(-3)4=-32·34=-36,故本选项错误;C.(-a)3·(-a)2=(-a)3+2=(-a)5,故本选项正确;D.(-a)3·(-a)3=(-a)3+3=(-a)6=a6,故本选项正确.故选B.)6.D(解析:∵a m=8,a n=16,∴a m+n=a m·a n=8×16=128.故选D.)7.D(解析:A.(x-y)2=(y-x)2,故本选项错误;B.(x-y)n=-(y-x)n(n为奇数),故本选项错误;C.(x-y)2(y-x)2=(x-y)4,故本选项错误;D.(x-y)3(y-x)3=-(x-y)6,故本选项正确.故选D.)8.解:(1)设S=1+2+22+23+24+…+210,将等式两边同时乘以2得2S=2+22+23+24+…+210+211,将两式相减得2S-S=211-1,即S=211-1,则1+2+22+23+24+…+210=211-1.(2)设S=1+3+32+33+34+…+3n①,两边同(3n+1-1),则1+3+32+33+34+…时乘以3得3S=3+32+33+34+…+3n+3n+1②,②-①得3S-S=3n+1-1,即S=12(3n+1-1).+3n=12在教学中教师通过实际问题创设情境,导入新课,激发了学生学习数学的兴趣,通过学生的自主探索,让学生经历观察——类比——抽象——概括等过程,归纳出同底数幂的乘法法则,提高了学生的自主意识和自我解题的能力.在归纳出同底数幂的乘法法则之后,教师通过例1、例2的学习,让学生加深了对同底数幂的乘法法则的理解.整个过程学生对知识的接受和理解较好,突出了学生的主体地位和教师的主导作用,学生学得开心,知识掌握较好.因为本节课的内容较简单,所以在习题的设计上,教师可增加些难度,让学生通过变式训练,使学生的能力得到进一步的提高.另外,对于法则的概括和理解要尽量让学生自己去独立完善,教师要少说,多讲评.教学中要适当增加难度,增加变式训练,如法则的逆应用和底数为负数的习题.法则的逆应用要重点让学生掌握,以提高学生解决问题的能力.同时,一定要让学生分清幂的底数,明确只要在同底数幂相乘的时候才能用法则进行计算,否则不行.另外,对于法则的概括以及延伸的a m·a n·a p=a m+n+p,一定要让学生尽量发挥小组合作的能力,发现计算方法,从而总结出规律.教学过程能让学生独立完成的,教师绝不包办代替,把课堂应尽量还给学生.练习(教材第96页)解:(1)原式=b5+1=b6.(2)原式=-121+2+3=-126=164.(3)原式=a2+6=a8.(4)原式=y2n+n+1=y3n+1.题型1一般的同底数幂的乘法问题计算:(1)x2·x3;(2)(-2)4·(-2)3;(3)(a-1)4·(a-1)2.〔解析〕(1)可以直接得到x5;(2)中将(-2)看作相同的底数,由法则可得(-2)7;(3)中将(a-1)看作一个整体作为相同的底数.解:(1)x2·x3=x5.(2)(-2)4·(-2)3=(-2)7 =-27.(3)(a-1)4·(a-1)2=(a-1)6.题型2间接运用同底数幂的乘法法则计算:(1)-t3·(-t)4·(-t)5;(2)(z-y)3·(z-y)·(y-z)2.〔解析〕虽然底数不同,但仅仅只有符号之差,如z-y与y-z,可以先把底数变为相同的底数,再用法则计算.解:(1)-t3·(-t)4·(-t)5 =-t3·t4·(-t5)=t3·t4·t5=t12.(2)(z-y)3·(z-y)·(y-z)2=(z-y)3·(z-y)·(z-y)2=(z-y)6.〔方法提示〕对于不能直接运用同底数幂乘法法则的问题,通常先将题目中各项进行转化,化为同底数幂再运用法则计算,此过程中注意符号的确定.题型3同底数幂乘法法则的逆用计算:(-2)2007+(-2)2008.〔解析〕若直接计算,则相当麻烦,可以运用同底数幂的逆运算,将(-2)2008化成(-2)2007×(-2),再进行计算,比较简便.解:(-2)2007+(-2)2008=(-2)2007+(-2)2007×(-2)=(-2)2007×(1-2)=(-2)2007×(-1)=22007.(2014·温州中考)计算m 6·m3的结果是()A.m18B.m9C.m3D.m2〔解析〕根据同底数幂的乘法法则,底数不变,指数相加可知m6·m3=m9.故选B.14.1.2幂的乘方1.知道幂的乘方的意义.2.会进行幂的乘方计算.1.经历探索幂的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.2.了解幂的乘方的运算性质,并能解决一些实际问题.通过分组探究,培养学生合作交流的意识、提高学生勇于探究数学的品质.【重点】会进行幂的乘方的运算.【难点】幂的乘方法则的总结及运用.【教师准备】预设学生学习中容易混淆的知识.【学生准备】复习同底数幂的乘法法则.导入一:(1)叙述同底数幂乘法法则,并用字母表示.(2)计算:①a2·a5·a3;②a4·a4·a4.大家已经会进行同底数幂的乘法运算:a m·a n=a m+n(m,n都是正整数),那么幂的乘方运算又应该如何进行呢?[设计意图]通过复习巩固上节课所学的同底数幂的乘法法则的内容,为探索幂的乘方做好准备.导入二:(1)有甲、乙两个球,如果甲球的半径是乙球半径的n倍,那么甲球的体积是乙球体积的多少倍?学生口答:n3倍.(2)引导学生计算:(102)3=,怎样计算?(102)3=106.方法一:(102)3=102×102×102=102+2+2=106.方法二:(102)3=(100)3=1000000=106.[设计意图]在独立思考的基础上,组织学生交流、讨论,培养学生思维的严密性,让学生体验在交流中获益的乐趣.并在此过程中,引导学生主动反思,回顾解决问题的方法,为进入新课做准备.一、法则的探究1.思考.【课件1】根据乘方的意义及同底数幂的乘法填空,看看计算的结果有什么规律:(1)(32)3=32×32×32 =3();(2)(a2)3=a2·a2·a2=a();(3)(a m)3=a m·a m·a m=a()(m是正整数).【师】教师要加强引导,强调应用中的注意事项.2.小组讨论.对正整数n,你认为(a m)n等于什么?能对你的猜想给出检验过程吗?【生】小组互相探索、交流,积极思考,然后各组派代表回答,相互点评,补充得出关于幂的乘方法则.幂的乘方法则:(a m)n=a m·a m·a m·…·a mn个a m =a m+m+m+…+mn个m=a mn.字母表示:(a m)n=a mn(m,n是正整数).语言叙述:幂的乘方,底数不变,指数相乘.教师说明法则中a可以是一个具体的数,也可以是单项式或多项式.[知识拓展]理解法则注意两点:(1)在形式上,幂的乘方的底数本身就是一个幂;(2)法则可推广到[(a m)n]k=a mnk(m,n,k是正整数);(3)幂的乘方不能和同底数幂的乘法相混淆,例如不能把(a5)2写成a7,也不能把a5·a2的计算结果写成a10;(4)幂的乘方是变乘方为乘法(底数不变,指数相乘),如(a3)2=a3×2=a6;而同底数幂的乘法是变乘法为加法(底数不变,指数相加),如a3·a2=a3+2=a5.[设计意图]在探索幂的乘方法则的过程中,学生经历了由特殊到一般的过程,让学生学会了归纳,同时培养学生的合作意识.思路二探索练习1.32表示个相乘;(32)3表示个相乘;a2表示个相乘;(a2)3表示个相乘.2.(32)3=××=(根据a m·a n=a m+n)=;(a2)3=××=(根据a m·a n=a m+n)=.引导学生观察、猜测(32)3与(a2)3的底数、指数,并用乘方的概念解答问题.3.(a m)3=××=(根据a m·a n=a m+n)=;(a m)n=××…×=(根据a m·a n=a m+n)=.通过上面的探索活动,你发现了什么?【归纳】幂的乘方,底数不变,指数相乘.(a m)n=a mn(m,n是正整数).【说明】 在此过程中教师应当鼓励学生,自己发现幂的乘方的性质特点(如底数、指数发生了怎样的变化),并运用自己的语言进行描述,然后再让学生回顾这一性质的得出过程,进一步体会幂的意义.[设计意图]学生在探索练习的指引下,自主完成有关的练习,并在练习中发现幂的乘方的法则,经历由猜测到探索的过程,从而理解法则的实际意义,在本质上认识、学习幂的乘方的来历.思路三1.x 3表示什么意义?2.如果把x 换成a 4,那么(a 4)3表示什么意义?3.怎样把a 2·a 2·a 2·a 2 =a 2+2+2+2写成比较简单的形式?4.由此你会计算(a 4)5吗?5.根据乘方的意义及同底数幂的乘法填空: (1)(53)2 =53×53=5();(2)(52)3=()×( )×()=5();(3) (a 3)5 =a 3×()×( )×( )×()=a ().6.用同样的方法计算(a 3)4,(a 11)9,(b 3)n (n 为正整数).这几道题学生都不难做出,在处理这类问题时,关键是如何得出3+3+3+3=12,教师应多举几例.(a 11)9=a 11·a 11·…·a 11=a 11+11+11+…+119个11=a 99.(b 3)n =b 3·…·b 3=b 3+3+3+…+3n 个3=b 3n .教师应指出这样处理既麻烦,又容易出错,此时应让学生思考,有没有简捷的方法?引导学生认真思考,并得到:(23)2 =23×2=26;(32)3=32×3 =36;(a 11)9=a 11×9=a 99;(b 3)n =b 3×n = b 3n .观察结果中幂的指数与原式中幂的指数及乘方的指数,猜想它们之间有什么关系?结果中的底数与原式的底数之间有什么关系?怎样说明你的猜想是正确的?(a m )n =a m ·a m ·a m·…·a m n 个a m(乘方的意义)=a m +m +m +…+mn 个m(同底数幂的乘法) =a mn (乘法定义),即(a m )n =a mn (m ,n 是正整数).这就是幂的乘方法则.你能用语言叙述这个法则吗?幂的乘方,底数不变,指数相乘. [设计意图]通过层层导入与渗透,让学生通过类比总结出幂的乘方的计算法则,整个过程由浅入深,体现了循序渐进的原则.二、例题讲解(教材例2)计算: (1)(103)5; (2)(a 4)4; (3)(a m )2;(4)-(x 4)3.〔解析〕要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.启发学生共同完成例题.学生在教师启发下,完成例题的问题,并进一步理解幂的乘方法则.解:(1)(103)5=103×5=1015.(2)(a4)4=a4×4=a16.(3)(a m)2=a m×2=a2m.(4)-(x4)3=-x4×3=-x12.想一想:a mn等于(a m)n(m,n是正整数)吗?学生类比同底数幂的乘法运算得出a mn=(a m)n(m,n是正整数),也就是说对于幂的乘方法则,它的逆应用同样成立.当一个幂的指数是积的形式时,就可以写成幂的乘方的形式.a20=(a4)()=(a5)()=(a2)()=(a10)().已知x m=4,x n=5,试求代数式x3m+2n的值.〔解析〕x3m+2n x3m·x2n(x m)3·(x n)2,整体代入,x m=4,x n=5即可求解.解:x3m+2n=x3m·x2n=(x m)3·(x n)2=43×52=1600.1.(a m)n=a mn(m,n都是正整数)的使用范围:幂的乘方.方法:底数不变,指数相乘.2.知识拓展:这里的底数、指数可以是数,也可以是单项式或多项式.3.幂的乘方法则与同底数幂的乘法法则区别在于一个是“指数相乘”,一个是“指数相加”.1.下列运算正确的是()A.2a2+3a=5a3B.a2·a3=a6C.(a3)2=a6D.a3-a3=a解析:A.2a2+3a,不是同类项不能相加,故A选项错误;B.a2·a3=a5,故B选项错误;C.(a3)2=a6,故C选项正确;D.a3-a3=0,故D选项错误.故选C.2.下列运算中,计算结果正确的是()A.3x-2x=1B.2x+2x=x2C.x·x=x2D.(a3)2=a4解析:A.3x-2x=x,所以A选项不正确;B.2x+2x=4x,所以B选项不正确;C.x·x=x2,所以C选项正确;D.(a3)2=a6,所以D选项不正确.故选C.3.计算.(1)x n-2·x n+2;(n是大于2的整数)(2)-(x3)5;(3)[(-2)2]3;(4)[(-a)3]2.解析:(1)根据同底数幂的乘法法则求解;(2)(3)(4)根据幂的乘方的法则求解.解:(1)原式=x n-2+n+2=x2n.(2)原式=-x15.(3)原式=43=64.(4)原式=a6.14.1.2幂的乘方一、法则的探究推理过程:(a m)n=a m·a m·…·a mn个a m =a m+m+m+…+mn个m=a mn.公式:(a m)n=a mn(m,n都是正整数).法则:幂的乘方,底数不变,指数相乘.二、例题讲解一、教材作业【必做题】教材第97页练习.【选做题】教材第104页习题14.1第1题(1)~(4).二、课后作业【基础巩固】1.计算(-a3)2的结果是()A.a6B.-a6C.a8D.-a82.计算:(a3)2·a3=.3.若9x=3x+2,则x=.4.已知2m=3,2n=22,则22m+n=.5.若2·8m=42m,则m=.【能力提升】6.若m,n都是正整数,且a>1,则(a n)m和(a m)n是否一定相等?若一定相等,请给予证明;若不一定相等,请举出反例.7.已知a m=2,a n=3,m,n是正整数且m>n.求下列各式的值:(1)a m+1;(2)a3m+2n.【拓展探究】8.试比较35555,44444,53333三个数的大小.【答案与解析】1.A(解析:(-a3)2=a3×2=a6.故选A.)2.a9(解析:先计算幂的乘方,再计算同底数幂的乘法.所以原式=a6·a3=a9.)3.2(解析:9x=32x=3x+2,2x=2+x,解得x=2,故答案为2.)4.36(解析:∵2m=3,2n=22,∴22m+n=22m·2n=(2m)2·2n=32·22=9×4=36.)5.1(解析:∵2·8m=42m,∴2×23m=24m,∴1+3m=4m,解得m=1.)。
整式乘除与因式分解一.知识点1.幂的运算性质:a m ·a n =a m +n(m 、n 为正整数)同底数幂相乘,底数不变,指数相加.例:(-2a )2(-3a 2)3 2.()n m a = a m n (m 、n 为正整数)幂的乘方,底数不变,指数相乘.例: (-a 5)53.()n n n b a ab = (n 为正整数) 积的乘方等于各因式乘方的积.例:(-a 2b )34.n m a a ÷= a m -n (a ≠0,m 、n 都是正整数,且m >n )同底数幂相除,底数不变,指数相减.例:(1)x 8÷x 2 (2)(a b )5÷(a b )2 5.零指数幂的概念:a 0=1 (a ≠0)任何一个不等于零的数的零指数幂都等于l .例:若1)32(0=-b a 成立,则b a ,满足什么条件?6.负指数幂的概念: a -p =p a 1(a ≠0,p 是正整数)任何一个不等于零的数的-p (p 是正整数)指数幂,等于这个数的p 指数幂的倒数. 也可表示为:pp n m m n ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-(m ≠0,n ≠0,p 为正整数)7.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例:(1)223123abc abc b a ⋅⋅ (2)4233)2()21(n m n m -⋅- 8.单项式与多项式的乘法法则: 单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加. 例:(1))35(222b a ab ab + (2)ab ab ab 21)232(2⋅- (3))32()5(-22n m n n m -+⋅ (4)xyz z xy z y x ⋅++)(23229.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.例:(1))6.0(1x x --)( (2)))(2(y x y x -+ (3)2)2n m +-(练习:1.计算2x 3·(-2xy)(-12xy) 3的结果是 2.如果(a n b ·ab m ) 3=a 9b 15,那么mn 的值是3.若k(2k -5)+2k(1-k)=32,则k =4.(-3x 2)+(2x -3y)(2x -5y)-3y(4x -5y)=10.单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.例:(1)28x 4y 2÷7x 3y (2)-5a 5b 3c ÷15a 4b (3)(2x 2y )3·(-7xy 2)÷14x 4y 311.多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把商相加.练习:(1)223247173y x z y x ÷-; (2)()⎪⎭⎫ ⎝⎛-÷-2232232y x y x ;易错点:在幂的运算中,由于法则掌握不准出现错误;有关多项式的乘法计算出现错误;误用同底数幂的除法法则;用单项式除以单项式法则或多项式除以单项式法则出错;乘除混合运算顺序出错。
新课标人教版初中数学八年级上册第十五章《整式的乘除与因式分解》简介人教版《义务教育课程标准实验教科书?数学》第十五章是“整式的乘除与因式分解”。
本章的主要内容是整式的乘除运算、乘法公式以及因式分解。
本章内容建立在已经学习了的有理数运算、列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上。
整式的乘除运算和因式分解是基本而重要的代数初步知识,这些知识是以后学习分式和根式运算、函数等知识的基础,在后续的数学学习中具有重要意义,同时,这些知识也是学习物理、化学等学科及其他科学技术不可缺少的数学基础知识.本章共安排了4个小节,教学时间约需13课时(供参考):15.1 整式的乘法4课时15.2 乘法公式2课时15.3 整式的除法2课时15.4 因式分解3课时数学活动小结2课时一、教科书内容和课程学习目标(一)本章知识结构框图(二)教科书内容本章共包括4节15.1 整式的乘法整式的乘法是整式四则运算的重要组成部分。
本节分为四个小节,主要内容是整式的乘法,这些内容是在学生掌握了有理数运算、整式加减运算等知识的基础上学习的。
其中,幂的运算性质,即同底数幂的乘法、幂的乘方和积的乘方是整式乘法的基础,教科书把它们依次安排在前三个小节中,教学中应适当复习幂、指数、底数等概念,特别要弄清正整数指数幂的意义。
在学生掌握了幂的运算性质后,作为它们的一个直接应用,教科书在第四小节安排一般整式乘法的教学内容。
首先是单项式与单项式相乘,由于进行单项式与多项式、多项式与多项式相乘的前提是熟练地进行单项式与单项式相乘,因此,对于单项式与单项式相乘的教学应该予以充分重视。
在学生掌握了单项式与单项式相乘的基础上,教科书利用分配律等进一步引入单项式与多项式相乘、多项式与多项式相乘,这样使整式乘法运算的教学从简到繁,由易到难,层层递进。
15.2乘法公式本节分为两个小节,分别介绍平方差公式与完全平方公式。
乘法公式是整式乘法的特殊情形,是在学习了一般的整式乘法知识的基础上学习的,运用乘法公式能简化一些特定类型的整式相乘的运算问题,教科书在本节开始首先指出了这一点。
板块一:选主元【例1】 分解因式:1a b c ab ac bc abc +++++++【例2】 分解因式:2222223a b ab a c ac abc b c bc -+--++【例3】 分解因式:22(1)(1)(221)y y x x y y +++++【例4】 分解因式:222222()()(1)()()ab x y a b xy a b x y ---+-++【例5】 分解因式:322222422x x z x y xyz xy y z --++-板块二:双十字相乘双十字相乘法: 对于某些二元二次六项式22ax bxy cy dx ey f +++++,可以看作先将关于x 的二次三项式22()ax by d x cy ey f +++++的“常数项”2cy ey f ++用十字相乘法分解,然后再次运用十字相乘法将关于x 的二次三项式分解。
由于这种方法两次使用了十字相乘法,故称之为双十字相乘法.【例6】 分解因式:222332x xy y x y +-+++【例7】 分解因式:22344883x xy y x y +-+--【例8】 分解因式:2265622320x xy y x y --++-例题精讲十字相乘、选主元、双十字相乘(二)【例9】 分解因式:22276212x xy y x y -++--【例10】 分解因式:22121021152x xy y x y -++-+【例11】 分解因式:22243x y x y ----【例12】 分解因式:22534x y x y -+++【例13】 分解因式:2222()3103x a b x a ab b ++-+-【例14】 分解因式:22265622320x xy y xz yz z -----【例15】 已知:a 、b 、c 为三角形的三条边,且222433720a ac c ab bc b ++--+=,求证:2b a c =+【例16】 分解因式:222695156x xy y xz yz z -+-++1.分解因式:(6114)(31)2a a b b b +++--2.分解因式:2222a b ab bc ac --++3.分解因式:2262288x xy y x y +-+--4.分解因式:223224x xy y x y ++++课后练习。
整式乘除法与因式分解
一.教学内容:
1、整式的乘除的基本概念、幂的运算法则、多项式基本运算法则。
2、因式分解的基本概念、分解方法。
二. 重点、难点
1、理解并掌握整式乘除法和因式分解的概念、法则。
2、掌握因式分解的常用方法并灵活运用。
三、知识结构
(1)、知识点回顾
1.1 区分:单项式:
多项式:
1.2、被除式、除式、商式、余式间的关系
2.1同底数幂的乘法:a m·a n=a m+n
同底数幂的除法:a m/a n=a m-n
幂的乘方:(a m)n=a mn
积的乘方:(ab)n=a n b a
3.1单项式的乘法法则
2a2xy3·(-ay4)
单项式与多项式相乘法则
(a2b)(3a2-b+c)
多项式的乘法法则
(x2+4x-5)(-2x+4)
3.2单项式的除法法则
多项式除以单项式的法则
多项式除以多项式的法则
4.1因式分解
公因式:多项式的各项中都含有的相同因式
4.2基本分解法
提取公因式法(整数最大公约数、字母最低次幂、相同多项式最低次幂)
1、4x2-10xy-2x
2、6x2y3(x-y)+8xy2z(x-y)2
运用公式法
1、a6-a2b4
2、-0.36a4+1
3、x6-1
4、a6-b6
十字相乘法
1、x4-13x2+36
2、a2b2+4ab-12
3、-x2-1/8y2+3/4xy
分组分解法
1、8ax+12ay-10bx-15by
2、ad+bd-ax-ay-bx-by
小结:
1、多项式的各项如果有公因式,应把公因式提到括号外,再考虑括号内的多项式用其他方
法分解
2、若是二项式,可用平方差公式或立方和或立方差公式分解
3、若是三项式,可用完全平方公式或十字相乘法解
4、若是四项或四项以上的多项式,可用分组分解法
5、在每次解法后,检查能不能继续分解,直到不能分解为止
检测
1、x4-64x
2、2a3x2+32a2x+128a
3、a6+7a3-8
进阶妙法
换元法
1、(x2+3x+4)(x2+3x-3)-8
添项、拆项法
1、a2+4
2、x3-7x+6
双十字相乘法/待定系数法分解形如Ax2+Bxy+Cy2+Dx+Ey+F
1、2x2+7xy-15y2-4x+19y-6
2、x2+3xy+2y2+4x+7y+3
答案:
提取公因式法
1、2x(2x-5y-1)
2、2xy2(x-y)(3xy+4zx-4yz)
运用公式法
1、a2[(a2+b2)(a+b)(a-b)]
2、(1+0.6a2)(1-0.6a2)
3、(x+1)(x2-x+1)(x-1)(x2+x+1)
4、(a+b)(a2-ab+b2)(a-b)(a2+ab+b2)
十字相乘法
1、(x+2)(x-2)(x+3)(x-3)
2、(ab-2)(ab+6)
3、-1/8(2x-y)(4x-y)
分组分解法
1、(4a-5b)(2x+3y)
2、(a+b)(d-x-y)
检测答案
1、x(x-4)(x2+4x+16)
2、2a(ax+8)2
3、(a+2)(a2-2a+4)(a-1)(a2+a+1)
换元法
1、(x2+3x+5)(x+4)(x-1)
添项、拆项法
1、(a2+2a+2)(a2-2a+2)
2、(x-1)(x+3)(x-2)
1、(2x-3y+2)(x+5y-3)
2、(x+y+3)(x+2y+1)。